1
|
Sandoval JS, McCamant DW. The Best Models of Bodipy's Electronic Excited State: Comparing Predictions from Various DFT Functionals with Measurements from Femtosecond Stimulated Raman Spectroscopy. J Phys Chem A 2023; 127:8238-8251. [PMID: 37751471 PMCID: PMC10561280 DOI: 10.1021/acs.jpca.3c05040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Density functional theory (DFT) and time-dependent DFT (TD-DFT) are pivotal approaches for modeling electronically excited states of molecules. However, choosing a DFT exchange-correlation functional (XCF) among the myriad of alternatives is an overwhelming task that can affect the interpretation of results and lead to erroneous conclusions. The performance of these XCFs to describe the excited-state properties is often addressed by comparing them with high-level wave function methods or experimentally available vertical excitation energies; however, this is a limited analysis that relies on evaluation of a single point in the excited-state potential energy surface (PES). Different strategies have been proposed but are limited by the difficulty of experimentally accessing the electronic excited-state properties. In this work, we have tested the performance of 12 different XCFs and TD-DFT to describe the excited-state potential energy surface of Bodipy (2,6-diethyl-1,3,5,7-tetramethyl-8-phenyldipyrromethene difluoroborate). We compare those results with resonance Raman spectra collected by using femtosecond stimulated Raman spectroscopy (FSRS). By simultaneously fitting the absorption spectrum, fluorescence spectrum, and all of the resonance Raman excitation profiles within the independent mode displaced harmonic oscillator (IMDHO) formalism, we can describe the PES at the Franck-Condon (FC) region and determine the solvent and intramolecular reorganization energy after relaxation. This allows a direct comparison of the TD-DFT output with experimental observables. Our analysis reveals that using vertical absorption energies might not be a good criterion to determine the best XCF for a given molecular system and that FSRS opens up a new way to benchmark the excited-state performance of XCFs of fluorescent dyes.
Collapse
Affiliation(s)
- Juan S. Sandoval
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - David W. McCamant
- Department of Chemistry, University
of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Sisodiya DS, Ali SM, Chattopadhyay A. Unexplored Isomerization Pathways of Azobis(benzo-15-crown-5): Computational Studies on a Butterfly Crown Ether. J Phys Chem A 2023; 127:7080-7093. [PMID: 37526572 DOI: 10.1021/acs.jpca.3c02363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Computational studies on trans → cis and cis → trans isomerizations of photoresponsive azobis(benzo-15-crown-5) have been reported in this work. The photoexcited ππ* state (S2) of the trans isomer relaxes through the planar S2 minimum and the planar S2/S1 conical intersection (both situated around 9 kcal/mol below the vertically excited S2 state) arising along the N═N stretching coordinate. The nπ* state (S1) of this isomer has both planar and rotated (clockwise and anticlockwise) minima, which may lead to a torsional conical intersection (S0/S1) geometry having a
Collapse
Affiliation(s)
- Dilawar Singh Sisodiya
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| | - Sk Musharaf Ali
- Chemical Engineering Division, Bhabha Atomic Research Centre (BARC), Mumbai 400085, India
| | - Anjan Chattopadhyay
- Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani, K.K. Birla Goa Campus, Zuarinagar 403726, India
| |
Collapse
|
3
|
Doronina EP, Jouikov V, Sidorkin VF. Molecular Design of Silicon‐Containing Diazenes: Absorbance of
E
and
Z
Isomers in the Near‐Infrared Region. Chemistry 2022; 28:e202201508. [DOI: 10.1002/chem.202201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Evgeniya P. Doronina
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky st. 664033 Irkutsk Russian Federation
| | | | - Valery F. Sidorkin
- A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch of the Russian Academy of Sciences 1 Favorsky st. 664033 Irkutsk Russian Federation
| |
Collapse
|
4
|
Ashtari-Jafari S, Jamshidi Z, Visscher L. Efficient simulation of resonance Raman spectra with tight-binding approximations to Density Functional Theory. J Chem Phys 2022; 157:084104. [DOI: 10.1063/5.0107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations which are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation. To test the accuracy of the tight-binding approximations, this method is first applied to typical resonance Raman benchmark molecules like β-carotene and compared to results obtained with pure and range-separated exchange-correlation (xc) functionals. We then demonstrate the efficiency of the approach by considering a computationally challenging heme variation. Overall, we find that the vibrational frequencies and excited-state properties (energies and gradients) which are needed to simulate the spectra are reasonably accurate and suitable for interpretation of experiments. We can therefore recommend DFTB as a fast computational method to interpret resonance Raman spectra.
