1
|
Lee M, Kim B, Sim M, Sogal M, Kim Y, Yu H, Burke K, Sim E. Correcting Dispersion Corrections with Density-Corrected DFT. J Chem Theory Comput 2024. [PMID: 39120872 DOI: 10.1021/acs.jctc.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Almost all empirical parametrizations of dispersion corrections in DFT use only energy errors, thereby mixing functional and density-driven errors. We introduce density and dispersion-corrected DFT (D2C-DFT), a dual-calibration approach that accounts for density delocalization errors when parametrizing dispersion interactions. We simply exclude density-sensitive reactions from the training data. We find a significant reduction in both errors and variation among several semilocal functionals and their global hybrids when tailored dispersion corrections are employed with Hartree-Fock densities.
Collapse
Affiliation(s)
- Minhyeok Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Byeongjae Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mingyu Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Mihira Sogal
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Youngsam Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Hayoung Yu
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
2
|
Daas K, Klute E, Seidl M, Gori-Giorgi P. Møller-Plesset Adiabatic Connection at Large Coupling Strengths for Open-Shell Systems. J Phys Chem A 2024; 128:4138-4149. [PMID: 38717868 PMCID: PMC11129316 DOI: 10.1021/acs.jpca.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/24/2024]
Abstract
We study the adiabatic connection that has as weak-coupling expansion the Møller-Plesset perturbation series, generalizing to the open-shell case previous closed-shell results for the large-coupling limit. We first focus on the hydrogen atom with fractional spins, providing results along the adiabatic connection from small to large coupling strengths. We reveal an intriguing phase diagram and an equation for the large-coupling leading order that has closed-form solutions for specific choices of its relevant quantum numbers. We then show that the hydrogen atom results provide variational estimates for the large-coupling leading terms for the general many-electron open-shell case in terms of functionals of the Hartree-Fock α-spin and β-spin densities.
Collapse
Affiliation(s)
- Kimberly
J. Daas
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Eveline Klute
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Michael Seidl
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
| | - Paola Gori-Giorgi
- Department
of Chemistry & Pharmaceutical Sciences and Amsterdam Institute
of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081 HV, The Netherlands
- Microsoft
Research AI for Science, Evert van de Beekstraat 354, Schiphol 1118 CZ, The Netherlands
| |
Collapse
|
3
|
Vuckovic S, Bahmann H. Nonlocal Functionals Inspired by the Strongly Interacting Limit of DFT: Exact Constraints and Implementation. J Chem Theory Comput 2023; 19:6172-6184. [PMID: 37611177 DOI: 10.1021/acs.jctc.3c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Capturing strong correlation effects remains a key challenge for the development of improved exchange-correlation (XC) functionals in density functional theory. The recently proposed multiple radii functional (MRF) [J. Phys. Chem. Lett. 2017, 8, 2799; J. Chem. Theory Comput. 2019, 15, 3580] was designed to capture strong correlation effects seamlessly, as its mathematical structure draws from that of the exact XC functional in the limit of infinite correlations. The MRF functional provides a framework for building approximations along the density-fixed adiabatic connection, delivers accurate XC energy densities in the standard DFT gauge (same as that of the exact exchange energy density), and is free of one-electron self-interaction errors. To facilitate the development of XC functionals based on the MRF, we examine the behavior of the MRF functional when applied to uniform and scaled densities and consider how it can be made exact for the uniform electron gas. These theoretical insights are then used to build improved forms for the fluctuation function, an object that defines XC energy densities within the MRF framework. We also show how the MRF fluctuation function for physical correlation can be easily readjusted to accurately capture the XC functional in the limit of infinite correlations, demonstrating the versatility of MRF for building approximations for different correlation regimes. We describe the implementation of MRF using densities expanded on Gaussian basis sets, which improves the efficiency of previous grid-based MRF implementations.
