1
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
2
|
Milner A, Alshammari N, Platts JA. Computational study of copper binding to DAHK peptide. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Al-Shammari N, Savva L, Kennedy-Britten O, Platts JA. Forcefield evaluation and accelerated molecular dynamics simulation of Zn(II) binding to N-terminus of amyloid-β. Comput Biol Chem 2021; 93:107540. [PMID: 34271422 DOI: 10.1016/j.compbiolchem.2021.107540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/21/2021] [Indexed: 01/06/2023]
Abstract
We report conventional and accelerated molecular dynamics simulation of Zn(II) bound to the N-terminus of amyloid-β. By comparison against NMR data for the experimentally determined binding mode, we find that certain combinations of forcefield and solvent model perform acceptably in describing the size, shape and secondary structure, and that there is no appreciable difference between implicit and explicit solvent models. We therefore used the combination of ff14SB forcefield and GBSA solvent model to compare the result of different binding modes of Zn(II) to the same peptide, using accelerated MD to enhance sampling and comparing the free peptide simulated in the same way. We show that Zn(II) imparts significant rigidity to the peptide, disrupts the secondary structure and pattern of salt bridges seen in the free peptide, and induces closer contact between residues. Free energy surfaces in 1 or 2 dimensions further highlight the effect of metal coordination on peptide's spatial extent. We also provide evidence that accelerated MD provides improved sampling over conventional MD by visiting as many or more configurations in much shorter simulation times.
Collapse
Affiliation(s)
| | - Loizos Savva
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK
| | | | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
4
|
Bataglioli JC, Gomes LMF, Maunoir C, Smith JR, Cole HD, McCain J, Sainuddin T, Cameron CG, McFarland SA, Storr T. Modification of amyloid-beta peptide aggregation via photoactivation of strained Ru(ii) polypyridyl complexes. Chem Sci 2021; 12:7510-7520. [PMID: 34163842 PMCID: PMC8171320 DOI: 10.1039/d1sc00004g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aβ) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aβ peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1-3) alters the aggregation profile of the Aβ peptide. Photoactivation of Ru1-3 results in the loss of a 6,6'-dimethyl-2,2'-bipyridyl (6,6'-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aβ peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2'-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aβ peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1-3 in the presence of pre-formed Aβ1-42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1-3 in the presence of either monomeric or fibrillar Aβ1-42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.
Collapse
Affiliation(s)
| | - Luiza M F Gomes
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Camille Maunoir
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Houston D Cole
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Julia McCain
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Tim Storr
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| |
Collapse
|
5
|
Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255
expr 886172045 + 931245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
6
|
Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Alshammari N, Platts JA. Theoretical study of copper binding to GHK peptide. Comput Biol Chem 2020; 86:107265. [PMID: 32371360 DOI: 10.1016/j.compbiolchem.2020.107265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/20/2022]
Abstract
We report ligand field molecular mechanics, density functional theory and semi-empirical studies on the binding of Cu(II) to GlyHisLys (GHK) peptide. Following exhaustive conformational searching using molecular mechanics, we show that relative energy and geometry of conformations are in good agreement between GFN2-xTB semi-empirical and B3LYP-D DFT levels. Conventional molecular dynamics simulation of Cu-GHK shows the stability of the copper-peptide binding over 100 ps trajectory. Four equatorial bonds in 3N1O coordination remain stable throughout simulation, while a fifth in apical position from C-terminal carboxylate is more fluxional. We also show that the automated conformer and rotamer search algorithm CREST is able to correctly predict the metal binding position from a starting point consisting of separated peptide, copper and water.
Collapse
Affiliation(s)
- Nadiyah Alshammari
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
| |
Collapse
|
8
|
Turner M, Mutter ST, Kennedy-Britten OD, Platts JA. Replica exchange molecular dynamics simulation of the coordination of Pt(ii)-Phenanthroline to amyloid-β. RSC Adv 2019; 9:35089-35097. [PMID: 35530686 PMCID: PMC9074135 DOI: 10.1039/c9ra04637b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022] Open
Abstract
We report replica exchange molecular dynamics (REMD) simulations of the complex formed between amyloid-β peptides and platinum bound to a phenanthroline ligand, Pt(phen). After construction of an AMBER-style forcefield for the Pt complex, REMD simulation employing temperatures between 270 and 615 K was used to provide thorough sampling of the conformational freedom available to the peptide. We find that the full length peptide Aβ42, in particular, frequently adopts a compact conformation with a large proportion of α- and 3,10-helix content, with smaller amounts of β-strand in the C-terminal region of the peptide. Helical structures are more prevalent than in the metal-free peptide, while turn and strand conformations are markedly less common. Non-covalent interactions, including salt-bridges, hydrogen bonds, and π-stacking between aromatic residues and the phenanthroline ligand, are common, and markedly different from those seen in the amyloid-β peptides alone.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University Park Place, Cardiff CF10 3AT UK +44(0)-2920-874950
| | - Shaun T Mutter
- School of Chemistry, Cardiff University Park Place, Cardiff CF10 3AT UK +44(0)-2920-874950
| | | | - James A Platts
- School of Chemistry, Cardiff University Park Place, Cardiff CF10 3AT UK +44(0)-2920-874950
| |
Collapse
|
9
|
Gomes LMF, Mahammed A, Prosser KE, Smith JR, Silverman MA, Walsby CJ, Gross Z, Storr T. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation. Chem Sci 2019; 10:1634-1643. [PMID: 30842826 PMCID: PMC6369440 DOI: 10.1039/c8sc04660c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted disease that is characterized by increased oxidative stress, metal-ion dysregulation, and the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) aggregates. In this work we report the large affinity binding of the iron(iii) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole complex FeL1 to the Aβ peptide (K d ∼ 10-7) and the ability of the bound FeL1 to act as a catalytic antioxidant in both the presence and absence of Cu(ii) ions. Specific findings are that: (a) an Aβ histidine residue binds axially to FeL1; (b) that the resulting adduct is an efficient catalase; (c) this interaction restricts the formation of high molecular weight peptide aggregates. UV-Vis and electron paramagnetic resonance (EPR) studies show that although the binding of FeL1 does not influence the Aβ-Cu(ii) interaction (K d ∼ 10-10), bound FeL1 still acts as an antioxidant thereby significantly limiting reactive oxygen species (ROS) generation from Aβ-Cu. Overall, FeL1 is shown to bind to the Aβ peptide, and modulate peptide aggregation. In addition, FeL1 forms a ternary species with Aβ-Cu(ii) and impedes ROS generation, thus showing the promise of discrete metal complexes to limit the toxicity pathways of the Aβ peptide.