Collapse
Affiliation(s)
- Sahar Ashtari-Jafari
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Iran, Islamic Republic of
| | - Zahra Jamshidi
- Chemistry, Sharif University of Technology, Iran, Islamic Republic of
| | - Lucas Visscher
- Division of Theoretical Chemistry, Vrije Universiteit Amsterdam, Netherlands
| |
Collapse
|
5
|
Kupfer S, Wächtler M, Guthmuller J. Light‐Driven Multi‐Charge Separation in a Push‐Pull Ruthenium‐based Photosensitizer – Assessed by RASSCF and TDDFT Simulations. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Stephan Kupfer
- Friedrich Schiller Universitat Jena Chemisch Geowissenschaftliche Fakultat Institute of Physical Chemistry Helmholtzweg 1 07743 Jena GERMANY
| | - Maria Wächtler
- Leibniz Institute of Photonic Technology: Leibniz-Institut fur Photonische Technologien Functional Interfaces GERMANY
| | - Julien Guthmuller
- Gdansk University of Technology: Politechnika Gdanska Institute of Physics and Computer Science POLAND
| |
Collapse
|
6
|
Ryazantsev MN, Strashkov DM, Nikolaev DM, Shtyrov AA, Panov MS. Photopharmacological compounds based on azobenzenes and azoheteroarenes: principles of molecular design, molecular modelling, and synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Jiménez ER, Caetano M, Santiago N, Torres FJ, Terencio T, Rodríguez H. A Theoretical and Experimental Study on the Potential Luminescent and Biological Activities of Diaminodicyanoquinodimethane Derivatives. Int J Mol Sci 2021; 22:ijms22010446. [PMID: 33466251 PMCID: PMC7795593 DOI: 10.3390/ijms22010446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, several studies have demonstrated that diaminodicyanoquinone derivatives (DADQs) could present interesting fluorescence properties. Furthermore, some DADQs under the solid state are capable of showing quantum yields that can reach values of 90%. Besides, the diaminodiacyanoquinone core represents a versatile building block propense either to modification or integration into different systems to obtain and provide them unique photophysical features. Herein, we carried out a theoretical study on the fluorescence properties of three different diaminodicyanoquinodimethane systems. Therefore, time-dependent density functional theory (TD-DFT) was used to obtain the values associated with the dipole moments, oscillator strengths, and the conformational energies between the ground and the first excited states of each molecule. The results suggest that only two of the three studied systems possess significant luminescent properties. In a further stage, the theoretical insights were confirmed by means of experimental measurements, which not only retrieved the photoluminescence of the DADQs, but also suggest a preliminary and promising antibacterial activity of these systems.
Collapse
Affiliation(s)
- Edison Rafael Jiménez
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (E.R.J.); (M.C.)
| | - Manuel Caetano
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (E.R.J.); (M.C.)
| | - Nelson Santiago
- School of Biological Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador;
| | - F. Javier Torres
- Grupo de Química Computacional y Teórica (QCT-USFQ), Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 17-1200-841, Ecuador;
| | - Thibault Terencio
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (E.R.J.); (M.C.)
- Correspondence: (T.T.); (H.R.); Tel.: +59-3-6299-9500 (ext. 2622) (H.R.)
| | - Hortensia Rodríguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuquí 100119, Ecuador; (E.R.J.); (M.C.)