Collapse
Affiliation(s)
- Stefan Vuckovic
- Department of Chemistry, University of Fribourg, 1700 Fribourg, Switzerland
| | - Hilke Bahmann
- Physical and Theoretical Chemistry, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
4
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
5
|
González S, Porras M, Jimbo A, Zambrano CH. Dehydrochlorination of PCDDs on SWCN-Supported Ni10 and Ni13 Clusters, a DFT Study. Molecules 2022; 27:molecules27165074. [PMID: 36014314 PMCID: PMC9414052 DOI: 10.3390/molecules27165074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are known to be a group of compounds of high toxicity for animals and, particularly, for humans. Given that the most common method to destroy these compounds is by high-temperature combustion, finding other routes to render them less toxic is of paramount importance. Taking advantage of the physisorption properties of nanotubes, we studied the reactions of atomic hydrogen on physisorbed PCDDs using DFT; likewise, we investigated the reaction of molecular hydrogen on PCDDs aided by Ni10 and Ni13 clusters adsorbed on single-wall carbon nanotubes. Because dihydrogen is an easily accessible reactant, we found these reactions to be quite relevant as dehydrohalogenation methods to address PCDD toxicity.
Collapse
Affiliation(s)
- Silvia González
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle Marcelino Champagnat s/n, Loja 110101, Ecuador
- Correspondence: ; Tel.: +593-7-370-1444
| | - Martha Porras
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle Marcelino Champagnat s/n, Loja 110101, Ecuador
- Universidad Técnica de Machala, Av. Panamericana Km. 5 1/2 Vía a Pasaje, Machala 170526, Ecuador
| | - Arianna Jimbo
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Calle Marcelino Champagnat s/n, Loja 110101, Ecuador
| | - Cesar H. Zambrano
- Departamento de Ingeniería Química, Universidad San Francisco de Quito, Pampite y Robles s/n Cumbayá, Quito 170901, Ecuador
| |
Collapse
|
6
|
Sim E, Song S, Vuckovic S, Burke K. Improving Results by Improving Densities: Density-Corrected Density Functional Theory. J Am Chem Soc 2022; 144:6625-6639. [PMID: 35380807 DOI: 10.1021/jacs.1c11506] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Density functional theory (DFT) calculations have become widespread in both chemistry and materials, because they usually provide useful accuracy at much lower computational cost than wavefunction-based methods. All practical DFT calculations require an approximation to the unknown exchange-correlation energy, which is then used self-consistently in the Kohn-Sham scheme to produce an approximate energy from an approximate density. Density-corrected DFT is simply the study of the relative contributions to the total energy error. In the vast majority of DFT calculations, the error due to the approximate density is negligible. But with certain classes of functionals applied to certain classes of problems, the density error is sufficiently large as to contribute to the energy noticeably, and its removal leads to much better results. These problems include reaction barriers, torsional barriers involving π-conjugation, halogen bonds, radicals and anions, most stretched bonds, etc. In all such cases, use of a more accurate density significantly improves performance, and often the simple expedient of using the Hartree-Fock density is enough. This Perspective explains what DC-DFT is, where it is likely to improve results, and how DC-DFT can produce more accurate functionals. We also outline challenges and prospects for the field.
Collapse
Affiliation(s)
- Eunji Sim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Suhwan Song
- Department of Chemistry, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 03722, Korea
| | - Stefan Vuckovic
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni,Campus Unisalento, 73100 Lecce, Italy.,Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Kieron Burke
- Departments of Chemistry and of Physics, University of California, Irvine, California 92697, United States
| |
Collapse
|
7
|
Dillon DJ, Tozer DJ. Incorporation of the Fermi-Amaldi Term into Direct Energy Kohn-Sham Calculations. J Chem Theory Comput 2022; 18:703-709. [PMID: 34978791 DOI: 10.1021/acs.jctc.1c00840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In direct energy Kohn-Sham (DEKS) theory, the density functional theory electronic energy equals the sum of occupied orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree exchange-correlation potential, which must be approximated. In the present study, the Fermi-Amaldi term is incorporated into approximate DEKS calculations, introducing the required -1/r contribution to the exchange-correlation component of the shifted potential in asymptotic regions. It also provides a mechanism for eliminating one-electron self-interaction error, and it introduces a nonzero exchange-correlation component of the shift in the potential that is of appropriate magnitude. The resulting electronic energies are very sensitive to the methodologies considered, whereas the highest occupied molecular orbital energies and exchange-correlation potentials are much less sensitive and are similar to those obtained from DEKS calculations using a conventional exchange-correlation functional.
