• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4646952)   Today's Articles (45)   Subscriber (50691)
For: Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023;19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Number Cited by Other Article(s)
1
Chen Y, Yan W, Wang Z, Wu J, Xu X. Constructing Accurate and Efficient General-Purpose Atomistic Machine Learning Model with Transferable Accuracy for Quantum Chemistry. J Chem Theory Comput 2024;20:9500-9511. [PMID: 39480759 DOI: 10.1021/acs.jctc.4c01151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
2
Jäger S, Khatri J, Meyer P, Henkel S, Schwaab G, Nandi A, Pandey P, Barlow KR, Perkins MA, Tschumper GS, Bowman JM, van der Avoird A, Havenith M. On the nature of hydrogen bonding in the H2S dimer. Nat Commun 2024;15:9540. [PMID: 39500885 PMCID: PMC11538508 DOI: 10.1038/s41467-024-53444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]  Open
3
Singh K, Lee KH, Peláez D, Bande A. Accelerating wavepacket propagation with machine learning. J Comput Chem 2024;45:2360-2373. [PMID: 39031712 DOI: 10.1002/jcc.27443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024]
4
Nandi A, Pandey P, Houston PL, Qu C, Yu Q, Conte R, Tkatchenko A, Bowman JM. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. J Chem Theory Comput 2024;20:8807-8819. [PMID: 39361051 PMCID: PMC11500277 DOI: 10.1021/acs.jctc.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
5
Gutierrez-Cardenas J, Gibbas BD, Whitaker K, Kaledin M, Kaledin AL. A Low-Order Permutationally Invariant Polynomial Approach to Learning Potential Energy Surfaces Using the Bond-Order Charge-Density Matrix: Application to Cn Clusters for n = 3-10, 20. J Phys Chem A 2024;128:7703-7713. [PMID: 39205486 PMCID: PMC11407436 DOI: 10.1021/acs.jpca.4c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
6
Khanifaev J, Schrader T, Perlt E. Machine-learning to predict anharmonic frequencies: a study of models and transferability. Phys Chem Chem Phys 2024;26:23495-23502. [PMID: 39222042 DOI: 10.1039/d4cp01789g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
7
Plé T, Adjoua O, Lagardère L, Piquemal JP. FeNNol: An efficient and flexible library for building force-field-enhanced neural network potentials. J Chem Phys 2024;161:042502. [PMID: 39051830 DOI: 10.1063/5.0217688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]  Open
8
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
9
Shakiba M, Akimov AV. Machine-Learned Kohn-Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics. J Chem Theory Comput 2024;20:2992-3007. [PMID: 38581699 DOI: 10.1021/acs.jctc.4c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
10
Pan X, Snyder R, Wang JN, Lander C, Wickizer C, Van R, Chesney A, Xue Y, Mao Y, Mei Y, Pu J, Shao Y. Training machine learning potentials for reactive systems: A Colab tutorial on basic models. J Comput Chem 2024;45:638-647. [PMID: 38082539 PMCID: PMC10923003 DOI: 10.1002/jcc.27269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 01/18/2024]
11
Schröder B, Rauhut G. From the Automated Calculation of Potential Energy Surfaces to Accurate Infrared Spectra. J Phys Chem Lett 2024;15:3159-3169. [PMID: 38478898 PMCID: PMC10961845 DOI: 10.1021/acs.jpclett.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024]
12
Dral PO. AI in computational chemistry through the lens of a decade-long journey. Chem Commun (Camb) 2024;60:3240-3258. [PMID: 38444290 DOI: 10.1039/d4cc00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
13
Houston PL, Qu C, Yu Q, Pandey P, Conte R, Nandi A, Bowman JM, Kukolich SG. Formic Acid-Ammonia Heterodimer: A New Δ-Machine Learning CCSD(T)-Level Potential Energy Surface Allows Investigation of the Double Proton Transfer. J Chem Theory Comput 2024;20:1821-1828. [PMID: 38382541 DOI: 10.1021/acs.jctc.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
14
Manzhos S, Ihara M. Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension. J Chem Phys 2024;160:021101. [PMID: 38189605 DOI: 10.1063/5.0187867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]  Open
15
