1
|
Essahili O, Ouafi M, Ilsouk M, Lakbita O, Duhayon C, Mahi L, Moudam O. Photoluminescence lifetime stability studies of β-diketonate europium complexes based phenanthroline derivatives in poly(methyl methacrylate) films. ChemistryOpen 2024; 13:e202300192. [PMID: 38214695 PMCID: PMC11095151 DOI: 10.1002/open.202300192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
In this work, five phenanthroline derivatives substituted with different methyl groups have been selected to synthesize β-diketonate-based europium complexes to check the influence of the substitutions on the degradation effect of those complexes in poly(methyl methacrylate) (PMMA) films. The photophysical properties of Eu(III) complexes, including absorbance, excitation, and emission have been carefully investigated in solution, solid-state, and doped in PMMA film. In all these states, the complexes exhibit an impressive red emission at 614 nm with a high photoluminescence quantum yield of up to 85 %. The films have been exposed under outdoor, indoor, and dark storage stability lifetime conditions for 1200 hours. The photoluminescence measurements recorded every 400, 800, and 1200 hours demonstrated that the film containing europium complex with phenanthroline ligand substituted by a high number of methyl groups (Eu(TTA)3L5) showed good photoluminescent stability in indoor and dark conditions, and exhibited better resistance to degradation in outdoor conditions compared to other complexes. This study has proved that phenanthroline ligands could be tuned chemically leading to better stability of those types of complexes in films which can be end-used for future stable optoelectronic devices such as luminescent solar concentrators.
Collapse
Affiliation(s)
- Othmane Essahili
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE)Mohammed VI Polytechnic University (UM6P)Lot 660, Hay Moulay Rachid43150BenguerirMorocco
| | - Mouad Ouafi
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE)Mohammed VI Polytechnic University (UM6P)Lot 660, Hay Moulay Rachid43150BenguerirMorocco
| | - Mohamed Ilsouk
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE)Mohammed VI Polytechnic University (UM6P)Lot 660, Hay Moulay Rachid43150BenguerirMorocco
| | - Omar Lakbita
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE)Mohammed VI Polytechnic University (UM6P)Lot 660, Hay Moulay Rachid43150BenguerirMorocco
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS UPR 8241205, route de Narbonne, BP 44099F-31077Toulouse Cedex 4France
| | - Lhassane Mahi
- MAScIRCCI Mohammed VI Polytechnic University (UM6P)Lot 660, Hay Moulay Rachid43150BenguerirMorocco
| | - Omar Moudam
- Applied Chemistry and Engineering Research Centre of Excellence (ACER CoE)Mohammed VI Polytechnic University (UM6P)Lot 660, Hay Moulay Rachid43150BenguerirMorocco
| |
Collapse
|
2
|
Romo-Islas G, Ward JS, Rissanen K, Rodríguez L. Heterometallic Au(I)-Cu(I) Clusters: Luminescence Studies and 1O 2 Production. Inorg Chem 2023; 62:8101-8111. [PMID: 37191273 DOI: 10.1021/acs.inorgchem.3c00046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Two different organometallic gold(I) compounds containing naphthalene and phenanthrene as fluorophores and 2-pyridyldiphenylphosphane as the ancillary ligand were synthesized (compounds 1 with naphthalene and 2 with phenanthrene). They were reacted with three different copper(I) salts with different counterions (PF6-, OTf-, and BF4-; OTf = triflate) to obtain six Au(I)/Cu(I) heterometallic clusters (compounds 1a-c for naphthalene derivatives and 2a-c for phenanthrene derivatives). The heterometallic compounds present red pure room-temperature phosphorescence in both solution, the solid state, and air-equilibrated samples, as a difference with the dual emission recorded for the gold(I) precursors 1 and 2. The presence of Au(I)-Cu(I) metallophilic contacts has been identified using single-crystal X-ray diffraction structure resolution of two of the compounds, which play a direct role in the resulting red-shifted emission with respect to the gold(I) homometallic precursors. Polystyrene (PS) and poly(methyl methacrylate) (PMMA) polymeric matrices were doped with our luminescent compounds, and the resulting changes in their emissive properties were analyzed and compared with those previously recorded in the solution and the solid state. All complexes were tested to analyze their ability to produce 1O2 and present very good values of ΦΔ up to 50%.
