1
|
Tworek JW, Elcock AH. Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides a Fast but Still Accurate Treatment of Hydrodynamic Interactions in Brownian Dynamics Simulations of Biological Macromolecules. J Chem Theory Comput 2023; 19:5099-5111. [PMID: 37409946 PMCID: PMC10413861 DOI: 10.1021/acs.jctc.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 07/07/2023]
Abstract
The Brownian dynamics (BD) simulation technique is widely used to model the diffusive and conformational dynamics of complex systems comprising biological macromolecules. For the diffusive properties of macromolecules to be described correctly by BD simulations, it is necessary to include hydrodynamic interactions (HIs). When modeled at the Rotne-Prager-Yamakawa (RPY) level of theory, for example, the translational and rotational diffusion coefficients of isolated macromolecules can be accurately reproduced; when HIs are neglected, however, diffusion coefficients can be underestimated by an order of magnitude or more. The principal drawback to the inclusion of HIs in BD simulations is their computational expense, and several previous studies have sought to accelerate their modeling by developing fast approximations for the calculation of the correlated random displacements. Here, we explore the use of an alternative way to accelerate the calculation of HIs, i.e., by replacing the full RPY tensor with an orientationally averaged (OA) version which retains the distance dependence of the HIs but averages out their orientational dependence. We seek here to determine whether such an approximation can be justified in application to the modeling of typical proteins and RNAs. We show that the use of an OA-RPY tensor allows translational diffusion of macromolecules to be modeled with very high accuracy at the cost of rotational diffusion being underestimated by ∼25%. We show that this finding is independent of the type of macromolecule simulated and the level of structural resolution employed in the models. We also show, however, that these results are critically dependent on the inclusion of a non-zero term that describes the divergence of the diffusion tensor: when this term is omitted from simulations that use the OA-RPY model, unfolded macromolecules undergo rapid collapse. Our results indicate that the orientationally averaged RPY tensor is likely to be a useful, fast, approximate way of including HIs in BD simulations of intermediate-scale systems.
Collapse
Affiliation(s)
- John W. Tworek
- Department of Biochemistry
& Molecular Biology, University of Iowa, Iowa City, Iowa 52242, United States
| | - Adrian H. Elcock
- Department of Biochemistry
& Molecular Biology, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
2
|
Fagerberg E, Skepö M. Comparative Performance of Computer Simulation Models of Intrinsically Disordered Proteins at Different Levels of Coarse-Graining. J Chem Inf Model 2023; 63:4079-4087. [PMID: 37339604 PMCID: PMC10336962 DOI: 10.1021/acs.jcim.3c00113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 06/22/2023]
Abstract
Coarse-graining is commonly used to decrease the computational cost of simulations. However, coarse-grained models are also considered to have lower transferability, with lower accuracy for systems outside the original scope of parametrization. Here, we benchmark a bead-necklace model and a modified Martini 2 model, both coarse-grained models, for a set of intrinsically disordered proteins, with the different models having different degrees of coarse-graining. The SOP-IDP model has earlier been used for this set of proteins; thus, those results are included in this study to compare how models with different levels of coarse-graining compare. The sometimes naive expectation of the least coarse-grained model performing best does not hold true for the experimental pool of proteins used here. Instead, it showed the least good agreement, indicating that one should not necessarily trust the otherwise intuitive notion of a more advanced model inherently being better in model choice.
