1
|
Kim S, Conrad JA, Tow GM, Maginn EJ, Boatz JA, Gordon MS. Intermolecular interactions in clusters of ethylammonium nitrate and 1-amino-1,2,3-triazole. Phys Chem Chem Phys 2023; 25:30428-30457. [PMID: 37917371 DOI: 10.1039/d3cp02407e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The intermolecular interaction energies, including hydrogen bonds (H-bonds), of clusters of the ionic liquid ethylammonium nitrate (EAN) and 1-amino-1,2,3-triazole (1-AT) based deep eutectic propellants (DeEP) are examined. 1-AT is introduced as a neutral hydrogen bond donor (HBD) to EAN in order to form a eutectic mixture. The effective fragment potential (EFP) is used to examine the bonding interactions in the DeEP clusters. The resolution of the Identity (RI) approximated second order Møller-Plesset perturbation theory (RI-MP2) and coupled cluster theory (RI-CCSD(T)) are used to validate the EFP results. The EFP method predicts that there are significant polarization and charge transfer effects in the EAN:1-AT complexes, along with Coulombic, dispersion and exchange repulsion interactions. The EFP interaction energies are in good agreement with the RI-MP2 and RI-CCSD(T) results. The quasi-atomic orbital (QUAO) bonding and kinetic bond order (KBO) analyses are additionally used to develop a conceptual and semi-quantitative understanding of the H-bonding interactions as a function of the size of the system. The QUAO and KBO analyses suggest that the H-bonds in the examined clusters follow the characteristic hydrogen bonding three-center four electron interactions. The strongest H-bonding interactions between the (EAN)1:(1-AT)n and (EAN)2:(1-AT)n (n = 1-5) complexes are observed internally within EAN; that is, between the ethylammonium cation [EA]+ and the nitrate anion ([NO3]-). The weakest H-bonding interactions occur between [NO3]- and 1-AT. Consequently, the average strengths of the H-bonds within a given (EAN)x:(1-AT)n complex decrease as more 1-AT molecules are introduced into the EAN monomer and EAN dimer. The QUAO bonding analysis suggests that 1-AT in (EAN)x:(1-AT)n can act as both a HBD and a hydrogen bond acceptor simultaneously. It is observed that two 1-AT molecules can form H-bonds to each other. Although the KBOs that correspond to H-bonding interactions in [EA]+:1-AT, [NO3]-:1-AT and between two 1-AT molecules are weaker than the H-bonds in EAN, those weak H-bond networks with 1-AT could be important to form a stable DeEP.
Collapse
Affiliation(s)
- Shinae Kim
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA.
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, USA
| | - Justin A Conrad
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA.
| | - Garrett M Tow
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Edward J Maginn
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jerry A Boatz
- Aerospace Systems Directorate, Air Force Research Laboratory, Edwards Air Force Base, California 93524, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
2
|
Singh A, Mason TG, Lu Z, Hill AJ, Pas SJ, Teo BM, Freeman BD, Izgorodina EI. Structural elucidation of polydopamine facilitated by ionic liquid solvation. Phys Chem Chem Phys 2023; 25:14700-14710. [PMID: 36806848 DOI: 10.1039/d2cp05439f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Minimal understanding of the formation mechanism and structure of polydopamine (pDA) and its natural analogue, eumelanin, impedes the practical application of these versatile polymers and limits our knowledge of the origin of melanoma. The lack of conclusive structural evidence stems from the insolubility of these materials, which has spawned significantly diverse suggestions of pDA's structure in the literature. We discovered that pDA is soluble in certain ionic liquids. Using these ionic liquids (ILs) as solvents, we present an experimental methodology to solvate pDA, enabling us to identify pDA's chemical structure. The resolved pDA structure consists of self-assembled supramolecular aggregates that contribute to the increasing complexity of the polymer. The underlying molecular energetics of pDA solvation and a macroscopic picture of the disruption of the aggregates using IL solvents have been investigated, along with studies of the aggregation mechanism in water.