Kumar S, Jing X, Pask JE, Medford AJ, Suryanarayana P. Kohn-Sham accuracy from orbital-free density functional theory via Δ-machine learning. J Chem Phys 2023;159:244106. [PMID: 38147461 DOI: 10.1063/5.0180541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]  Open
16
Fu B, Zhang DH. Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces. Natl Sci Rev 2023;10:nwad321. [PMID: 38274241 PMCID: PMC10808953 DOI: 10.1093/nsr/nwad321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/27/2024]  Open
17
Plé T, Lagardère L, Piquemal JP. Force-field-enhanced neural network interactions: from local equivariant embedding to atom-in-molecule properties and long-range effects. Chem Sci 2023;14:12554-12569. [PMID: 38020379 PMCID: PMC10646944 DOI: 10.1039/d3sc02581k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]  Open
18
Broderick DR, Herbert JM. Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration. J Chem Phys 2023;159:174801. [PMID: 37921253 DOI: 10.1063/5.0174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]  Open
19
Liu Y, Guo H. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. J Phys Chem A 2023;127:8765-8772. [PMID: 37815868 DOI: 10.1021/acs.jpca.3c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
20
Herman KM, Stone AJ, Xantheas SS. Accurate Calculation of Many-Body Energies in Water Clusters Using a Classical Geometry-Dependent Induction Model. J Chem Theory Comput 2023;19:6805-6815. [PMID: 37703063 DOI: 10.1021/acs.jctc.3c00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
21
Ashani MN, Huang Q, Flowers AM, Brown A, Aerts A, Otero-de-la-Roza A, DiLabio GA. Accurate Potential Energy Surfaces Using Atom-Centered Potentials and Minimal High-Level Data. J Phys Chem A 2023;127:8015-8024. [PMID: 37712536 DOI: 10.1021/acs.jpca.3c04558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
22
Manzhos S, Ihara M. Neural Network with Optimal Neuron Activation Functions Based on Additive Gaussian Process Regression. J Phys Chem A 2023;127:7823-7835. [PMID: 37698519 DOI: 10.1021/acs.jpca.3c02949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
23
Yu Q, Qu C, Houston PL, Nandi A, Pandey P, Conte R, Bowman JM. A Status Report on "Gold Standard" Machine-Learned Potentials for Water. J Phys Chem Lett 2023;14:8077-8087. [PMID: 37656898 PMCID: PMC10510435 DOI: 10.1021/acs.jpclett.3c01791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
24
Hashem Y, Foust K, Kaledin M, Kaledin AL. Fitting Potential Energy Surfaces by Learning the Charge Density Matrix with Permutationally Invariant Polynomials. J Chem Theory Comput 2023;19:5690-5700. [PMID: 37561135 PMCID: PMC10501011 DOI: 10.1021/acs.jctc.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/11/2023]
25
Chen MS, Lee J, Ye HZ, Berkelbach TC, Reichman DR, Markland TE. Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy. J Chem Theory Comput 2023;19:4510-4519. [PMID: 36730728 DOI: 10.1021/acs.jctc.2c01203] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
26
Trenins G, Meuser L, Bertschi H, Vavourakis O, Flütsch R, Richardson JO. Exact tunneling splittings from symmetrized path integrals. J Chem Phys 2023;159:034108. [PMID: 37466233 DOI: 10.1063/5.0158879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/13/2023] [Indexed: 07/20/2023]  Open
27
Ruth M, Gerbig D, Schreiner PR. Machine Learning for Bridging the Gap between Density Functional Theory and Coupled Cluster Energies. J Chem Theory Comput 2023. [PMID: 37418619 DOI: 10.1021/acs.jctc.3c00274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
28
Akher FB, Shu Y, Varga Z, Bhaumik S, Truhlar DG. Parametrically Managed Activation Function for Fitting a Neural Network Potential with Physical Behavior Enforced by a Low-Dimensional Potential. J Phys Chem A 2023. [PMID: 37307218 DOI: 10.1021/acs.jpca.3c02627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
29
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023;28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]  Open
30
Wang JN, Xue Y, Li P, Pan X, Wang M, Shao Y, Mo Y, Mei Y. Perspective: Reference-Potential Methods for the Study of Thermodynamic Properties in Chemical Processes: Theory, Applications, and Pitfalls. J Phys Chem Lett 2023;14:4866-4875. [PMID: 37196031 PMCID: PMC10840091 DOI: 10.1021/acs.jpclett.3c00671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA