1
|
Zhang N, Liu W. Unified Implementation of Relativistic Wave Function Methods: 4C-iCIPT2 as a Showcase. J Chem Theory Comput 2024; 20:9003-9017. [PMID: 39356987 DOI: 10.1021/acs.jctc.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In parallel to the unified construction of relativistic Hamiltonians based solely on physical arguments (J. Chem. Phys. 2024, 160, 084111), a unified implementation of relativistic wave function methods is achieved here via programming techniques (e.g., template metaprogramming and polymorphism in C++). That is, once the code for constructing the Hamiltonian matrix is made ready, all the rest can be generated automatically from existing templates used for the nonrelativistic counterparts. This is facilitated by decomposing a second-quantized relativistic Hamiltonian into diagrams that are topologically the same as those required for computing the basic coupling coefficients between spin-free configuration state functions (CSF). Moreover, both time reversal and binary double point group symmetries can readily be incorporated into molecular integrals and Hamiltonian matrix elements. The latter can first be evaluated in the space of (randomly selected) spin-dependent determinants and then transformed to that of spin-dependent CSFs, thanks to simple relations in between. As a showcase, we consider here the no-pair four-component relativistic iterative configuration interaction with selection and perturbation correction (4C-iCIPT2), which is a natural extension of the spin-free iCIPT2 (J. Chem. Theory Comput. 2021, 17, 949), and can provide near-exact numerical results within the manifold of positive energy states (PES), as demonstrated by numerical examples.
Collapse
Affiliation(s)
- Ning Zhang
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
2
|
Zhao Z, Evangelista FA. Toward Accurate Spin-Orbit Splittings from Relativistic Multireference Electronic Structure Theory. J Phys Chem Lett 2024; 15:7103-7110. [PMID: 38954768 PMCID: PMC11261625 DOI: 10.1021/acs.jpclett.4c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Most nonrelativistic electron correlation methods can be adapted to account for relativistic effects, as long as the relativistic molecular spinor integrals are available, from either a four-, two-, or one-component mean-field calculation. However, relativistic multireference correlation methods remain a relatively unexplored area, with mixed evidence regarding the improvements brought by perturbative treatments. We report, for the first time, the implementation of state-averaged four-component relativistic multireference perturbation theories to second and third order based on the driven similarity renormalization group (DSRG). With our methods, named 4c-SA-DSRG-MRPT2 and 3, we find that the dynamical correlation included on top of 4c-CASSCF references can significantly improve the spin-orbit splittings in p-block elements and potential energy surfaces when compared to 4c-CASSCF and 4c-CASPT2 results. We further show that 4c-DSRG-MRPT2 and 3 are applicable to these systems over a wide range of the flow parameter, with systematic improvement from second to third order in terms of both improved error statistics and reduced sensitivity with respect to the flow parameter.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Majumder R, Sokolov AY. Consistent Second-Order Treatment of Spin-Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory. J Chem Theory Comput 2024; 20:4676-4688. [PMID: 38795071 DOI: 10.1021/acs.jctc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
We present a formulation and implementation of second-order quasidegenerate N-electron valence perturbation theory (QDNEVPT2) that provides a balanced and accurate description of spin-orbit coupling and dynamic correlation effects in multiconfigurational electronic states. In our approach, the energies and wave functions of electronic states are computed by treating electron repulsion and spin-orbit coupling operators as equal perturbations to the nonrelativistic complete active-space wave functions, and their contributions are incorporated fully up to the second order. The spin-orbit effects are described using the Breit-Pauli (BP) or exact two-component Douglas-Kroll-Hess (DKH) Hamiltonians within spin-orbit mean-field approximation. The resulting second-order methods (BP2- and DKH2-QDNEVPT2) are capable of treating spin-orbit coupling effects in nearly degenerate electronic states by diagonalizing an effective Hamiltonian expanded in a compact non-relativistic basis. For a variety of atoms and small molecules across the entire periodic table, we demonstrate that DKH2-QDNEVPT2 is competitive in accuracy with variational two-component relativistic theories. BP2-QDNEVPT2 shows high accuracy for the second- and third-period elements, but its performance deteriorates for heavier atoms and molecules. We also consider the first-order spin-orbit QDNEVPT2 approximations (BP1- and DKH1-QDNEVPT2), among which DKH1-QDNEVPT2 is reliable but less accurate than DKH2-QDNEVPT2. Both DKH1- and DKH2-QDNEVPT2 hold promise as efficient and accurate electronic structure methods for treating electron correlation and spin-orbit coupling in a variety of applications.
Collapse
Affiliation(s)
- Rajat Majumder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
4
|
Guo Y, Zhang N, Liu W. SOiCISCF: Combining SOiCI and iCISCF for Variational Treatment of Spin-Orbit Coupling. J Chem Theory Comput 2023; 19:6668-6685. [PMID: 37728243 DOI: 10.1021/acs.jctc.3c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
It has recently been shown that the SOiCI approach [Zhang, N.; J. Phys.: Condens. Matter 2022, 34, 224007], in conjunction with the spin-separated exact two-component relativistic Hamiltonian, can provide very accurate fine structures of systems containing heavy elements by treating electron correlation and spin-orbit coupling (SOC) on an equal footing. Nonetheless, orbital relaxations/polarizations induced by SOC are not yet fully accounted for due to the use of scalar relativistic orbitals. This issue can be resolved by further optimizing the still real-valued orbitals self-consistently in the presence of SOC, as done in the spin-orbit coupled CASSCF approach [Ganyushin, D.; et al. J. Chem. Phys. 2013, 138, 104113] but with the iCISCF algorithm [Guo, Y.; J. Chem. Theory Comput. 2021, 17, 7545-7561] for large active spaces. The resulting SOiCISCF employs both double group and time reversal symmetries for computational efficiency and the assignment of target states. The fine structures of p-block elements are taken as showcases to reveal the efficacy of SOiCISCF.
Collapse
Affiliation(s)
- Yang Guo
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
5
|
Zhao L, Zou W. A general method for locating stationary points on the mixed-spin surface of spin-forbidden reaction with multiple spin states. J Chem Phys 2023; 158:2895244. [PMID: 37290081 DOI: 10.1063/5.0151630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Some chemical reactions proceed on multiple potential energy surfaces and are often accompanied by a change in spin multiplicity, being called spin-forbidden reactions, where the spin-orbit coupling (SOC) effects play a crucial role. In order to efficiently investigate spin-forbidden reactions with two spin states, Yang et al. [Phys. Chem. Chem. Phys. 20, 4129-4136 (2018)] proposed a two-state spin-mixing (TSSM) model, where the SOC effects between the two spin states are simulated by a geometry-independent constant. Inspired by the TSSM model, we suggest a multiple-state spin-mixing (MSSM) model in this paper for the general case with any number of spin states, and its analytic first and second derivatives have been developed for locating stationary points on the mixed-spin potential energy surface and estimating thermochemical energies. To demonstrate the performance of the MSSM model, some spin-forbidden reactions involving 5d transition elements are calculated using the density functional theory (DFT), and the results are compared with the two-component relativistic ones. It is found that MSSM DFT and two-component DFT calculations may provide very similar stationary-point information on the lowest mixed-spin/spinor energy surface, including structures, vibrational frequencies, and zero-point energies. For the reactions containing saturated 5d elements, the reaction energies by MSSM DFT and two-component DFT agree very well within 3 kcal/mol. As for the two reactions OsO+ + CH4 → OOs(CH2)+ + H2 and W + CH4 → WCH2 + H2 involving unsaturated 5d elements, MSSM DFT may also yield good reaction energies of similar accuracy but with some counterexamples. Nevertheless, the energies may be remarkably improved by a posteriori single point energy calculations using two-component DFT at the MSSM DFT optimized geometries, and the maximum error of about 1 kcal/mol is almost independent of the SOC constant used. The MSSM method as well as the developed computer program provides an effective utility for studying spin-forbidden reactions.