Collapse
Affiliation(s)
- Eric Fagerberg
- Theoretical
Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
| | - Marie Skepö
- Theoretical
Chemistry, Lund University, POB 124, SE-221 00 Lund, Sweden
- LINXS
- Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
3
|
Tworek JW, Elcock AH. An Orientationally Averaged Version of the Rotne-Prager-Yamakawa Tensor Provides A Fast But Still Accurate Treatment Of Hydrodynamic Interactions In Brownian Dynamics Simulations Of Biological Macromolecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537865. [PMID: 37162930 PMCID: PMC10168278 DOI: 10.1101/2023.04.21.537865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The Brownian dynamics (BD) simulation technique is widely used to model the diffusive and conformational dynamics of complex systems comprising biological macromolecules. For the diffusive properties of macromolecules to be described correctly by BD simulations, it is necessary to include hydrodynamic interactions (HI). When modeled at the Rotne-Prager-Yamakawa (RPY) level of theory, for example, the translational and rotational diffusion coefficients of isolated macromolecules can be accurately reproduced; when HIs are neglected, however, diffusion coefficients can be underestimated by an order of magnitude or more. The principal drawback to the inclusion of HIs in BD simulations is their computational expense, and several previous studies have sought to accelerate their modeling by developing fast approximations for the calculation of the correlated random displacements. Here we explore the use of an alternative way to accelerate calculation of HIs, i.e., by replacing the full RPY tensor with an orientationally averaged (OA) version which retains the distance dependence of the HIs but averages out their orientational dependence. We seek here to determine whether such an approximation can be justified in application to the modeling of typical proteins and RNAs. We show that the use of an OA RPY tensor allows translational diffusion of macromolecules to be modeled with very high accuracy at the cost of rotational diffusion being underestimated by ∼25%. We show that this finding is independent of the type of macromolecule simulated and the level of structural resolution employed in the models. We also show, however, that these results are critically dependent on the inclusion of a non-zero term that describes the divergence of the diffusion tensor: when this term is omitted from simulations that use the OA RPY model, unfolded macromolecules undergo rapid collapse. Our results indicate that the orientationally averaged RPY tensor is likely to be a useful, fast approximate way of including HIs in BD simulations of intermediate-scale systems.
Collapse
|
4
|
Muñiz‐Chicharro A, Votapka LW, Amaro RE, Wade RC. Brownian dynamics simulations of biomolecular diffusional association processes. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abraham Muñiz‐Chicharro
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Faculty of Biosciences and Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences (HGS MathComp) Heidelberg University Heidelberg Germany
| | | | | | - Rebecca C. Wade
- Molecular and Cellular Modeling Group Heidelberg Institute for Theoretical Studies (HITS) Heidelberg Germany
- Center for Molecular Biology (ZMBH), DKFZ‐ZMBH Alliance, and Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Heidelberg Germany
| |
Collapse
|
5
|
Ahn SH, Huber GA, McCammon JA. Investigating Intrinsically Disordered Proteins With Brownian Dynamics. Front Mol Biosci 2022; 9:898838. [PMID: 35755809 PMCID: PMC9213797 DOI: 10.3389/fmolb.2022.898838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have recently become systems of great interest due to their involvement in modulating many biological processes and their aggregation being implicated in many diseases. Since IDPs do not have a stable, folded structure, however, they cannot be easily studied with experimental techniques. Hence, conducting a computational study of these systems can be helpful and be complementary with experimental work to elucidate their mechanisms. Thus, we have implemented the coarse-grained force field for proteins (COFFDROP) in Browndye 2.0 to study IDPs using Brownian dynamics (BD) simulations, which are often used to study large-scale motions with longer time scales and diffusion-limited molecular associations. Specifically, we have checked our COFFDROP implementation with eight naturally occurring IDPs and have investigated five (Glu-Lys)25 IDP sequence variants. From measuring the hydrodynamic radii of eight naturally occurring IDPs, we found the ideal scaling factor of 0.786 for non-bonded interactions. We have also measured the entanglement indices (average C α distances to the other chain) between two (Glu-Lys)25 IDP sequence variants, a property related to molecular association. We found that entanglement indices decrease for all possible pairs at excess salt concentration, which is consistent with long-range interactions of these IDP sequence variants getting weaker at increasing salt concentration.
Collapse
Affiliation(s)
- Surl-Hee Ahn
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
| | - Gary A. Huber
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, CA, United States
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
6
|
Kawamoto S, Liu H, Miyazaki Y, Seo S, Dixit M, DeVane R, MacDermaid C, Fiorin G, Klein ML, Shinoda W. SPICA Force Field for Proteins and Peptides. J Chem Theory Comput 2022; 18:3204-3217. [PMID: 35413197 DOI: 10.1021/acs.jctc.1c01207] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A coarse-grained (CG) model for peptides and proteins was developed as an extension of the Surface Property fItting Coarse grAined (SPICA) force field (FF). The model was designed to examine membrane proteins that are fully compatible with the lipid membranes of the SPICA FF. A preliminary version of this protein model was created using thermodynamic properties, including the surface tension and density in the SPICA (formerly called SDK) FF. In this study, we improved the CG protein model to facilitate molecular dynamics (MD) simulations with a reproduction of multiple properties from both experiments and all-atom (AA) simulations. An elastic network model was adopted to maintain the secondary structure within a single chain. The side-chain analogues reproduced the transfer free energy profiles across the lipid membrane and demonstrated reasonable association free energy (potential of mean force) in water compared to those from AA MD. A series of peptides/proteins adsorbed onto or penetrated into the membrane simulated by the CG MD correctly predicted the penetration depths and tilt angles of peripheral and transmembrane peptides/proteins as comparable to those in the orientations of proteins in membranes (OPM) database. In addition, the dimerization free energies of several transmembrane helices within a lipid bilayer were comparable to those from experimental estimation. Application studies on a series of membrane protein assemblies, scramblases, and poliovirus capsids demonstrated the good performance of the SPICA FF.