Collapse
Affiliation(s)
- Daisy J Dillon
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - David J Tozer
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| |
Collapse
|
8
|
Vieira D. Readdressing molecular dissociation within the Kohn–Sham formalism of density-functional theory: simple models and a different point of view. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2008037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Vieira
- Departamento de Física, Programa de Pós-Graduação em Física, Universidade do Estado de Santa Catarina, Joinville, SC, Brazil
| |
Collapse
|
9
|
Burton HGA, Marut C, Daas TJ, Gori-Giorgi P, Loos PF. Variations of the Hartree-Fock fractional-spin error for one electron. J Chem Phys 2021; 155:054107. [PMID: 34364354 DOI: 10.1063/5.0056968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Fractional-spin errors are inherent in all current approximate density functionals, including Hartree-Fock theory, and their origin has been related to strong static correlation effects. The conventional way to encode fractional-spin calculations is to construct an ensemble density that scales between the high-spin and low-spin densities. In this article, we explore the variation of the Hartree-Fock fractional-spin (or ghost-interaction) error in one-electron systems using restricted and unrestricted ensemble densities and the exact generalized Hartree-Fock representation. By considering the hydrogen atom and H+ 2 cation, we analyze how the unrestricted and generalized Hartree-Fock schemes minimize this error by localizing the electrons or rotating the spin coordinates. We also reveal a clear similarity between the Coulomb hole of He-like ions and the density depletion near the nucleus induced by the fractional-spin error in the unpolarized hydrogen atom. Finally, we analyze the effect of the fractional-spin error on the Møller-Plesset adiabatic connection, excited states, and functional- and density-driven errors.
Collapse
Affiliation(s)
- Hugh G A Burton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Clotilde Marut
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Timothy J Daas
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Tavares C, Oliveira S, Fernandes V, Postnikov A, Vasilevskiy MI. Quantum simulation of the ground-state Stark effect in small molecules: a case study using IBM Q. Soft comput 2021. [DOI: 10.1007/s00500-020-05492-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Daas TJ, Grossi J, Vuckovic S, Musslimani ZH, Kooi DP, Seidl M, Giesbertz KJH, Gori-Giorgi P. Large coupling-strength expansion of the Møller–Plesset adiabatic connection: From paradigmatic cases to variational expressions for the leading terms. J Chem Phys 2020; 153:214112. [DOI: 10.1063/5.0029084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Timothy J. Daas
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Juri Grossi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ziad H. Musslimani
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P. Kooi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Klaas J. H. Giesbertz
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
12
|
Buchholz F, Theophilou I, Giesbertz KJH, Ruggenthaler M, Rubio A. Light-Matter Hybrid-Orbital-Based First-Principles Methods: The Influence of Polariton Statistics. J Chem Theory Comput 2020; 16:5601-5620. [PMID: 32692551 PMCID: PMC7482321 DOI: 10.1021/acs.jctc.0c00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
A detailed
understanding of strong matter–photon interactions
requires first-principle methods that can solve the fundamental Pauli–Fierz
Hamiltonian of nonrelativistic quantum electrodynamics efficiently.
