1
|
Binacchi F, Giorgi E, Salvadori G, Cirri D, Stifano M, Donati A, Garzella L, Busto N, Garcia B, Pratesi A, Biver T. Exploring the interaction between a fluorescent Ag(I)-biscarbene complex and non-canonical DNA structures: a multi-technique investigation. Dalton Trans 2024; 53:9700-9714. [PMID: 38775704 DOI: 10.1039/d4dt00851k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Silver compounds are mainly studied as antimicrobial agents, but they also have anticancer properties, with the latter, in some cases, being better than their gold counterparts. Herein, we analyse the first example of a new Ag(I)-biscarbene that can bind non-canonical structures of DNA, more precisely G-quadruplexes (G4), with different binding signatures depending on the type of G4. Moreover, we show that this Ag-based carbene binds the i-motif DNA structure. Alternatively, its Au(I) counterpart, which was investigated for comparison, stabilises mitochondrial G4. Theoretical in silico studies elucidated the details of different binding modes depending on the geometry of G4. The two complexes showed increased cytotoxic activity compared to cisplatin, overcoming its resistance in ovarian cancer. The binding of these new drug candidates with other relevant biosubstrates was studied to afford a more complete picture of their possible targets. In particular, the Ag(I) complex preferentially binds DNA structures over RNA structures, with higher binding constants for the non-canonical nucleic acids with respect to natural calf thymus DNA. Regarding possible protein targets, its interaction with the albumin model protein BSA was also tested.
Collapse
Affiliation(s)
- Francesca Binacchi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Ester Giorgi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Giacomo Salvadori
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Mariassunta Stifano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Aurora Donati
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Linda Garzella
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Natalia Busto
- Departamento de Ciencias de la Salud, Universidad de Burgos, Paseo de los Comendadores s/n, 09001 Burgos, Spain
| | - Begona Garcia
- Departamento de Química, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Gorb L, Voiteshenko I, Hurmach V, Zarudnaya M, Nyporko A, Shyryna T, Platonov M, Roszak S, Rasulev B. From RNA sequence to its three-dimensional structure: geometrical structure, stability and dynamics of selected fragments of SARS-CoV-2 RNA. NAR Genom Bioinform 2024; 6:lqae062. [PMID: 38835951 PMCID: PMC11148665 DOI: 10.1093/nargab/lqae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
In this computational study, we explore the folding of a particular sequence using various computational tools to produce two-dimensional structures, which are then transformed into three-dimensional structures. We then study the geometry, energetics and dynamics of these structures using full electron quantum-chemical and classical molecular dynamics calculations. Our study focuses on the SARS-CoV-2 RNA fragment GGaGGaGGuguugcaGG and its various structures, including a G-quadruplex and five different hairpins. We examine the impact of two types of counterions (K+ and Na+) and flanking nucleotides on their geometrical characteristics, relative stability and dynamic properties. Our results show that the G-quadruplex structure is the most stable among the constructed hairpins. We confirm its topological stability through molecular dynamics simulations. Furthermore, we observe that the nucleotide loop consisting of seven nucleotides is the most flexible part of the RNA fragment. Additionally, we find that RNA networks of intermolecular hydrogen bonds are highly sensitive to the surrounding environment. Our findings reveal the loss of 79 old hydrogen bonds and the formation of 91 new ones in the case when the G-quadruplex containing flanking nucleotides is additionally stabilized by Na+ counterions.