Collapse
Affiliation(s)
- Abhishek Singh
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia. .,IITB-Monash Research Academy, Bombay 400076, India
| | - Thomas G Mason
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Zhenzhen Lu
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Anita J Hill
- Manufacturing, CSIRO, Clayton, VIC 3168, Australia
| | - Steven J Pas
- Maritime Division, Defence Science and Technology Group, Department of Defence, 506 Lorimer St Fisherman's Bend, VIC 3207, Australia
| | - Boon Mia Teo
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia.
| | - Benny D Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
3
|
Carter-Fenk K, Herbert JM. Appraisal of dispersion damping functions for the effective fragment potential method. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2055504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
4
|
Seeger ZL, Izgorodina EI. A DLPNO-CCSD(T) benchmarking study of intermolecular interactions of ionic liquids. J Comput Chem 2022; 43:106-120. [PMID: 34687062 DOI: 10.1002/jcc.26776] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/11/2022]
Abstract
The accuracy of correlation energy recovered by coupled cluster single-, double-, and perturbative triple-excitations, CCSD(T), has led to the method being considered the gold standard of computational chemistry. The application of CCSD(T) has been limited to medium-sized molecular systems due to its steep scaling with molecular size. The recent development of alternative domain-based local pair natural orbital coupled-cluster method, DLPNO-CCSD(T), has significantly broadened the range of chemical systems to which CCSD(T) level calculations can be applied. Condensed systems such as ionic liquids (ILs) have a large contribution from London dispersion forces of up to 150 kJ mol-1 in large-scale clusters. Ionic liquids show appreciable charge transfer effects that result in the increased valence orbital delocalization over the entire ionic network, raising the question whether the application of methods based on localized orbitals is reliable for these semi-Coulombic materials. Here the performance of DLPNO-CCSD(T) is validated for the prediction of correlation interaction energies of two data sets incorporating single-ion pairs of protic and aprotic ILs. DLPNO-CCSD(T) produced results within chemical accuracy with tight parameter settings and a non-iterative treatment of triple excitations. To achieve spectroscopic accuracy of 1 kJ mol-1 , especially for hydrogen-bonded ILs and those containing halides, the DLPNO settings had to be increased by two orders of magnitude and include the iterative treatment of triple excitations, resulting in a 2.5-fold increase in computational cost. Two new sets of parameters are put forward to produce the performance of DLPNO-CCSD(T) within chemical and spectroscopic accuracy.
Collapse
Affiliation(s)
- Zoe L Seeger
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
5
|
González-Veloso I, Figueiredo NM, Cordeiro MNDS. Unravelling the Interactions of Magnetic Ionic Liquids by Energy Decomposition Schemes: Towards a Transferable Polarizable Force Field. Molecules 2021; 26:molecules26185526. [PMID: 34576997 PMCID: PMC8466702 DOI: 10.3390/molecules26185526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
This work aims at unravelling the interactions in magnetic ionic liquids (MILs) by applying Symmetry-Adapted Perturbation Theory (SAPT) calculations, as well as based on those to set-up a polarisable force field model for these liquids. The targeted MILs comprise two different cations, namely: 1-butyl-3-methylimidazolium ([Bmim]+) and 1-ethyl-3-methylimidazolium ([Emim]+), along with several metal halides anions such as [FeCl4]−, [FeBr4]−, [ZnCl3]− and [SnCl4]2− To begin with, DFT geometry optimisations of such MILs were performed, which in turn revealed that the metallic anions prefer to stay close to the region of the carbon atom between the nitrogen atoms in the imidazolium fragment. Then, a SAPT study was carried out to find the optimal separation of the monomers and the different contributions for their interaction energy. It was found that the main contribution to the interaction energy is the electrostatic interaction component, followed by the dispersion one in most of the cases. The SAPT results were compared with those obtained by employing the local energy decomposition scheme based on the DLPNO-CCSD(T) method, the latter showing slightly lower values for the interaction energy as well as an increase of the distance between the minima centres of mass. Finally, the calculated SAPT interaction energies were found to correlate well with the melting points experimentally measured for these MILs.