Collapse
Affiliation(s)
- Shuhei Kawamoto
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Huihui Liu
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yusuke Miyazaki
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sangjae Seo
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Korea Institute of Science and Technology Information, 245 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Mayank Dixit
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Russell DeVane
- Modeling & Simulation, Corporate Research & Development, The Procter and Gamble Company, West Chester, Ohio 45069, United States
| | - Christopher MacDermaid
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Giacomo Fiorin
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael L Klein
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.,Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Chen G, Zhang Q, Chen H, Lu Q, Miao M, Campanella OH, Feng B. In situ and real-time insight into Rhizopus chinensis lipase under high pressure and temperature: Conformational traits and biobehavioural analysis. Int J Biol Macromol 2020; 154:1314-1323. [PMID: 31733249 DOI: 10.1016/j.ijbiomac.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/30/2019] [Accepted: 11/03/2019] [Indexed: 11/17/2022]
Abstract
An in situ and real-time investigation was performed using an optical cell system and in-silico analysis to reveal the impacts of pressure and temperature on the conformational state and behaviours of Rhizopus chinensis lipase (RCL). The fluorescence intensity (FI) of RCL increased remarkably under high pressure, and part of this increase was recovered after depressurization. This result displayed the partially reversible conformational change of RCL, which may be associated with the local change of Trp224 near the catalytic centre. High temperature caused a significant loss of secondary structure, whereas the α-helical segments including the lid were preserved by high pressure even at temperatures over 60 °C. The parameters of enzymatic reaction monitored by UV showed that the hydrolysis rate was remarkably enhanced by the pressure of 200 MPa. In the pressure range of 0.1-200 MPa, the active volume measured by the in situ system decreased from -2.85 to -6.73 mL/mol with the temperature increasing from 20 °C to 40 °C. The high catalytic capacity of the lipase under high pressure and high temperature was primarily attributed to pressure protection on RCL.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, PR China
| | - Qiupei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China
| | - Haitao Chen
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, PR China
| | - Qiyu Lu
- School of Food Science, Henan University of Technology, 100 Lianhua Street, Zhengzhou 450001, Henan, PR China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China; Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu, PR China.
| |
Collapse
|
8
|
Aboelkassem Y, McCabe KJ, Huber GA, Regnier M, McCammon JA, McCulloch AD. A Stochastic Multiscale Model of Cardiac Thin Filament Activation Using Brownian-Langevin Dynamics. Biophys J 2019; 117:2255-2272. [PMID: 31547973 PMCID: PMC6990154 DOI: 10.1016/j.bpj.2019.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/16/2022] Open
Abstract
We use Brownian-Langevin dynamics principles to derive a coarse-graining multiscale myofilament model that can describe the thin-filament activation process during contraction. The model links atomistic molecular simulations of protein-protein interactions in the thin-filament regulatory unit to sarcomere-level activation dynamics. We first calculate the molecular interaction energy between tropomyosin and actin surface using Brownian dynamics simulations. This energy profile is then generalized to account for the observed tropomyosin transitions between its regulatory stable states. The generalized energy landscape then served as a basis for developing a filament-scale model using Langevin dynamics. This integrated analysis, spanning molecular to thin-filament scales, is capable of tracking the events of the tropomyosin conformational changes as it moves over the actin surface. The tropomyosin coil with flexible overlap regions between adjacent tropomyosins is represented in the model as a system of coupled stochastic ordinary differential equations. The proposed multiscale approach provides a more detailed molecular connection between tropomyosin dynamics, the trompomyosin-actin interaction-energy landscape, and the generated force by the sarcomere.