A possible way to extend well-established electronic-structure methods
to this situation is to embed the Pauli–Fierz Hamiltonian in
a higher-dimensional light–matter hybrid auxiliary configuration
space. In this work we show the importance of the resulting hybrid
Fermi–Bose statistics of the polaritons, which are the new
fundamental particles of the “photon-dressed” Pauli–Fierz
Hamiltonian for systems in cavities. We show that violations of these
statistics can lead to unphysical results. We present an efficient
way to ensure the correct statistics by enforcing representability
conditions on the dressed one-body reduced density matrix. We further
present a general prescription how to extend a given first-principles
approach to polaritons and as an example introduce polaritonic Hartree–Fock
theory. While being a single-reference method in polariton space,
polaritonic Hartree–Fock is a multireference method in the
electronic space, i.e., it describes electronic correlations. We also
discuss possible applications to polaritonic QEDFT. We apply this
theory to a lattice model and find that, the more delocalized the
bound-state wave function of the particles is, the stronger it reacts
to photons. The main reason is that within a small energy range, many
states with different electronic configurations are available as opposed
to a strongly bound (and hence energetically separated) ground-state
wave function. This indicates that under certain conditions coupling
to the quantum vacuum of a cavity can indeed modify ground state properties.
Collapse
Affiliation(s)
- Florian Buchholz
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Iris Theophilou
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Klaas J H Giesbertz
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Michael Ruggenthaler
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Angel Rubio
- Theory Department, Max Planck Institute for the Structure and Dynamics of Matter-Luruper Chaussee 149, 22761 Hamburg, Germany.,Center for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United States
| |
Collapse
|
13
|
Vuckovic S, Fabiano E, Gori-Giorgi P, Burke K. MAP: An MP2 Accuracy Predictor for Weak Interactions from Adiabatic Connection Theory. J Chem Theory Comput 2020; 16:4141-4149. [PMID: 32379454 DOI: 10.1021/acs.jctc.0c00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Second-order Møller-Plesset perturbation theory (MP2) approximates the exact Hartree-Fock (HF) adiabatic connection (AC) curve by a straight line. Thus, by using the deviation of the exact curve from the linear behavior, we construct an indicator for the accuracy of MP2. We then use an interpolation along the HF AC to transform the exact form of our indicator into a highly practical MP2 accuracy predictor (MAP) that comes at a negligible additional computational cost. We show that this indicator is already applicable to systems that dissociate into fragments with a nondegenerate ground state, and we illustrate its usefulness by applying it to the S22 and S66 datasets.
Collapse
Affiliation(s)
- Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce 73100, Italy
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081HV, The Netherlands
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
14
|
Gould T, Vuckovic S. Range-separation and the multiple radii functional approximation inspired by the strongly interacting limit of density functional theory. J Chem Phys 2019; 151:184101. [DOI: 10.1063/1.5125692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Nathan, Qld 4111, Australia
| | - Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
15
|
Mordovina U, Reinhard TE, Theophilou I, Appel H, Rubio A. Self-Consistent Density-Functional Embedding: A Novel Approach for Density-Functional Approximations. J Chem Theory Comput 2019; 15:5209-5220. [PMID: 31490684 PMCID: PMC6785802 DOI: 10.1021/acs.jctc.9b00063] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 11/29/2022]
Abstract
In the present work, we introduce a self-consistent density-functional embedding technique, which leaves the realm of standard energy-functional approaches in density functional theory and targets directly the density-to-potential mapping that lies at its heart. Inspired by the density matrix embedding theory, we project the full system onto a set of small interacting fragments that can be solved accurately. Based on the rigorous relation of density and potential in density functional theory, we then invert the fragment densities to local potentials. Combining these results in a continuous manner provides an update for the Kohn-Sham potential of the full system, which is then used to update the projection. We benchmark our approach for molecular bond stretching in one and two dimensions and show that, in these cases, the scheme converges to accurate approximations for densities and Kohn-Sham potentials. We demonstrate that the known steps and peaks of the exact exchange-correlation potential are reproduced by our method with remarkable accuracy.