Collapse
Affiliation(s)
- Long Zhao
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, People's Republic of China
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
6
|
Wang X, Sharma S. Relativistic Semistochastic Heat-Bath Configuration Interaction. J Chem Theory Comput 2023; 19:848-855. [PMID: 36700783 DOI: 10.1021/acs.jctc.2c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work we present the extension of semistochastic heat-bath configuration interaction (SHCI) to work with any two-component and four-component Hamiltonian. The vertical detachment energy (VDE) of AuH2- and zero-field splitting (ZFS) of NpO22+ is calculated by correlating more than 100 spinors in both cases. This work demonstrates the capability of SHCI to treat problems where both relativistic effect and electron correlation are important.
Collapse
Affiliation(s)
- Xubo Wang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| |
Collapse
|
7
|
Liu W. Perspective: Simultaneous treatment of relativity, correlation, and
QED. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science Shandong University Qingdao Shandong China
| |
Collapse
|
8
|
Hoyer CE, Hu H, Lu L, Knecht S, Li X. Relativistic Kramers-Unrestricted Exact-Two-Component Density Matrix Renormalization Group. J Phys Chem A 2022; 126:5011-5020. [PMID: 35881436 DOI: 10.1021/acs.jpca.2c02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work we develop a variational relativistic density matrix renormalization group (DMRG) approach within the exact-two-component (X2C) framework (X2C-DMRG), using spinor orbitals optimized with the two-component relativistic complete active space self-consistent field. We investigate fine-structure splittings of p- (Ga, In, Tl) and d-block (Sc, Y, La) atoms and excitation energies of monohydride molecules (GeH, SnH, and TlH) with X2C-DMRG calculations using an all-electron relativistic Hamiltonian in a Kramers-unrestricted basis. We find that X2C-DMRG yields accurate 2P and 2D splittings compared to multireference configuration interaction with singles and doubles (MRCISD). We also investigated the degree of symmetry breaking in the atomic multiplets and convergence of electron correlation in the total energies. Symmetry breaking can be large in some cases (∼30 meV); however, increasing the number of renormalized block states m for the DMRG optimization recovers the symmetry breaking by several orders of magnitude. Encouragingly, we find the convergence of electron correlation to be close to MRCISDTQ5 quality. Relativistic X2C-DMRG approaches are important for cases where spin-orbit coupling is significant and the underlying reference wave function requires a large determinantal space. We are able to obtain quantitatively correct fine-structure splittings for systems up to 1019 number of determinants with traditional CI approaches, which are currently unfeasible to converge for the field.
Collapse
Affiliation(s)
- Chad E Hoyer
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland.,Abteilung SHE Chemie, GSI Helmholtzzentrum für Schwerionenforschung, DE-64291 Darmstadt, Germany.,Department Chemie, Johannes-Gutenberg Universität Mainz, DE-55128 Mainz, Germany
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
9
|
Grofe A, Li X. Relativistic nonorthogonal configuration interaction: application to L 2,3-edge X-ray spectroscopy. Phys Chem Chem Phys 2022; 24:10745-10756. [PMID: 35451435 DOI: 10.1039/d2cp01127a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, we develop a relativistic exact-two-component nonorthogonal configuration interaction (X2C-NOCI) for computing L-edge X-ray spectra. This article to our knowledge is the first time NOCI has been used for relativistic wave functions. A set of molecular complexes, including SF6, SiCl4 and [FeCl6]3-, are used to demonstrate the accuracy and computational scaling of the X2C-NOCI method. Our results suggest that X2C-NOCI is able to satisfactorily capture the main features of the L2,3-edge X-ray absorption spectra. Excitations from the core require a large amount of orbital relaxation to yield reasonable energies and X2C-NOCI allows us to treat orbital optimization explicitly. However, the cost of computing the nonorthogonal coupling is higher than in conventional CI. Here, we propose an improved integral screening using overlap-scaled density combined with a continuous measure of the generalized Slater-Condon rules that allows us to estimate if an element is zero before attempting a two-electron integral contraction.