- Correspondence: (T.T.); (H.R.); Tel.: +59-3-6299-9500 (ext. 2622) (H.R.)
| |
Collapse
|
8
|
Shaik TA, Alfonso-Garcia A, Richter M, Korinth F, Krafft C, Marcu L, Popp J. FLIm and Raman Spectroscopy for Investigating Biochemical Changes of Bovine Pericardium upon Genipin Cross-Linking. Molecules 2020; 25:E3857. [PMID: 32854230 PMCID: PMC7503846 DOI: 10.3390/molecules25173857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm-1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Alba Alfonso-Garcia
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616, USA;
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
| | - Florian Korinth
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Laura Marcu
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616, USA;
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
| |
Collapse
|
9
|
Sršeň Š, Sita J, Slavíček P, Ladányi V, Heger D. Limits of the Nuclear Ensemble Method for Electronic Spectra Simulations: Temperature Dependence of the (E)-Azobenzene Spectrum. J Chem Theory Comput 2020; 16:6428-6438. [DOI: 10.1021/acs.jctc.0c00579] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Štěpán Sršeň
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Jaroslav Sita
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague, Czech Republic
| | - Vít Ladányi
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Dominik Heger
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
10
|
Balakina MY, Shalin NI, Sharipova AV, Fominykh OD. The effect of cyano-containing acceptor moieties on the photoisomerisation mechanisms and UV/vis spectra of azochromophores with switchable nonlinear optical activity. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1800851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Marina Yu. Balakina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- Kazan Federal University, Alexander Butlerov Institute of Chemistry, Kazan, Russian Federation
| | - Nikita I. Shalin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
- Kazan Federal University, Alexander Butlerov Institute of Chemistry, Kazan, Russian Federation
| | - Anastasiya V. Sharipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| | - Olga D. Fominykh
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russian Federation
| |
Collapse
|
11
|
Fiederling K, Abasifard M, Richter M, Deckert V, Gräfe S, Kupfer S. The chemical effect goes resonant - a full quantum mechanical approach on TERS. NANOSCALE 2020; 12:6346-6359. [PMID: 32134418 DOI: 10.1039/c9nr09814c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lately, experimental evidence of unexpectedly extremely high spatial resolution of tip-enhanced Raman scattering (TERS) has been demonstrated. Theoretically, two different contributions are discussed: an electromagnetic effect, leading to a spatially confined near field due to plasmonic excitations; and the so-called chemical effect originating from the locally modified electronic structure of the molecule due to the close proximity of the plasmonic system. Most of the theoretical efforts have concentrated on the electromagnetic contribution or the chemical effect in case of non-resonant excitation. In this work, we present a fully quantum mechanical description including non-resonant and resonant chemical contributions as well as charge-transfer phenomena of these molecular-plasmonic hybrid systems at the density functional and the time-dependent density functional level of theory. We consider a surface-immobilized tin(ii) phthalocyanine molecule as the molecular system, which is minutely scanned by a plasmonic tip, modeled by a single silver atom. These different relative positions of the Ag atom to the molecule lead to pronounced alterations of the Raman spectra. These Raman spectra vary substantially, both in peak positions and several orders of magnitude in the intensity patterns under non-resonant and resonant conditions, and also, depending on, which electronic states are addressed. Our computational approach reveals that unique - non-resonant and resonant - chemical interactions among the tip and the molecule significantly alter the TERS spectra and are mainly responsible for the high, possibly sub-Angstrom spatial resolution.