Collapse
Affiliation(s)
- Uliana Mordovina
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Teresa E. Reinhard
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Iris Theophilou
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Heiko Appel
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - Angel Rubio
- Max
Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
- Center
for Computational Quantum Physics (CCQ), Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, United
States
| |
Collapse
|
16
|
Baerends EJ. On derivatives of the energy with respect to total electron number and orbital occupation numbers. A critique of Janak's theorem. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1612955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Vuckovic S. Density Functionals from the Multiple-Radii Approach: Analysis and Recovery of the Kinetic Correlation Energy. J Chem Theory Comput 2019; 15:3580-3590. [DOI: 10.1021/acs.jctc.9b00129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
18
|
Seidl M, Giarrusso S, Vuckovic S, Fabiano E, Gori-Giorgi P. Communication: Strong-interaction limit of an adiabatic connection in Hartree-Fock theory. J Chem Phys 2018; 149:241101. [DOI: 10.1063/1.5078565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael Seidl
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Via Barsanti, I-73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Giarrusso S, Vuckovic S, Gori-Giorgi P. Response Potential in the Strong-Interaction Limit of Density Functional Theory: Analysis and Comparison with the Coupling-Constant Average. J Chem Theory Comput 2018; 14:4151-4167. [PMID: 29906106 PMCID: PMC6096453 DOI: 10.1021/acs.jctc.8b00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using the formalism of the conditional amplitude, we study the response part of the exchange-correlation potential in the strong-coupling limit of density functional theory, analyzing its peculiar features and comparing it with the response potential averaged over the coupling constant for small atoms and for the hydrogen molecule. We also use a simple one-dimensional model of a stretched heteronuclear molecule to derive exact properties of the response potential in the strong-coupling limit. The simplicity of the model allows us to unveil relevant features also of the exact Kohn-Sham potential and its different components, namely the appearance of a second peak in the correlation kinetic potential on the side of the most electronegative atom.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW , Vrije Universiteit , De Boelelaan 1083 , 1081HV Amsterdam , The Netherlands
| |
Collapse
|
20
|
Sharpe DJ, Levy M, Tozer DJ. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory. J Chem Theory Comput 2018; 14:684-692. [PMID: 29298061 DOI: 10.1021/acs.jctc.7b01060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new approach for performing density functional theory calculations, termed direct energy Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree-exchange-correlation potential, which must be approximated. In the present study, density scaling homogeneity considerations are used to facilitate DEKS calculations on a series of atoms and molecules, leading to three nonlocal approximations to the shifted potential. The first two rely on preliminary Kohn-Sham calculations using a standard generalized gradient approximation (GGA) exchange-correlation functional and the results illustrate the benefit of describing the dominant Hartree component of the shift exactly. A uniform electron gas analysis is used to eliminate the need for these preliminary Kohn-Sham calculations, leading to a potential with an unconventional form that yields encouraging results, providing strong motivation for further research in DEKS theory.
Collapse
Affiliation(s)
- Daniel J Sharpe
- Department of Chemistry, Durham University , South Road, Durham, DH1 3LE U.K
| | - Mel Levy
- Department of Chemistry, Duke University , Durham, North Carolina 27708 United States.,Department of Physics, North Carolina A&T State University , Greensboro, North Carolina 27411 United States.,Department of Chemistry and Quantum Theory Group, Tulane University , New Orleans, Louisiana 70118 United States
| | - David J Tozer
- Department of Chemistry, Durham University , South Road, Durham, DH1 3LE U.K
| |
Collapse
|
21
|
Vuckovic S, Levy M, Gori-Giorgi P. Augmented potential, energy densities, and virial relations in the weak- and strong-interaction limits of DFT. J Chem Phys 2017; 147:214107. [DOI: 10.1063/1.4997311] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Mel Levy
- Department of Chemistry and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, USA
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Grossi J, Kooi DP, Giesbertz KJH, Seidl M, Cohen AJ, Mori-Sánchez P, Gori-Giorgi P. Fermionic Statistics in the Strongly Correlated Limit of Density Functional Theory. J Chem Theory Comput 2017; 13:6089-6100. [PMID: 29111724 PMCID: PMC5729548 DOI: 10.1021/acs.jctc.7b00998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exact pieces of information on the adiabatic connection integrand, Wλ[ρ], which allows evaluation of the exchange-correlation energy of Kohn-Sham density functional theory, can be extracted from the leading terms in the strong coupling limit (λ → ∞, where λ is the strength of the electron-electron interaction). In this work, we first compare the theoretical prediction for the two leading terms in the strong coupling limit with data obtained via numerical implementation of the exact Levy functional in the simple case of two electrons confined in one dimension, confirming the asymptotic exactness of these two terms. We then carry out a first study on the incorporation of the Fermionic statistics at large coupling λ, both numerical and theoretical, confirming that spin effects enter at orders ∼e-√λ.