Collapse
Affiliation(s)
- Leonid Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Ivan Voiteshenko
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv01033, Ukraine
| | - Vasyl Hurmach
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Margarita Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Alex Nyporko
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, Kyiv01033, Ukraine
| | - Tetiana Shyryna
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Maksym Platonov
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Akademika Zabolotnoho Str., Kyiv 03143, Ukraine
| | - Szczepan Roszak
- Faculty of Chemistry, University of Wrocław, 50-370Wrocław, Poland
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymer Materials, North Dakota State University, NDSU Department 2760, PO Box 6050, Fargo, ND 58108, USA
| |
Collapse
|
3
|
Michel HM, Lemkul JA. Base pair dynamics, electrostatics, and thermodynamics at the LTR-III quadruplex:duplex junction. Biophys J 2024; 123:1129-1138. [PMID: 38576161 PMCID: PMC11079942 DOI: 10.1016/j.bpj.2024.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024] Open
Abstract
G-quadruplexes (GQs) play key regulatory roles within the human genome and have also been identified to play similar roles in other eukaryotes, bacteria, archaea, and viruses. Human immunodeficiency virus 1, the etiological agent of acquired immunodeficiency syndrome, can form two GQs in its long terminal repeat (LTR) promoter region, each of which act to regulate viral gene expression in opposing manners. The major LTR GQ, called LTR-III, is a distinct hybrid GQ containing a 12-nucleotide duplex loop attached to the quadruplex motif. The resulting quadruplex:duplex junction (QDJ) has been hypothesized to serve as a selective drug targeting site. To better understand the dynamics of this QDJ, we performed conventional and enhanced-sampling molecular dynamics simulations using the Drude-2017 force field. We observed unbiased and reversible formation of additional base pairs in the QDJ, between Ade4:Thy14 and Gua3:Thy14. Both base pairs were electrostatically favored, but geometric constraints within the junction may drive the formation of, and preference for, the Ade4:Thy14 base pair. Finally, we demonstrated that the base pairs are separated only by small energy barriers that may enable transitions between both base-paired states. Together, these simulations provide new insights into the dynamics, electrostatics, and thermodynamics of the LTR-III QDJ.
Collapse
Affiliation(s)
- Haley M Michel
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia
| | - Justin A Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia; Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia.
| |
Collapse
|
4
|
Roy L, Roy A, Bose D, Banerjee N, Chatterjee S. Unraveling the structural aspects of the G-quadruplex in SMO promoter and elucidating its contribution in transcriptional regulation. J Biomol Struct Dyn 2023; 42:12228-12243. [PMID: 37878583 DOI: 10.1080/07391102.2023.2268200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023]
Abstract
We located a 25 nt G-rich sequence in the promoter region of SMO oncogene. We performed an array of biophysical and biochemical assays and confirmed the formation of a parallel G quadruplex (SMO1-GQ) by the identified sequence. SMO1-GQ is highly conserved in primates. For a comprehensive characterization of the SMO quadruplex structure, we have performed spectroscopic and in silico analysis with established GQ binder small molecules TMPyP4 and BRACO-19. We observed comparatively higher stable interaction of BRACO-19 with SMO1-GQ. Structure-based, rational drug design against SMO1-GQ to target SMO oncogene requires a detailed molecular anatomy of the G-quadruplex. We structurally characterised the SMO1-GQ using DMS footprinting assay and molecular modelling, docking, and MD simulation to identify the probable atomic regions that interact with either of the small molecules. We further investigated SMO1-GQ in vivo by performing chromatin immunoprecipitation (ChIP) assay. ChIP data revealed that this gene element functions as a scaffold for a number of transcription factors: specificity protein (Sp1), nucleolin (NCL), non-metastatic cell 2 (NM23-H2), cellular nucleic acid binding protein (CNBP), and heterogeneous nuclear ribonucleoprotein K (hnRNPK) which reflects the SMO1-P1 G-quadruplex to be the master regulator of SMO1 transcriptional activity. The strong binding interaction detected between SMO1-GQ and BRACO-19 contemplates the potential of the G quadruplex as a promising anti-cancer druggable target to downregulate SMO1 oncogene driven cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laboni Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Debopriya Bose
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Science, Bose Institute, Kolkata, West Bengal, India
| | | |
Collapse
|
5
|
Mu ZC, Tan YL, Liu J, Zhang BG, Shi YZ. Computational Modeling of DNA 3D Structures: From Dynamics and Mechanics to Folding. Molecules 2023; 28:4833. [PMID: 37375388 DOI: 10.3390/molecules28124833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA carries the genetic information required for the synthesis of RNA and proteins and plays an important role in many processes of biological development. Understanding the three-dimensional (3D) structures and dynamics of DNA is crucial for understanding their biological functions and guiding the development of novel materials. In this review, we discuss the recent advancements in computer methods for studying DNA 3D structures. This includes molecular dynamics simulations to analyze DNA dynamics, flexibility, and ion binding. We also explore various coarse-grained models used for DNA structure prediction or folding, along with fragment assembly methods for constructing DNA 3D structures. Furthermore, we also discuss the advantages and disadvantages of these methods and highlight their differences.