Collapse
Affiliation(s)
- Guillermo Romo-Islas
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jas S Ward
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Kari Rissanen
- Department of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyvaskyla, Finland
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
3
|
Pikulová P, Misenkova D, Marek R, Komorovsky S, Novotný J. Quadratic Spin-Orbit Mechanism of the Electronic g-Tensor. J Chem Theory Comput 2023; 19:1765-1776. [PMID: 36896579 DOI: 10.1021/acs.jctc.2c01213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Understanding how the electronic g-tensor is linked to the electronic structure is desirable for the correct interpretation of electron paramagnetic resonance spectra. For heavy-element compounds with large spin-orbit (SO) effects, this is still not completely clear. We report our investigation of quadratic SO contributions to the g-shift in heavy transition metal complexes. We implemented third-order perturbation theory in order to analyze the contributions arising from frontier molecular spin orbitals (MSOs). We show that the dominant quadratic SO term─spin-Zeeman (SO2/SZ)─generally makes a negative contribution to the g-shift, irrespective of the particular electronic configuration or molecular symmetry. We further analyze how the SO2/SZ contribution adds to or subtracts from the linear orbital-Zeeman (SO/OZ) contribution to the individual principal components of the g-tensor. Our study suggests that the SO2/SZ mechanism decreases the anisotropy of the g-tensor in early transition metal complexes and increases it in late transition metal complexes. Finally, we apply MSO analysis to the investigation of g-tensor trends in a set of closely related Ir and Rh pincer complexes and evaluate the influence of different chemical factors (the nuclear charge of the central atom and the terminal ligand) on the magnitudes of the g-shifts. We expect our conclusions to aid the understanding of spectra in magnetic resonance investigations of heavy transition metal compounds.
Collapse
Affiliation(s)
- Petra Pikulová
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
| | - Debora Misenkova
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| | - Radek Marek
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| | - Jan Novotný
- CEITEC─Central European Institute of Technology, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno CZ-62500, Czechia.,Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, Bratislava SK-84536, Slovakia
| |
Collapse
|
4
|
Zapata Escobar AD, Maldonado AF, Aucar GA. The LRESC-Loc Model to Analyze Magnetic Shieldings with Localized Molecular Orbitals. J Phys Chem A 2022; 126:9519-9534. [PMID: 36512732 DOI: 10.1021/acs.jpca.2c05604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The leading electronic mechanisms of relativistic effects in the NMR magnetic shieldings of heavy-atom (HA) containing molecules are well described by the linear response with elimination of small components model (LRESC). We show here first results from a new version of the LRESC model written in terms of localized molecular orbitals (LMOs) which is coined as LRESC-Loc. Those LMOs resemble "chemist's orbitals", representing lone-pairs, atomic cores, and bonds. The whole set of relativistic effects are expressed in terms of non-ligand-dependent and ligand-dependent contributions. We show the electronic origin of trends and behavior of different mechanisms in molecular systems which contain heavy elements that belong to any of the IB to VIIA groups of the periodic table. The SO mechanism has a well-defined dependence with the LPs (LPσ and LPπ) when the HAs have them, but the non-SO mechanisms mostly depend on other LMOs. In addition we propose here that the SO mechanism can be used to characterize interactions involving LPs and the non-SO mechanisms to characterize covalent and close-shell interactions. All our main results are in accord with previous findings, though we are now able to analyze them in a different manner.