Collapse
Affiliation(s)
- Adam Grofe
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
10
|
Lu L, Hu H, Jenkins AJ, Li X. Exact-Two-Component Relativistic Multireference Second-Order Perturbation Theory. J Chem Theory Comput 2022; 18:2983-2992. [PMID: 35481362 DOI: 10.1021/acs.jctc.2c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As the relativistic corrections become stronger for late-row elements, the fully perturbative treatment of spin-orbit coupling and dynamic correlation may become inadequate for accurate descriptions of chemical properties. In this work, we introduce a determinant-based Kramers-unrestricted exact-two-component multireference second-order perturbation (X2C-MRPT2) method which variationally includes relativistic corrections with a perturbative dynamic correlation. The restricted active space partitioning scheme is employed to provide an adjustable correlation space for the second-order perturbation treatment. The multistate perturbation theory is also developed to improve the descriptions of ground and excited states. Benchmark studies of atomic fine-structure splittings and spectroscopic constants of molecular monohydrides using X2C-MRPT2 are compared to the other perturbative and variational approaches. The results suggest that X2C-MRPT2 is a highly accurate alternative to the fully variational multireference configuration interaction method at only a small fraction of the computational cost.
Collapse
Affiliation(s)
- Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Abstract
Intersystem crossing (ISC), a vital component of the electronic and nuclear transitions that compose photophysics, has been successfully simulated in light elements and transition metal complexes. Derived from the Z-dependent spin-orbit coupling (SOC), ISC is expected to be of greater importance in heavier elements, but few attempts have been made at the simulation of ISC in lanthanides or actinides. In this work, we explore several of the challenges that will need to be overcome in order to treat ISC in late-row elements, including the loss of spin as a good quantum number, the need to include SOC variationally via two- or four-component electronic structure, and the high density of states present in late-row complexes. Density functional theory (DFT) calculations are used to illustrate several of these effects, while a model Hamiltonian is used to illustrate the importance of momentum rescaling in surface hopping simulations of strongly coupled states.
Collapse
Affiliation(s)
- Andrew J S Valentine
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Sharma P, Jenkins AJ, Scalmani G, Frisch MJ, Truhlar DG, Gagliardi L, Li X. Exact-Two-Component Multiconfiguration Pair-Density Functional Theory. J Chem Theory Comput 2022; 18:2947-2954. [PMID: 35384665 DOI: 10.1021/acs.jctc.2c00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules containing late-row elements exhibit large relativistic effects. To account for both relativistic effects and electron correlation in a computationally inexpensive way, we derived a formulation of multiconfiguration pair-density functional theory with the relativistic exact-two-component Hamiltonian (X2C-MC-PDFT). In this new method, relativistic effects are included during variational optimization of a reference wave function by exact-two-component complete active-space self-consistent-field (X2C-CASSCF) theory, followed by an energy evaluation using pair-density functional theory. Benchmark studies of excited-state and ground-state fine-structure splitting of atomic species show that X2C-MC-PDFT can significantly improve the X2C-CASSCF results by introducing additional state-specific electron correlation.
Collapse
Affiliation(s)
- Prachi Sharma
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Giovanni Scalmani
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, 5735 S Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
13
|
Zhang N, Xiao Y, Liu W. SOiCI and iCISO: combining iterative configuration interaction with spin-orbit coupling in two ways. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:224007. [PMID: 35287124 DOI: 10.1088/1361-648x/ac5db4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The near-exact iCIPT2 approach for strongly correlated systems of electrons, which stems from the combination of iterative configuration interaction (iCI, an exact solver of full CI) with configuration selection for static correlation and second-order perturbation theory (PT2) for dynamic correlation, is extended to the relativistic domain. In the spirit of spin separation, relativistic effects are treated in two steps: scalar relativity is treated by the infinite-order, spin-free part of the exact two-component (X2C) relativistic Hamiltonian, whereas spin-orbit coupling (SOC) is treated by the first-order, Douglas-Kroll-Hess-like SOC operator derived from the same X2C Hamiltonian. Two possible combinations of iCIPT2 with SOC are considered, i.e., SOiCI and iCISO. The former treats SOC and electron correlation on an equal footing, whereas the latter treats SOC in the spirit of state interaction, by constructing and diagonalizing an effective spin-orbit Hamiltonian matrix in a small number of correlated scalar states. Both double group and time reversal symmetries are incorporated to simplify the computation. Pilot applications reveal that SOiCI is very accurate for the spin-orbit splitting (SOS) of heavy atoms, whereas the computationally very cheap iCISO can safely be applied to the SOS of light atoms and even of systems containing heavy atoms when SOC is largely quenched by ligand fields.