Collapse
|
6
|
Mason TG, Seeger ZL, Nguyen ALP, Fujita K, Izgorodina EI. Predicting Entropic Effects of Water Mixing with Ionic Liquids Containing Anions of Strong Hydrogen Bonding Ability: Role of the Cation. J Phys Chem B 2020; 124:9182-9194. [PMID: 33007160 DOI: 10.1021/acs.jpcb.0c07732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ionic liquids (ILs) such as choline dihydrogen phosphate exhibit an extraordinary solubilizing ability for proteins such as cytochrome C when mixed with 20 wt % water. Most widely used imidazolium-based ionic liquids coupled with dihydrogen phosphate do not exhibit the same solubilizing properties, suggesting that a multifunctional cation such as choline might play a key role in enhancing these properties of ionic liquid mixtures with water. In this theoretical work, we compare intermolecular interactions between the water molecule and ionic liquid ions in two ion-paired clusters of choline- and 1-butyl-3-methyl-imidazolium-based ionic liquids coupled with acetate, dihydrogen phosphate, and mesylate. Gibbs free energy (GFE) of solvation of water in these ionic liquids was calculated. Incorporation of a water molecule into ionic liquid clusters was accompanied by negative GFEs of solvation in both types of cations. These results were in good agreement with previously reported experimental GFEs of solvation of water in ILs. Compared to imidazolium-based clusters, strong interionic interactions of choline ionic liquids resulted in more negative GFEs due to their smaller deformation upon the addition of a water molecule, with dihydrogen phosphate and mesylate predicting the lowest GFEs of -30.1 and -43.5 kJ/mol-1, respectively. Lower GFEs of solvation of water in choline-based clusters were also accompanied with smaller entropic penalties, suggesting that water easily incorporates itself into the existing ionic network. Analysis of the intramolecular bonds within the water molecule showed that the choline hydroxyl group donates electron density to the neighboring water molecule, leading to additional polarization. The predicted infrared spectra of clusters of ionic liquids with water showed a pronounced red shift due to strongly polarized O-H bonds, in excellent agreement with the experimentally measured infrared spectra of ionic liquid mixtures with water. Increased polarization of water in choline-based ionic liquids undoubtedly creates more effective solvents for stabilizing biological molecules such as proteins.
Collapse
Affiliation(s)
- Thomas G Mason
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Zoe L Seeger
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Anh L P Nguyen
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| | - Kyoko Fujita
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Ekaterina I Izgorodina
- School of Chemistry, Monash University, 17 Rainforest Walk, Clayton, VIC 3800, Australia
| |
Collapse
|
7
|
Patkowski K. Recent developments in symmetry‐adapted perturbation theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konrad Patkowski
- Department of Chemistry and Biochemistry Auburn University Auburn Alabama
| |
Collapse
|
8
|
Conrad JA, Kim S, Gordon MS. Ionic liquids from a fragmented perspective. Phys Chem Chem Phys 2019; 21:16878-16888. [PMID: 31359024 DOI: 10.1039/c9cp02836f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The efficacy of using fragmentation methods, such as the effective fragment potential, the fragment molecular orbital and the effective fragment molecular orbital methods is discussed. The advantages and current limitations of these methods are considered, potential improvements are suggested, and a prognosis for the future is provided.
Collapse
Affiliation(s)
- Justin A Conrad
- Department of Chemistry, Iowa State University, Ames, IA 50014, USA.
| | - Shinae Kim
- Department of Chemistry, Iowa State University, Ames, IA 50014, USA.
| | - Mark S Gordon
- Department of Chemistry, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
9
|
Bedrov D, Piquemal JP, Borodin O, MacKerell AD, Roux B, Schröder C. Molecular Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. Chem Rev 2019; 119:7940-7995. [PMID: 31141351 PMCID: PMC6620131 DOI: 10.1021/acs.chemrev.8b00763] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Indexed: 11/30/2022]
Abstract
Many applications in chemistry, biology, and energy storage/conversion research rely on molecular simulations to provide fundamental insight into structural and transport properties of materials with high ionic concentrations. Whether the system is comprised entirely of ions, like ionic liquids, or is a mixture of a polar solvent with a salt, e.g., liquid electrolytes for battery applications, the presence of ions in these materials results in strong local electric fields polarizing solvent molecules and large ions. To predict properties of such systems from molecular simulations often requires either explicit or mean-field inclusion of the influence of polarization on electrostatic interactions. In this manuscript, we review the pros and cons of different treatments of polarization ranging from the mean-field approaches to the most popular explicit polarization models in molecular dynamics simulations of ionic materials. For each method, we discuss their advantages and disadvantages and emphasize key assumptions as well as their adjustable parameters. Strategies for the development of polarizable models are presented with a specific focus on extracting atomic polarizabilities. Finally, we compare simulations using polarizable and nonpolarizable models for several classes of ionic systems, discussing the underlying physics that each approach includes or ignores, implications for implementation and computational efficiency, and the accuracy of properties predicted by these methods compared to experiments.