Collapse
Affiliation(s)
- Andy D Zapata Escobar
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Corrientes, W3404AAS, Argentina.,Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), Corrientes, W3404AAS, Argentina
| | - Alejandro F Maldonado
- Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), Corrientes, W3404AAS, Argentina
| | - Gustavo A Aucar
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina, Corrientes, W3404AAS, Argentina.,Institute for Modeling and Innovative Technology, IMIT (CONICET-UNNE), Corrientes, W3404AAS, Argentina
| |
Collapse
|
5
|
Insights into the complexation and oxidation of quercetin and luteolin in aqueous solutions in presence of selected metal cations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
de Andrade TFCB, Dos Santos HF, Fonseca Guerra C, Paschoal DFS. Computational Prediction of Tc-99 NMR Chemical Shifts in Technetium Complexes with Radiopharmaceutical Applications. J Phys Chem A 2022; 126:5434-5448. [PMID: 35930743 DOI: 10.1021/acs.jpca.2c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Tc-99m nucleus is the most used nuclide in radiopharmaceuticals designed for imaging diagnosis. The metal can exist in nine distinct oxidation states and forms distinct coordination complexes with a variety of chelating agents and geometries. These complexes are usually characterized through Tc-99 NMR that is very sensitive to the Tc coordination sphere. Therefore, predicting Tc-99 NMR might be useful to assist experimentalists in structural characterization. In the present study, we propose three computational protocols for predicting Tc-99 NMR chemical shifts based on density functional theory calculations using relativistic and nonrelativistic Hamiltonians: the relativistic Model 1, the nonrelativistic Model 2, and the empirical nonrelativistic Model 3. In Models 2 and 3, the NMR-DKH basis set was used for all atoms, including the Tc, for which it was developed here. All models were applied for a set of 41 Tc-complexes with metal oxidation states 0, I, and V, for which the Tc-99 chemical shift was available experimentally. The mean absolute deviation and the mean relative deviation were 67 ppm and 4.8% (Model 1), 92 ppm and 6.2% (Model 2), and 65 ppm and 4.9% (Model 3), respectively. Last, the effect of the explicit solvent was evaluated for the [TcO2(en)2]+─Tc(V) complex. The calculated results for the Tc-99 NMR chemical shift at SO-ZORA-SSB-D/TZ2P-ZORA/COSMO//TPSS/def2-SVP/IEF-PCM(UFF) show that the inclusion of 14 water molecules (first solvation shell) together with the implicit solvation model leads to an absolute deviation of only 7 ppm (0.3%) from the experimental value, indicating that the solvent effects play a key role in predicting Tc-99 NMR.
Collapse
Affiliation(s)
- Taís F C B de Andrade
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé, 27.971-525 Rio de Janeiro, Brasil
| | - Hélio F Dos Santos
- NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Campus Universitário, 36.036-900 Juiz de Fora, Minas Gerais, Brasil
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Diego F S Paschoal
- NQTCM: Núcleo de Química Teórica e Computacional de Macaé, Polo Ajuda, Instituto Multidisciplinar de Química, Centro Multidisciplinar UFRJ-Macaé, Universidade Federal do Rio de Janeiro, Macaé, 27.971-525 Rio de Janeiro, Brasil
| |
Collapse
|
7
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
8
|
Titova YY, Schmidt FK. What 27Al NMR Spectroscopy Can Offer to Study of Multicomponent Catalytic Hydrogenation Systems? J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Cuyacot BJR, Novotný J, Berger RJF, Komorovsky S, Marek R. Relativistic Spin–Orbit Electronegativity and the Chemical Bond Between a Heavy Atom and a Light Atom. Chemistry 2022; 28:e202200277. [DOI: 10.1002/chem.202200277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 01/30/2023]
Affiliation(s)
- Ben Joseph R. Cuyacot
- CEITEC – Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
| | - Jan Novotný
- CEITEC – Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
| | - Raphael J. F. Berger
- Department of Chemistry and Physics of Materials Paris Lodron University of Salzburg Jakob-Haringerstr. 2 A 5020 Salzburg Austria
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry Slovak Academy of Sciences Dúbravská cesta 9 84536 Bratislava Slovakia
| | - Radek Marek
- CEITEC – Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czechia