Collapse
Affiliation(s)
- Ning Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yunlong Xiao
- Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
14
|
Jenkins AJ, Hu H, Lu L, Frisch MJ, Li X. Two-Component Multireference Restricted Active Space Configuration Interaction for the Computation of L-Edge X-ray Absorption Spectra. J Chem Theory Comput 2021; 18:141-150. [PMID: 34908414 DOI: 10.1021/acs.jctc.1c00564] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
X-ray absorption spectroscopy is a powerful probe of local electronic and nuclear structures, providing insights into chemical processes. The theoretical prediction and interpretation of metal L-edge X-ray absorption spectra are complicated by both relativistic effects, including spin-orbit coupling and the multiconfigurational nature of the states involved. This work details an exact two-component multireference restricted active space (RAS) configuration interaction scheme that uses an exact two-component state-averaged complete active space self-consistent-field method, which includes the spin-orbit coupling in a variational manner, for the accurate description of the electronic structure before using a RAS configuration interaction method to describe the core excited states of the X-ray spectrum. Benchmark calculations are presented for a series of iron-containing complexes, with results showing key features of the spectrum being reproduced, including ligand-to-metal charge transfer and shake-up excitations.
Collapse
Affiliation(s)
- Andrew J Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hang Hu
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Lixin Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Michael J Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
15
|
Anderson RJ, Booth GH. Four-component full configuration interaction quantum Monte Carlo for relativistic correlated electron problems. J Chem Phys 2020; 153:184103. [DOI: 10.1063/5.0029863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Robert J. Anderson
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| | - George H. Booth
- Department of Physics, King’s College London, Strand, London WC2R 2LS, United Kingdom
| |
Collapse
|
16
|
Affiliation(s)
- Wenjian Liu
- Qingdao Institute for Theoretical and Computational Sciences, Shandong University, Qingdao, Shandong 266237, People’s Republic of China
| |
Collapse
|
17
|
Meitei OR, Houck SE, Mayhall NJ. Spin–Orbit Matrix Elements for a Combined Spin-Flip and IP/EA approach. J Chem Theory Comput 2020; 16:3597-3606. [DOI: 10.1021/acs.jctc.0c00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oinam Romesh Meitei
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shannon E. Houck
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas J. Mayhall
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Hu H, Jenkins AJ, Liu H, Kasper JM, Frisch MJ, Li X. Relativistic Two-Component Multireference Configuration Interaction Method with Tunable Correlation Space. J Chem Theory Comput 2020; 16:2975-2984. [DOI: 10.1021/acs.jctc.9b01290] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hang Hu
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Andrew J. Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hongbin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Park JW. Analytical Gradient Theory for Strongly Contracted (SC) and Partially Contracted (PC) N-Electron Valence State Perturbation Theory (NEVPT2). J Chem Theory Comput 2019; 15:5417-5425. [DOI: 10.1021/acs.jctc.9b00762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jae Woo Park
- Department of Chemistry, Chungbuk National University (CBNU), Cheongju 28644, Korea
| |
Collapse
|
20
|
Jenkins AJ, Liu H, Kasper JM, Frisch MJ, Li X. Variational Relativistic Two-Component Complete-Active-Space Self-Consistent Field Method. J Chem Theory Comput 2019; 15:2974-2982. [DOI: 10.1021/acs.jctc.9b00011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew J. Jenkins
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Hongbin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Joseph M. Kasper
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Michael J. Frisch
- Gaussian Inc., 340 Quinnipiac Street, Building 40, Wallingford, Connecticut 06492, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
21
|
Reynolds RD, Shiozaki T. Zero-Field Splitting Parameters from Four-Component Relativistic Methods. J Chem Theory Comput 2019; 15:1560-1571. [PMID: 30689942 DOI: 10.1021/acs.jctc.8b00910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an approach for determination of zero-field splitting parameters from four-component relativistic calculations. Our approach involves neither perturbative treatment of spin-orbit interaction nor truncation of the spin-orbit coupled states. We make use of a multi-state implementation of relativistic complete active space perturbation theory (CASPT2), partially contracted N-electron valence perturbation theory (NEVPT2), and multi-reference configuration interaction theory (MRCI), all with the fully internally contracted ansatz. A mapping is performed from the Dirac Hamiltonian to the pseudospin Hamiltonian, using correlated energies and the magnetic moment matrix elements of the reference wave functions. Direct spin-spin coupling is naturally included through the full 2-electron Breit interaction. Benchmark calculations on chalcogen diatomics and pseudotetrahedral cobalt(II) complexes show accuracy comparable to the commonly used state-interaction with spin-orbit (SI-SO) approach, while tests on a uranium(III) single-ion magnet suggest that for actinide complexes the strengths of our approach through the more robust treatment of spin-orbit effects and the avoidance of state truncation are of greater importance.