Collapse
Affiliation(s)
- Kevin Fiederling
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Barclay MS, Caricato M, Elles CG. Femtosecond Stimulated Raman Scattering from Triplet Electronic States: Experimental and Theoretical Study of Resonance Enhancements. J Phys Chem A 2019; 123:7720-7732. [DOI: 10.1021/acs.jpca.9b05955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew S. Barclay
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition–Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof MaterialsBeijing Oriental Yuhong Waterproof Technology Co., Ltd. 100123 Beijing China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of EducationInstitute of Polymer ChemistryCollege of ChemistryNankai University 300071 Tianjin China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai University 300071 Tianjin China
| |
Collapse
|
14
|
Nie H, Li S, Qian S, Han Z, Zhang W. Switchable Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization with the Assistance of Azobenzenes. Angew Chem Int Ed Engl 2019; 58:11449-11453. [PMID: 31190462 DOI: 10.1002/anie.201904991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/22/2019] [Indexed: 12/31/2022]
Abstract
Modulating controlled radical polymerization is an interesting and important issue. Herein, modulating RAFT polymerization employing photosensitive azobenzenes is achieved. In the presence of azobenzenes and with visible light off, RAFT polymerization runs smoothly and follows a pseudo-first-order kinetics. In contrast, with light on, RAFT polymerization is greatly decelerated or quenched depending on the type and concentration of azobenzenes. Switchable RAFT polymerization of different (meth)acrylate monomers alternatively with light off and on is demonstrated. A mechanism of photoregulating RAFT polymerization involving radical quenching by azobenzenes is proposed.
Collapse
Affiliation(s)
- Huijun Nie
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Shenzhen Li
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Sijia Qian
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhongqiang Han
- State Key Laboratory of Special Functional Waterproof Materials, Beijing Oriental Yuhong Waterproof Technology Co., Ltd., 100123, Beijing, China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, 300071, Tianjin, China
| |
Collapse
|
15
|
Isac DL, Airinei A, Maftei D, Humelnicu I, Mocci F, Laaksonen A, Pinteală M. On the Charge-Transfer Excitations in Azobenzene Maleimide Compounds: A Theoretical Study. J Phys Chem A 2019; 123:5525-5536. [DOI: 10.1021/acs.jpca.9b02082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dragos Lucian Isac
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
| | - Anton Airinei
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
| | - Dan Maftei
- Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Blvd. No 11, 700506 Iasi, Romania
| | - Ionel Humelnicu
- Department of Chemistry, “Alexandru Ioan Cuza” University of Iasi, Carol I Blvd. No 11, 700506 Iasi, Romania
| | - Francesca Mocci
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy
| | - Aatto Laaksonen
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
- Department of Materials and Environmental Chemistry, Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Mariana Pinteală
- “Petru Poni” Institute of Macromolecular Chemistry Iasi, Grigore Ghica Voda Al. No. 41A, 700487 Iasi, Romania
| |
Collapse
|
16
|
Del Pezzo R, Bandeira NA, Trojanowska A, Fernandez Prieto S, Underiner T, Giamberini M, Tylkowski B. Ortho-substituted azobenzene: shedding light on new benefits. PURE APPL CHEM 2018. [DOI: 10.1515/pac-2018-0719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Novel functional polymeric microcapsules, based on modified azobenzene moieties, are exhaustively investigated, both from a theoretical and experimental points of view. Theoretical calculations and several measurements demonstrate that visible light can act as a trigger for release of encapsulated material, as a consequence of trans-cis isomerization which modifies microcapsule surface topography and can induce a “squeezing” release mechanism. Interfacial polymerization of an oil-in-water emulsion is performed and leads to core-shell microcapsules which are characterized by means of atomic force microscopy (AFM), optical microscopy (OM), scanning electron microscopy (SEM) and light scattering. These analyses put into evidence that microcapsules’ size and surface morphology are strongly affected by irradiation under visible light: moreover, these changes can be reverted by sample exposure to temperatures around 50°C. This last evidence is also confirmed by NMR kinetic analyses on modified azobenzene moiety. Finally, it is shown that these smart microcapsules can be successfully used to get a controlled release of actives such as fragrancies, as a consequence of visible light irradiation, as confirmed by an olfactive panel.