Collapse
Affiliation(s)
- Juri Grossi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Derk P Kooi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Klaas J H Giesbertz
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Aron J Cohen
- Max-Planck Institute for Solid State Research , Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Paula Mori-Sánchez
- Departamento de Quimíca and Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid , 28049 Madrid, Spain
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Vuckovic S, Gori-Giorgi P. Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy. J Phys Chem Lett 2017; 8:2799-2805. [PMID: 28581751 PMCID: PMC5502414 DOI: 10.1021/acs.jpclett.7b01113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/05/2017] [Indexed: 05/24/2023]
Abstract
From a simplified version of the mathematical structure of the strong coupling limit of the exact exchange-correlation functional, we construct an approximation for the electronic repulsion energy at physical coupling strength, which is fully nonlocal. This functional is self-interaction free and yields energy densities within the definition of the electrostatic potential of the exchange-correlation hole that are locally accurate and have the correct asymptotic behavior. The model is able to capture strong correlation effects that arise from chemical bond dissociation, without relying on error cancellation. These features, which are usually missed by standard density functional theory (DFT) functionals, are captured by the highly nonlocal structure, which goes beyond the "Jacob's ladder" framework for functional construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.
Collapse
|
24
|
Vuckovic S, Irons TJP, Wagner LO, Teale AM, Gori-Giorgi P. Interpolated energy densities, correlation indicators and lower bounds from approximations to the strong coupling limit of DFT. Phys Chem Chem Phys 2017; 19:6169-6183. [DOI: 10.1039/c6cp08704c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Zahariev F, Levy M. Properties of Augmented Kohn–Sham Potential for Energy as Simple Sum of Orbital Energies. J Phys Chem A 2016; 121:342-347. [DOI: 10.1021/acs.jpca.6b10952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Mel Levy
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, North Carolina A&T State University, Greensboro, North Carolina 27411, United States
- Department
of Chemistry and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
26
|
Bahmann H, Zhou Y, Ernzerhof M. The shell model for the exchange-correlation hole in the strong-correlation limit. J Chem Phys 2016; 145:124104. [DOI: 10.1063/1.4962738] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Hilke Bahmann
- Department of Chemistry, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Yongxi Zhou
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
27
|
Fabiano E, Gori-Giorgi P, Seidl M, Della Sala F. Interaction-Strength Interpolation Method for Main-Group Chemistry: Benchmarking, Limitations, and Perspectives. J Chem Theory Comput 2016; 12:4885-4896. [DOI: 10.1021/acs.jctc.6b00713] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eduardo Fabiano
- Euromediterranean
Center for Nanomaterial Modelling and Technology (ECMT), Istituto Nanoscienze-CNR, Via per Arnesano 16, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, Italy
| | - Paola Gori-Giorgi
- Department
of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling,
FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Michael Seidl
- Department
of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling,
FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Fabio Della Sala
- Euromediterranean
Center for Nanomaterial Modelling and Technology (ECMT), Istituto Nanoscienze-CNR, Via per Arnesano 16, 73100 Lecce, Italy
- Center
for Biomolecular Nanotechnologies@UNILE, Istituto Italiano di Tecnologia (IIT), Via Barsanti, 73010 Arnesano, Italy
| |
Collapse
|
28
|
Lani G, Di Marino S, Gerolin A, van Leeuwen R, Gori-Giorgi P. The adiabatic strictly-correlated-electrons functional: kernel and exact properties. Phys Chem Chem Phys 2016; 18:21092-101. [PMID: 26986493 DOI: 10.1039/c6cp00339g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We investigate a number of formal properties of the adiabatic strictly-correlated electrons (SCE) functional, relevant for time-dependent potentials and for kernels in linear response time-dependent density functional theory. Among the former, we focus on the compliance to constraints of exact many-body theories, such as the generalised translational invariance and the zero-force theorem. Within the latter, we derive an analytical expression for the adiabatic SCE Hartree exchange-correlation kernel in one dimensional systems, and we compute it numerically for a variety of model densities. We analyse the non-local features of this kernel, particularly the ones that are relevant in tackling problems where kernels derived from local or semi-local functionals are known to fail.