Collapse
Affiliation(s)
- Ryan D Reynolds
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston , Illinois 60208 , United States
| | - Toru Shiozaki
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston , Illinois 60208 , United States
| |
Collapse
|
22
|
Reynolds RD, Yanai T, Shiozaki T. Large-scale relativistic complete active space self-consistent field with robust convergence. J Chem Phys 2018; 149:014106. [PMID: 29981535 DOI: 10.1063/1.5036594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report an efficient algorithm using density fitting for the relativistic complete active space self-consistent field (CASSCF) method, which is significantly more stable than the algorithm previously reported by one of the authors [J. E. Bates and T. Shiozaki, J. Chem. Phys. 142, 044112 (2015)]. Our algorithm is based on the second-order orbital update scheme with an iterative augmented Hessian procedure, in which the density-fitted orbital Hessian is directly contracted to the trial vectors. Using this scheme, each microiteration is made less time consuming than one Dirac-Hartree-Fock iteration, and macroiterations converge quadratically. In addition, we show that the CASSCF calculations with the Gaunt and full Breit interactions can be efficiently performed by means of approximate orbital Hessians computed with the Dirac-Coulomb Hamiltonian. It is demonstrated that our algorithm can also be applied to systems under an external magnetic field, for which all of the molecular integrals are computed using gauge-including atomic orbitals.
Collapse
Affiliation(s)
- Ryan D Reynolds
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Toru Shiozaki
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, Illinois 60208, USA
| |
Collapse
|
23
|
Battaglia S, Keller S, Knecht S. Efficient Relativistic Density-Matrix Renormalization Group Implementation in a Matrix-Product Formulation. J Chem Theory Comput 2018; 14:2353-2369. [DOI: 10.1021/acs.jctc.7b01065] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefano Battaglia
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sebastian Keller
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Stefan Knecht
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
24
|
Zhang B, Vandezande JE, Reynolds RD, Schaefer HF. Spin–Orbit Coupling via Four-Component Multireference Methods: Benchmarking on p-Block Elements and Tentative Recommendations. J Chem Theory Comput 2018; 14:1235-1246. [DOI: 10.1021/acs.jctc.7b00989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Boyi Zhang
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jonathon E. Vandezande
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Ryan D. Reynolds
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Cheng L, Wang F, Stanton JF, Gauss J. Perturbative treatment of spin-orbit-coupling within spin-free exact two-component theory using equation-of-motion coupled-cluster methods. J Chem Phys 2018; 148:044108. [DOI: 10.1063/1.5012041] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Fan Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of High Energy Density Physics and Technology, Ministry of Education, Sichuan University, Chengdu, China
| | - John F. Stanton
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Jürgen Gauss
- Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz, Germany
| |
Collapse
|
26
|
Wiens AE, Copan AV, Rossomme EC, Aroeira GJR, Bernstein OM, Agarwal J, Schaefer HF. Reinterpreting the infrared spectrum of H + HCN: Methylene amidogen radical and its coproducts. J Chem Phys 2018; 148:014305. [DOI: 10.1063/1.5004984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Avery E. Wiens
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Andreas V. Copan
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Elliot C. Rossomme
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Gustavo J. R. Aroeira
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Olivia M. Bernstein
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Jay Agarwal
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
27
|
Mussard B, Sharma S. One-Step Treatment of Spin–Orbit Coupling and Electron Correlation in Large Active Spaces. J Chem Theory Comput 2017; 14:154-165. [DOI: 10.1021/acs.jctc.7b01019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bastien Mussard
- Department of Chemistry and
Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
| | - Sandeep Sharma
- Department of Chemistry and
Biochemistry, University of Colorado Boulder, Boulder, Colorado 80302, United States
| |
Collapse
|
28
|
Shiozaki T. BAGEL
: Brilliantly Advanced General Electronic‐structure Library. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1331] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Toru Shiozaki