Collapse
Affiliation(s)
- Rita Del Pezzo
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- The Procter and Gamble Company , Temselaan 100 , Strombeek-Bever 1853 , Belgium
| | - Nuno A.G. Bandeira
- Biosystems and Integrative Sciences Institute, Faculty of Sciences , University of Lisbon , Campo Grande-C8 , Lisboa 1749-016 , Portugal
- Centro de Química Estrutural – Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais , Lisboa 1049-001 , Portugal
- Institute of Chemical Research of Catalonia (ICIQ) – Avda. Països Catalans , Tarragona 16-43007 , Spain
| | - Anna Trojanowska
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
| | | | - Todd Underiner
- The Procter and Gamble Company , 6210 Center Hill Avenue , Cincinnati, OH 45224 , USA
| | - Marta Giamberini
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
| | - Bartosz Tylkowski
- Department of Chemical Engineering , Rovira i Virgili University , Av. Països Catalans 26 , Tarragona 43007 , Spain
- Centre Tecnològic de la Química de Catalunya , Carrer Marcelli Domingo s/n , Tarragona 43007 , Spain
- The Procter and Gamble Company , 6210 Center Hill Avenue , Cincinnati, OH 45224 , USA
| |
Collapse
|
17
|
Photo-Induced Charge Separation vs. Degradation of a BODIPY-Based Photosensitizer Assessed by TDDFT and RASPT2. Catalysts 2018. [DOI: 10.3390/catal8110520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A meso-mesityl-2,6-iodine substituted boron dipyrromethene (BODIPY) dye is investigated using a suite of computational methods addressing its functionality as photosensitizer, i.e., in the scope of light-driven hydrogen evolution in a two-component approach. Earlier reports on the performance of the present iodinated BODIPY dye proposed a significantly improved catalytic turn-over compared to its unsubstituted parent compound based on the population of long-lived charge-separated triplet states, accessible due to an enhanced spin-orbit coupling (SOC) introduced by the iodine atoms. The present quantum chemical study aims at elucidating the mechanisms of both the higher catalytic performance and the degradation pathways. Time-dependent density functional theory (TDDFT) and multi-state restricted active space perturbation theory through second-order (MS-RASPT2) simulations allowed identifying excited-state channels correlated to iodine dissociation. No evidence for an improved catalytic activity via enhanced SOCs among the low-lying states could be determined. However, the computational analysis reveals that the activation of the dye proceeds via pathways of the (prior chemically) singly-reduced species, featuring a pronounced stabilization of charge-separated species, while low barriers for carbon-iodine bond breaking determine the photostability of the BODIPY dye.
Collapse
|
18
|
Segarra-Martí J, Zvereva E, Marazzi M, Brazard J, Dumont E, Assfeld X, Haacke S, Garavelli M, Monari A, Léonard J, Rivalta I. Resolving the Singlet Excited State Manifold of Benzophenone by First-Principles Simulations and Ultrafast Spectroscopy. J Chem Theory Comput 2018; 14:2570-2585. [DOI: 10.1021/acs.jctc.7b01208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Javier Segarra-Martí
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Elena Zvereva
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CentreRussian Academy of Sciences, Arbuzov str. 8, 420088 Kazan, Russia
| | - Marco Marazzi
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Johanna Brazard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Elise Dumont
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| | - Xavier Assfeld
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Stefan Haacke
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Marco Garavelli
- Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale del Risorgimento 4, I-40136 Bologna, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, UMR 7504, F-67000 Strasbourg, France
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, F-69342, Lyon, France
| |
Collapse
|
19
|
Guthmuller J. The role of Herzberg-Teller effects on the resonance Raman spectrum of trans-porphycene investigated by time dependent density functional theory. J Chem Phys 2018; 148:124107. [PMID: 29604833 DOI: 10.1063/1.5023653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The S1 excited state properties as well as the associated absorption and resonance Raman (RR) spectra of trans-porphycene are investigated by means of time dependent density functional theory calculations. The relative magnitude of the Franck-Condon (FC) contribution and of the Herzberg-Teller (HT) effects is evaluated for both the absorption and RR intensities. The accuracy of the calculated spectra is assessed by employing different theoretical approximations and by comparing with experimental data. The obtained results show that Duschinsky effects lead to noticeable modifications in the absorption intensities but are nearly negligible in the RR spectrum. By contrast, the HT effects are stronger for the RR intensities compared to the absorption intensities, and these effects significantly improve the agreement with the experimental RR spectrum. Moreover, the HT effects produce different values of the RR depolarization ratios, which can be used to quantify the relative importance of the FC and HT contributions. Generally, it is found that the HT effects have a significant role on the RR spectrum of trans-porphycene and that their inclusion in the computational scheme is mandatory to accurately predict the RR intensities.