Collapse
Affiliation(s)
- Dmitry Bedrov
- Department
of Materials Science & Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Jean-Philip Piquemal
- Laboratoire
de Chimie Théorique, Sorbonne Université,
UMR 7616 CNRS, CC137, 4 Place Jussieu, Tour 12-13, 4ème étage, 75252 Paris Cedex 05, France
- Institut
Universitaire de France, 75005, Paris Cedex 05, France
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| | - Oleg Borodin
- Electrochemistry
Branch, Sensors and Electron Devices Directorate, Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20703, United
States
| | - Alexander D. MacKerell
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United
States
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, Gordon Center for Integrative
Science, University of Chicago, 929 57th Street, Chicago, Illinois 60637, United States
| | - Christian Schröder
- Department
of Computational Biological Chemistry, University
of Vienna, Währinger Strasse 17, A-1090 Vienna, Austria
| |
Collapse
|
10
|
Low K, Tan SYS, Izgorodina EI. An ab initio Study of the Structure and Energetics of Hydrogen Bonding in Ionic Liquids. Front Chem 2019; 7:208. [PMID: 31024894 PMCID: PMC6468050 DOI: 10.3389/fchem.2019.00208] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/18/2019] [Indexed: 01/09/2023] Open
Abstract
Unlike typical hydrogen-bonded networks such as water, hydrogen bonded ionic liquids display some unusual characteristics due to the complex interplay of electrostatics, polarization, and dispersion forces in the bulk. Protic ionic liquids in particular contain close-to traditional linear hydrogen bonds that define their physicochemical properties. This work investigates whether hydrogen bonded ionic liquids (HBILs) can be differentiated from aprotic ionic liquids with no linear hydrogen bonds using state-of-the-art ab initio calculations. This is achieved through geometry optimizations of a series of single ion pairs of HBILs in the gas phase and an implicit solvent. Using benchmark CCSD(T)/CBS calculations, the electrostatic and dispersion components of the interaction energy of these systems are compared with those of aprotic ionic liquids. The inclusion of the implicit solvent significantly influenced geometries of single ion pairs, with the gas phase shortening the hydrogen bond to reduce electrostatic interactions. HBILs were found to have stronger interactions by at least 10EtMeNH0 kJ mol−1 over aprotic ILs, clearly highlighting the electrostatic nature of hydrogen bonding. Geometric and energetic parameters were found to complement each other in determining the extent of hydrogen bonding present in these ionic liquids.
Collapse
Affiliation(s)
- Kaycee Low
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Samuel Y S Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Melbourne, VIC, Australia
| | - Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Blanco-Díaz EG, Vázquez-Montelongo EA, Cisneros GA, Castrejón-González EO. Computational investigation of non-covalent interactions in 1-butyl 3-methylimidazolium/bis(trifluoromethylsulfonyl)imide [bmim][Tf2N] in EMD and NEMD. J Chem Phys 2018; 148:054303. [DOI: 10.1063/1.5017987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Edgar G. Blanco-Díaz
- Departamento de Ingeniería Química, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato 38010,
Mexico
| | | | - G. Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas 76206, USA
| | | |
Collapse
|
12
|
Nebgen BT, Magurudeniya HD, Kwock KWC, Ringstrand BS, Ahmed T, Seifert S, Zhu JX, Tretiak S, Firestone MA. Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids. Faraday Discuss 2017; 206:159-181. [PMID: 28956588 DOI: 10.1039/c7fd00154a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.
Collapse
Affiliation(s)
- Benjamin T Nebgen
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545. and Theoretical Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545
| | - Harsha D Magurudeniya
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545.
| | - Kevin W C Kwock
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545.
| | - Bryan S Ringstrand
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545.
| | - Towfiq Ahmed
- Theoretical Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545
| | - Sönke Seifert
- X-ray Sciences Division, Argonne National Laboratory, Lemont, IL, USA 60439
| | - Jian-Xin Zhu
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545. and Theoretical Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545
| | - Sergei Tretiak
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545. and Theoretical Division, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545
| | - Millicent A Firestone
- Materials Physics & Applications, Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, USA 87545.