Collapse
Affiliation(s)
- Zi-Chun Mu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Lan Tan
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| | - Ya-Zhou Shi
- Research Center of Nonlinear Science, School of Mathematical & Physical Sciences, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
6
|
Nakagawa S, Kimura A, Okamoto Y. Polarizable Molecular Block Model: Toward the Development of an Induced Dipole Force Field for DNA. J Phys Chem B 2022; 126:10646-10661. [PMID: 36512703 DOI: 10.1021/acs.jpcb.2c06227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For flexible and highly ionized macromolecules such as DNA, it is important to correctly evaluate the intramolecular polarization in an induced dipole force field. In a proposed polarizable molecular block (PMB) model, a large molecule is divided into several molecular blocks. The atomic charges of the blocks are optimized by using the respective electrostatic potentials (ESPs) on the molecular surface. By using the capped hydrogen removal operation, the total charge of the blocks is controlled exactly to have an integer charge. The atomic polarizabilities of the blocks are optimized by using the respective polarized one-electron potentials that are the differences between ESPs with and without an external test charge. Induced dipole-charge interactions between the blocks are all included, but those interactions within the blocks are strictly excluded. All dipole-dipole interactions are included, but the damping functions are applied to the close dipole-dipole pairs. Several types of damping (simple scaling, exponential, linear, and Gaussian) are evaluated. The validity of the PMB model was verified by using trinucleotide duplexes which have A-, B-, and Z-DNA forms. The reference energies of trinucleotide duplexes including counterions (GGT3Na-ACC3Na, GAC3Na-GTC3Na, and GCG3Na-CGC3Na) are calculated using ωB97XD/aug-cc-pVDZ. All damping types reproduced well the reference interaction energies, dipole moments, and ESPs. Among them, the simple scaling with strong attenuation to 1-2 atomic pairs showed the highest stability against the polarization catastrophe. This study shows that it is possible to develop a high-quality polarizable force field by treating the intramolecular polarization on a block-by-block basis.
Collapse
Affiliation(s)
- Setsuko Nakagawa
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan.,Kinjo Gakuin University, Nagoya, Aichi463-8521, Japan
| | - Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan
| | - Yuko Okamoto
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi464-8602, Japan.,High Performance Computing Division, Information Technology Center, Nagoya University, Nagoya, Aichi464-8601, Japan.,Global Engagement Center, International Affairs, Nagoya University, Nagoya, Aichi464-8601, Japan
| |
Collapse
|
7
|
Fenati RA, Chen Z, Yamagishi Y, Tsukakoshi K, Ikebukuor K, Manian A, Russo SP, Yamazaki T, Ellis AV. Enhancement of DNAzymatic activity using iterative in silico maturation. J Mater Chem B 2022; 10:8960-8969. [DOI: 10.1039/d2tb01638a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Enhancement of DNZymatic activity using a combined iterative in silico and in vitro method as a cheaper and more stable alternative to antibodies or enzymes.
Collapse
Affiliation(s)
- Renzo A. Fenati
- Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, South Australia, 5042, Australia
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
- ARC Centre of Excellence in Exciton Science, School of Chemistry, Monash University, Clayton, 3800, Australia
| | - Zifei Chen
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, 3010, Australia
| | - Yasuko Yamagishi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuor
- Department of Biotechnology & Life sciences, Tokyo University of Agriculture and Technology, 2-24-21 Naka-Cho, Koganei, Tokyo, 184-8588, Japan
| | - Anjay Manian
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Salvy P. Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3000, Australia
| | - Tomohiko Yamazaki
- Nanomedicine Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, 305-0047, Japan
- Division of Life Science, Graduate School of Life Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo, 060-0808, Japan
| | - Amanda V. Ellis
- School of Chemical and Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Grattan Street, Parkville, Victoria, 3010, Australia
| |
Collapse
|