Collapse
Affiliation(s)
- Julien Guthmuller
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
20
|
Takeshita T, Hara M. Photoionization and trans-to-cis isomerization of β-cyclodextrin-encapsulated azobenzene induced by two-color two-laser-pulse excitation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:475-479. [PMID: 29289746 DOI: 10.1016/j.saa.2017.12.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Azobenzene (1) and the complex resulting from the incorporation of 1 with cyclodextrin (1/CD) are attractive for light-driven applications such as micromachining and chemical biology tools. The highly sensitive photoresponse of 1 is crucial for light-driven applications containing both 1 and 1/CD to reach their full potential. In this study, we investigated the photoionization and trans-to-cis isomerization of 1/CD induced by one- and two-color two-laser pulse excitation. Photoionization of 1/CD, which was induced by stepwise two-photon absorption, was observed using laser pulse excitation at 266nm. Additionally, simultaneous irradiation with 266 and 532nm laser pulses increased the trans-to-cis isomerization yield (Υt→c) by 27%. It was concluded that the increase in Υt→c was caused by the occurrence of trans-to-cis isomerization in the higher-energy singlet state (Sn), which was reached by S1→Sn transition induced by laser pulse excitation at 532nm. The results of this study are potentially applicable in light-driven applications such as micromachining and chemical biology tools.
Collapse
Affiliation(s)
- Tatsuya Takeshita
- Department of Environmental and Food Sciences, Fukui University of Technology, Fukui, Japan
| | - Michihiro Hara
- Department of Environmental and Food Sciences, Fukui University of Technology, Fukui, Japan.
| |
Collapse
|
21
|
Pal AK, Duignan TJ, Autschbach J. Calculation of linear and nonlinear optical properties of azobenzene derivatives with Kohn–Sham and coupled-cluster methods. Phys Chem Chem Phys 2018; 20:7303-7316. [DOI: 10.1039/c7cp08655e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A non-empirically tuned generalized Kohn–Sham functional allows the prediction of accurate low-energy excitation energies and linear polarizabilities. Second hyperpolarizabilities are not improved when compared to coupled-cluster benchmark data.
Collapse
Affiliation(s)
- Arun K. Pal
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Thomas J. Duignan
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| | - Jochen Autschbach
- Department of Chemistry
- University at Buffalo
- State University of New York
- Buffalo
- USA
| |
Collapse
|
22
|
Xu C, Yu L, Gu FL, Zhu C. Probing the π → π* photoisomerization mechanism of trans-azobenzene by multi-state ab initio on-the-fly trajectory dynamics simulations. Phys Chem Chem Phys 2018; 20:23885-23897. [DOI: 10.1039/c8cp02767f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Global nonadiabatic switching on-the-fly trajectory surface hopping simulations at the 5SA-CASSCF(6,6)/6-31G quantum level have been employed to probe the photoisomerization mechanism of trans-azobenzene upon ππ* excitation within four coupled singlet low-lying electronic states (S0, S1, S2, and S3).
Collapse
Affiliation(s)
- Chao Xu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry & Materials Science and Shaanxi Key Laboratory of Physico-Inorganic Chemistry
- Northwest University
- Xi’an 710069
- China
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| | - Chaoyuan Zhu
- Key Laboratory of Theoretical Chemistry of Environment
- Ministry of Education
- School of Chemistry & Environment of South China Normal University
- Guangzhou 51006
- P. R. China
| |
Collapse
|
23
|
Barclay MS, Quincy TJ, Williams-Young DB, Caricato M, Elles CG. Accurate Assignments of Excited-State Resonance Raman Spectra: A Benchmark Study Combining Experiment and Theory. J Phys Chem A 2017; 121:7937-7946. [DOI: 10.1021/acs.jpca.7b09467] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthew S. Barclay
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy J. Quincy
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | | | - Marco Caricato
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Christopher G. Elles
- Department
of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|