| |
Collapse
|
13
|
Lage-Estebanez I, Del Olmo L, López R, García de la Vega JM. The role of errors related to DFT methods in calculations involving ion pairs of ionic liquids. J Comput Chem 2017; 38:530-540. [PMID: 28133839 DOI: 10.1002/jcc.24707] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/24/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023]
Abstract
Ionic liquids (ILs) play a key role in many chemical applications. As regards the theoretical approach, ILs show added difficulties in calculations due to the composition of the ion pair and to the fact that they are liquids. Although density functional theory (DFT) can treat this kind of systems to predict physico-chemical properties, common versions of these methods fail to perform accurate predictions of geometries, interaction energies, dipole moments, and other properties related to the molecular structure. In these cases, dispersion and self-interaction error (SIE) corrections need to be introduced to improve DFT calculations involving ILs. We show that the inclusion of dispersion is needed to obtain good geometries and accurate interaction energies. SIE needs to be corrected to describe the charges and dipoles in the ion pair correctly. The use of range-separated functionals allows us to obtain interaction energies close to the CCSD(T) level. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Isabel Lage-Estebanez
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Lourdes Del Olmo
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Rafael López
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | |
Collapse
|
14
|
Tan S, Barrera Acevedo S, Izgorodina EI. Generalized spin-ratio scaled MP2 method for accurate prediction of intermolecular interactions for neutral and ionic species. J Chem Phys 2017; 146:064108. [DOI: 10.1063/1.4975326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Samuel Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton VIC 3800, Australia
| | - Santiago Barrera Acevedo
- School of Mathematical Sciences, Monash University, 9 Rainforest Walk, Clayton VIC 3800, Australia
| | - Ekaterina I. Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University, 17 Rainforest Walk, Clayton VIC 3800, Australia
| |
Collapse
|
15
|
Izgorodina EI, Seeger ZL, Scarborough DLA, Tan SYS. Quantum Chemical Methods for the Prediction of Energetic, Physical, and Spectroscopic Properties of Ionic Liquids. Chem Rev 2017; 117:6696-6754. [PMID: 28139908 DOI: 10.1021/acs.chemrev.6b00528] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The accurate prediction of physicochemical properties of condensed systems is a longstanding goal of theoretical (quantum) chemistry. Ionic liquids comprising entirely of ions provide a unique challenge in this respect due to the diverse chemical nature of available ions and the complex interplay of intermolecular interactions among them, thus resulting in the wide variability of physicochemical properties, such as thermodynamic, transport, and spectroscopic properties. It is well understood that intermolecular forces are directly linked to physicochemical properties of condensed systems, and therefore, an understanding of this relationship would greatly aid in the design and synthesis of functionalized materials with tailored properties for an application at hand. This review aims to give an overview of how electronic structure properties obtained from quantum chemical methods such as interaction/binding energy and its fundamental components, dipole moment, polarizability, and orbital energies, can help shed light on the energetic, physical, and spectroscopic properties of semi-Coulomb systems such as ionic liquids. Particular emphasis is given to the prediction of their thermodynamic, transport, spectroscopic, and solubilizing properties.
Collapse
Affiliation(s)
- Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Zoe L Seeger
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - David L A Scarborough
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Samuel Y S Tan
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Halat P, Seeger ZL, Barrera Acevedo S, Izgorodina EI. Trends in Two- and Three-Body Effects in Multiscale Clusters of Ionic Liquids. J Phys Chem B 2017; 121:577-588. [PMID: 27991797 DOI: 10.1021/acs.jpcb.6b10101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Applications of higher correlated levels of ab initio theory to condensed systems require a significant amount of computational resources. The recent development of the fragment molecular orbital (FMO) approach alleviates this issue by splitting the system into individual fragments and achieves the accuracy of the method by accounting for all possible two-body and three-body interactions. In this work a comprehensive application of the FMO approach in combination with a second order of Møller-Plesset perturbation theory method, MP2, is presented for multiscale clusters of ionic liquids such as [C1mim]X, [C1mpyr]X, [C2py]X, and [NMe4]X, where X = chloride and tetrafluoroborates, BF4-, with the clusters varying in size from 4, 8, 16, to 32 ion pairs. Reliable cutoff criteria for the inclusion of two-body and three-body interactions are identified for both HF energy and MP2 correlation energy to achieve the desired accuracy of 1 kJ mol-1. The importance of two-body and three-body interactions in ionic liquids is also discussed.
Collapse
Affiliation(s)
- Peter Halat
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Zoe L Seeger
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| | - Santiago Barrera Acevedo
- School of Mathematical Sciences, Monash University , 9 Rainforest Walk, Clayton, Victoria 3800., Australia
| | - Ekaterina I Izgorodina
- Monash Computational Chemistry Group, School of Chemistry, Monash University , 17 Rainforest Walk, Clayton, Victoria 3800, Australia
| |
Collapse
|