Collapse
Affiliation(s)
- Yasser Aboelkassem
- Department of Bioengineering, University of California San Diego, La Jolla, California.
| | - Kimberly J McCabe
- Department of Bioengineering, University of California San Diego, La Jolla, California
| | - Gary A Huber
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, California
| |
Collapse
|
9
|
Mioduszewski Ł, Cieplak M. Disordered peptide chains in an α-C-based coarse-grained model. Phys Chem Chem Phys 2018; 20:19057-19070. [PMID: 29972174 DOI: 10.1039/c8cp03309a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We construct a one-bead-per-residue coarse-grained dynamical model to describe intrinsically disordered proteins at significantly longer timescales than in the all-atom models. In this model, inter-residue contacts form and disappear during the course of the time evolution. The contacts may arise between the sidechains, the backbones or the sidechains and backbones of the interacting residues. The model yields results that are consistent with many all-atom and experimental data on these systems. We demonstrate that the geometrical properties of various homopeptides differ substantially in this model. In particular, the average radius of gyration scales with the sequence length in a residue-dependent manner.
Collapse
Affiliation(s)
- Łukasz Mioduszewski
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | |
Collapse
|
10
|
Cossins BP, Lawson ADG, Shi J. Computational Exploration of Conformational Transitions in Protein Drug Targets. Methods Mol Biol 2018; 1762:339-365. [PMID: 29594780 DOI: 10.1007/978-1-4939-7756-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Protein drug targets vary from highly structured to completely disordered; either way dynamics governs function. Hence, understanding the dynamical aspects of how protein targets function can enable improved interventions with drug molecules. Computational approaches offer highly detailed structural models of protein dynamics which are becoming more predictive as model quality and sampling power improve. However, the most advanced and popular models still have errors owing to imperfect parameter sets and often cannot access longer timescales of many crucial biological processes. Experimental approaches offer more certainty but can struggle to detect and measure lightly populated conformations of target proteins and subtle allostery. An emerging solution is to integrate available experimental data into advanced molecular simulations. In the future, molecular simulation in combination with experimental data may be able to offer detailed models of important drug targets such that improved functional mechanisms or selectivity can be accessed.
Collapse
Affiliation(s)
- Benjamin P Cossins
- Computer-Aided Drug Design and Structural Biology, UCB Pharma, Slough, UK.
| | | | - Jiye Shi
- Computer-Aided Drug Design and Structural Biology, UCB Pharma, Slough, UK
| |
Collapse
|
11
|
Andrews CT, Campbell BA, Elcock AH. Direct Comparison of Amino Acid and Salt Interactions with Double-Stranded and Single-Stranded DNA from Explicit-Solvent Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1794-1811. [PMID: 28288277 DOI: 10.1021/acs.jctc.6b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid side chains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of 20 amino acid side chain analogs interacting simultaneously with both a 70-base-pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid side chains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged side chains, all types of amino acid side chain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic side chains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged side chains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged side chains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.
Collapse
Affiliation(s)
- Casey T Andrews
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Brady A Campbell
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Adrian H Elcock
- Department of Biochemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Xie Z, Chai D, Wang Y, Tan H. Directly Modifying the Nonbonded Potential Based on the Standard Iterative Boltzmann Inversion Method for Coarse-Grained Force Fields. J Phys Chem B 2016; 120:11834-11844. [PMID: 27766876 DOI: 10.1021/acs.jpcb.6b06457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective potentials are of great importance for coarse-grained (CG) simulations, which can be obtained by the structure-based iterative Boltzmann inversion (IBI) method. However, the standard IBI method is incapable of maintaining the mechanical and thermodynamic properties of the CG model in agreement with those of the all-atom model. Unlike the existing techniques, such as introducing friction force as the dissipative force to reduce the superatom motion while keeping the conservative force arising from the CG potential intact, we directly modified the standard IBI nonbonded potential by adding an empirical function. According to an analysis of the dissipative particle dynamics, the additional function did compensate for the friction reduction of the standard IBI CG model. In this work, the thermal fluctuation information from the nonbonded radial distribution function was incorporated into the additional empirical function. As an illustration of the new CG force fields, we presented simulations of the stress-strain relation and thermodynamic properties in terms of cis-polyisoprene and compared the statistical structure information of the superatoms with those of the IBI CG model and the all-atom model. It should be emphasized that the additional empirical function contributed to compensating for the friction reduction, irrespective of the functional form it took. In this sense, the proposed method was easily operable.