Collapse
Affiliation(s)
- Giovanna Lani
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Simone Di Marino
- Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Augusto Gerolin
- Dipartimento di Matematica, Universitá di Pisa, Largo B. Pontecorvo, 56126 Pisa, Italy
| | - Robert van Leeuwen
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland and European Theoretical Spectroscopy Facility (ETSF)
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Vuckovic S, Irons TJP, Savin A, Teale AM, Gori-Giorgi P. Exchange-Correlation Functionals via Local Interpolation along the Adiabatic Connection. J Chem Theory Comput 2016; 12:2598-610. [PMID: 27116427 PMCID: PMC4910137 DOI: 10.1021/acs.jctc.6b00177] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The construction
of density-functional approximations is explored
by modeling the adiabatic connection locally, using
energy densities defined in terms of the electrostatic potential of
the exchange–correlation hole. These local models are more
amenable to the construction of size-consistent approximations than
their global counterparts. In this work we use accurate input local
ingredients to assess the accuracy of a range of local interpolation
models against accurate exchange–correlation energy densities.
The importance of the strictly correlated electrons (SCE) functional
describing the strong coupling limit is emphasized, enabling the corresponding
interpolated functionals to treat strong correlation effects. In addition
to exploring the performance of such models numerically for the helium
and beryllium isoelectronic series and the dissociation of the hydrogen
molecule, an approximate analytic model is presented for the initial
slope of the local adiabatic connection. Comparisons are made with
approaches based on global models, and prospects for future approximations
based on the local adiabatic connection are discussed.
Collapse
Affiliation(s)
- Stefan Vuckovic
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Tom J P Irons
- School of Chemistry, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Andreas Savin
- Laboratoire de Chimie Théorique, UPMC, Paris 06, UMR 7616, Sorbonne Universités , F-75005 Paris, France.,Laboratoire de Chimie Théorique, UMR 7616, CNRS F-75005, Paris, France
| | - Andrew M Teale
- School of Chemistry, University of Nottingham , University Park, Nottingham NG7 2RD, United Kingdom
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit , De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| |
Collapse
|
30
|
Levy M, Zahariev F. On augmented Kohn–Sham potential for energy as a simple sum of orbital energies. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1153743] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mel Levy
- Department of Chemistry, Duke University, Durham, NC, USA
- Department of Physics, North Carolina A&T State University, Greensboro, NC, USA
- Department of Chemistry and Quantum Theory Group, Tulane University, New Orleans, LA, USA
| | - Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Kong J, Proynov E. Density Functional Model for Nondynamic and Strong Correlation. J Chem Theory Comput 2015; 12:133-43. [DOI: 10.1021/acs.jctc.5b00801] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Kong
- Department of Chemistry and
Center for Computational Sciences, Middle Tennessee State University, 1301 Main Street, Murfreesboro, Tennessee 37130, United States
| | - Emil Proynov
- Department of Chemistry and
Center for Computational Sciences, Middle Tennessee State University, 1301 Main Street, Murfreesboro, Tennessee 37130, United States
| |
Collapse
|