Collapse
Affiliation(s)
- Luiza M F Gomes
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Atif Mahammed
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Kathleen E Prosser
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Jason R Smith
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Michael A Silverman
- Department of Biological Sciences , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada
| | - Charles J Walsby
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Zeev Gross
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| |
Collapse
|
10
|
Mutter ST, Turner M, Deeth RJ, Platts JA. Metal Binding to Amyloid-β 1-42: A Ligand Field Molecular Dynamics Study. ACS Chem Neurosci 2018; 9:2795-2806. [PMID: 29898363 DOI: 10.1021/acschemneuro.8b00210] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ligand field molecular mechanics simulation has been used to model the interactions of copper(II) and platinum(II) with the amyloid-β1-42 peptide monomer. Molecular dynamics over several microseconds for both metalated systems are compared to analogous results for the free peptide. Significant differences in structural parameters are observed, both between Cu and Pt bound systems as well as between free and metal-bound peptide. Both metals stabilize the formation of helices in the peptide as well as reducing the content of β secondary structural elements compared to the unbound monomer. This is in agreement with experimental reports of metals reducing β-sheet structures, leading to formation of amorphous aggregates over amyloid fibrils. The shape and size of the peptide structures also undergo noteworthy change, with the free peptide exhibiting globular-like structure, platinum(II) system adopting extended structures, and copper(II) system resulting in a mixture of conformations similar to both of these. Salt bridge networks exhibit major differences: the Asp23-Lys28 salt bridge, known to be important in fibril formation, has a differing distance profile within all three systems studied. Salt bridges in the metal binding region of the peptide are strongly altered; in particular, the Arg5-Asp7 salt bridge, which has an occurrence of 71% in the free peptide, is reduced to zero in the presence of both metals.
Collapse
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
11
|
Ligand field molecular dynamics simulation of Pt(II)-phenanthroline binding to N-terminal fragment of amyloid-β peptide. PLoS One 2018; 13:e0193668. [PMID: 29509784 PMCID: PMC5839559 DOI: 10.1371/journal.pone.0193668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/15/2018] [Indexed: 12/15/2022] Open
Abstract
We report microsecond timescale molecular dynamics simulation of the complex formed between Pt(II)-phenanthroline and the 16 N-terminal residues of the Aβ peptide that is implicated in the onset of Alzheimer’s disease, along with equivalent simulations of the metal-free peptide. Simulations from a variety of starting points reach equilibrium within 100 ns, as judged by root mean square deviation and radius of gyration. Platinum-bound peptides deviate rather more from starting points, and adopt structures with larger radius of gyration, than their metal-free counterparts. Residues bound directly to Pt show smaller fluctuation, but others actually move more in the Pt-bound peptide. Hydrogen bonding within the peptide is disrupted by binding of Pt, whereas the presence of salt-bridges are enhanced.
Collapse
|
12
|
Turner M, Deeth RJ, Platts JA. Prediction of ligand effects in platinum-amyloid-β coordination. J Inorg Biochem 2017; 173:44-51. [PMID: 28494276 DOI: 10.1016/j.jinorgbio.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six PtII-Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|
13
|
Mutter ST, Deeth RJ, Turner M, Platts JA. Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides. J Biomol Struct Dyn 2017; 36:1145-1153. [DOI: 10.1080/07391102.2017.1313780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shaun T. Mutter
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - Robert J. Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, UK
| | - Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - James A. Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
14
|
Novato WT, Stroppa PHF, Da Silva AD, Botezine NP, Machado FC, Costa LAS, Dos Santos HF. Reaction between the Pt(II)-complexes and the amino acids of the β-amyloid peptide. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2016.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|