Collapse
Affiliation(s)
- Zhimin Xie
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials and Structures, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Dongliang Chai
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials and Structures, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials and Structures, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| | - Huifeng Tan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environment, Center for Composite Materials and Structures, Harbin Institute of Technology , Harbin 150001, People's Republic of China
| |
Collapse
|
13
|
Ruff KM, Harmon TS, Pappu RV. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. J Chem Phys 2015; 143:243123. [PMID: 26723608 PMCID: PMC4644154 DOI: 10.1063/1.4935066] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/21/2015] [Indexed: 01/28/2023] Open
Abstract
We report the development and deployment of a coarse-graining method that is well suited for computer simulations of aggregation and phase separation of protein sequences with block-copolymeric architectures. Our algorithm, named CAMELOT for Coarse-grained simulations Aided by MachinE Learning Optimization and Training, leverages information from converged all atom simulations that is used to determine a suitable resolution and parameterize the coarse-grained model. To parameterize a system-specific coarse-grained model, we use a combination of Boltzmann inversion, non-linear regression, and a Gaussian process Bayesian optimization approach. The accuracy of the coarse-grained model is demonstrated through direct comparisons to results from all atom simulations. We demonstrate the utility of our coarse-graining approach using the block-copolymeric sequence from the exon 1 encoded sequence of the huntingtin protein. This sequence comprises of 17 residues from the N-terminal end of huntingtin (N17) followed by a polyglutamine (polyQ) tract. Simulations based on the CAMELOT approach are used to show that the adsorption and unfolding of the wild type N17 and its sequence variants on the surface of polyQ tracts engender a patchy colloid like architecture that promotes the formation of linear aggregates. These results provide a plausible explanation for experimental observations, which show that N17 accelerates the formation of linear aggregates in block-copolymeric N17-polyQ sequences. The CAMELOT approach is versatile and is generalizable for simulating the aggregation and phase behavior of a range of block-copolymeric protein sequences.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Computational and Systems Biology Program and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | - Tyler S Harmon
- Department of Physics and Center for Biological Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130-4899, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, CB 1097, St. Louis, Missouri 63130-4899, USA
| |
Collapse
|
14
|
Spiriti J, Zuckerman DM. Tabulation as a high-resolution alternative to coarse-graining protein interactions: Initial application to virus capsid subunits. J Chem Phys 2015; 143:243159. [PMID: 26723644 PMCID: PMC4698120 DOI: 10.1063/1.4938479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/10/2015] [Indexed: 11/14/2022] Open
Abstract
Traditional coarse-graining based on a reduced number of interaction sites often entails a significant sacrifice of chemical accuracy. As an alternative, we present a method for simulating large systems composed of interacting macromolecules using an energy tabulation strategy previously devised for small rigid molecules or molecular fragments [S. Lettieri and D. M. Zuckerman, J. Comput. Chem. 33, 268-275 (2012); J. Spiriti and D. M. Zuckerman, J. Chem. Theory Comput. 10, 5161-5177 (2014)]. We treat proteins as rigid and construct distance and orientation-dependent tables of the interaction energy between them. Arbitrarily detailed interactions may be incorporated into the tables, but as a proof-of-principle, we tabulate a simple α-carbon Gō-like model for interactions between dimeric subunits of the hepatitis B viral capsid. This model is significantly more structurally realistic than previous models used in capsid assembly studies. We are able to increase the speed of Monte Carlo simulations by a factor of up to 6700 compared to simulations without tables, with only minimal further loss in accuracy. To obtain further enhancement of sampling, we combine tabulation with the weighted ensemble (WE) method, in which multiple parallel simulations are occasionally replicated or pruned in order to sample targeted regions of a reaction coordinate space. In the initial study reported here, WE is able to yield pathways of the final ∼25% of the assembly process.
Collapse
Affiliation(s)
- Justin Spiriti
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15260, USA
| | - Daniel M Zuckerman
- Department of Computational and Systems Biology, University of Pittsburgh, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
15
|
Pottel J, Moitessier N. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering. J Chem Inf Model 2015; 55:2657-71. [PMID: 26623941 DOI: 10.1021/acs.jcim.5b00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100 kinases, side-chain reconstruction (using both general and biased conformation libraries) had minimal detriment to the docking accuracy.
Collapse
Affiliation(s)
- Joshua Pottel
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| | - Nicolas Moitessier
- Department of Chemistry, McGill University , 801 Sherbrooke Street West, Montreal, QC, Canada H3A 0B8
| |
Collapse
|