- Department of ChemistryNorthwestern University Evanston IL USA
| |
Collapse
|
29
|
Guo Y, Sivalingam K, Valeev EF, Neese F. Explicitly correlated N-electron valence state perturbation theory (NEVPT2-F12). J Chem Phys 2017; 147:064110. [DOI: 10.1063/1.4996560] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Guo
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Kantharuban Sivalingam
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Ghosh A, Sinha Ray S, Chaudhuri RK, Chattopadhyay S. Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation. J Phys Chem A 2017; 121:1487-1501. [PMID: 28112937 DOI: 10.1021/acs.jpca.6b11348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relativistic multireference (MR) perturbative approach is one of the most successful tools for the description of computationally demanding molecular systems of heavy elements. We present here the ground state dissociation energy surfaces, equilibrium bond lengths, harmonic frequencies, and dissociation energies of Ag2, Cu2, Au2, and I2 computed using the four-component (4c) relativistic spinors based state-specific MR perturbation theory (SSMRPT) with improved virtual orbital complete active space configuration interaction (IVO-CASCI) functions. The IVO-CASCI method is a simple, robust, useful and lower cost alternative to the complete active space self-consistent field approach for treating quasidegenerate situations. The redeeming features of the resulting method, termed as 4c-IVO-SSMRPT, lies in (i) manifestly size-extensivity, (ii) exemption from intruder problems, (iii) the freedom of convenient multipartitionings of the Hamiltonian, (iv) flexibility of the relaxed and unrelaxed descriptions of the reference coefficients, and (v) manageable cost/accuracy ratio. The present method delivers accurate descriptions of dissociation processes of heavy element systems. Close agreement with reference values has been found for the calculated molecular constants indicating that our 4c-IVOSSMRPT provides a robust and economic protocol for determining the structural properties for the ground state of heavy element molecules with eloquent MR character as it treats correlation and relativity on equal footing.
Collapse
Affiliation(s)
- Anirban Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Howrah 711103, India
| | - Suvonil Sinha Ray
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Howrah 711103, India
| | - Rajat K Chaudhuri
- Theoretical Physics, Indian Institute of Astrophysics , Bangalore 560034, India
| | - Sudip Chattopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology , Shibpur, Howrah 711103, India
| |
Collapse
|
31
|
Sivalingam K, Krupicka M, Auer AA, Neese F. Comparison of fully internally and strongly contracted multireference configuration interaction procedures. J Chem Phys 2016; 145:054104. [DOI: 10.1063/1.4959029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kantharuban Sivalingam
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| | - Martin Krupicka
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A. Auer
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck Institute of Chemical Energy Conversion, Stiftstrasse 34, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
32
|
Lipparini F, Gauss J. Cost-Effective Treatment of Scalar Relativistic Effects for Multireference Systems: A CASSCF Implementation Based on the Spin-free Dirac–Coulomb Hamiltonian. J Chem Theory Comput 2016; 12:4284-95. [DOI: 10.1021/acs.jctc.6b00609] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Filippo Lipparini
- Institut
für Physikalische
Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Jürgen Gauss
- Institut
für Physikalische
Chemie, Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
33
|
Shiozaki T. An efficient solver for large structured eigenvalue problems in relativistic quantum chemistry. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1158423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Toru Shiozaki
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| |
Collapse
|
34
|
Saitow M, Kurashige Y, Yanai T. Fully Internally Contracted Multireference Configuration Interaction Theory Using Density Matrix Renormalization Group: A Reduced-Scaling Implementation Derived by Computer-Aided Tensor Factorization. J Chem Theory Comput 2015; 11:5120-31. [DOI: 10.1021/acs.jctc.5b00270] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masaaki Saitow
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yuki Kurashige
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takeshi Yanai
- The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department
of Theoretical and Computational Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|