- Department of Chemistry Faculty of Science Masaryk University Kamenice 5 62500 Brno Czechia
| |
Collapse
|
10
|
Musso JV, Schowner R, Falivene L, Frey W, Cavallo L, Buchmeiser MR. Predicting Catalytic Activity from
13
C
CH
Alkylidene Chemical Shift in Cationic Tungsten Oxo Alkylidene N‐Heterocyclic Carbene Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Janis V. Musso
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Roman Schowner
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Laura Falivene
- Dipartimento di Chimica e Biologia University of Salerno Via Papa Paolo Giovanni II I-84084 Fisciano Italy
| | - Wolfgang Frey
- Institut für Organische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Luigi Cavallo
- KAUST Catalysis Center Physical Sciences and Engineering Division King Abdullah University of Science and Technology 23955-6900 Thuwal Saudi Arabia
| | - Michael R. Buchmeiser
- Institut für Polymerchemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
- German Institutes of Textile and Fiber Research (DITF) Denkendorf Körschtalstr. 26 73770 Denkendorf Germany
| |
Collapse
|
11
|
Sojka M, Chyba J, Paul SS, Wawrocka K, Hönigová K, Cuyacot BJR, Castro AC, Vaculovič T, Marek J, Repisky M, Masařík M, Novotný J, Marek R. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg Chem 2021; 60:17911-17925. [PMID: 34738800 DOI: 10.1021/acs.inorgchem.1c02467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its β-cyclodextrin (β-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@β-CD, respectively, while maintaining a significantly lower toxicity profile.
Collapse
Affiliation(s)
- Martin Sojka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Shib Shankar Paul
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Karolina Wawrocka
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Kateřina Hönigová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Ben Joseph R Cuyacot
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Abril C Castro
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jaromír Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
12
|
Batista PR, Ducati LC, Autschbach J. Solvent effect on the 195Pt NMR properties in pyridonate-bridged Pt III dinuclear complex derivatives investigated by ab initio molecular dynamics and localized orbital analysis. Phys Chem Chem Phys 2021; 23:12864-12880. [PMID: 34075921 DOI: 10.1039/d0cp05849a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ab initio molecular dynamics investigation of the solvent effect (water) on the structural parameters, 195Pt NMR spin-spin coupling constants (SSCCs) and chemical shifts of a series of pyridonate-bridged PtIII dinuclear complexes is performed using Kohn-Sham (KS) Car-Parrinello molecular dynamics (CPMD) and relativistic hybrid KS NMR calculations. The indirect solvent effect (via structural changes) has a dramatic effect on the 1JPtPt SSCCs. The complexes exhibit a strong trans influence in solution, where the Pt-Pt bond lengthens with increasing axial ligand σ-donor strength. In the diaqua complex, where the solvent effect is more pronounced, the SSCCs averaged for CPMD configurations with explicit plus implicit solvation agree much better with the experimental data, while the calculations for static geometry and CPMD unsolvated configurations show large deviations with respect to experiment. The combination of CPMD with hybrid KS NMR calculations provides a much more realistic computational model that reproduces the large magnitudes of 1JPtPt and 195Pt chemical shifts. An analysis of 1JPtPt in terms of localized and canonical orbitals shows that the SSCCs are driven by changes in the s-character of the natural atomic orbitals of Pt atoms, which affect the 'Fermi contact' mechanism.
Collapse
Affiliation(s)
- Patrick R Batista
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
13
|
Glent-Madsen I, Reinholdt A, Bendix J, Sauer SPA. Importance of Relativistic Effects for Carbon as an NMR Reporter Nucleus in Carbide-Bridged [RuCPt] Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Iben Glent-Madsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Abstract
Halogens cause pronounced and systematic effects on the 13C NMR chemical shift (δ13C) of an adjacent carbon nucleus, usually leading to a decrease in the values across the halogen series. Although this normal halogen dependence (NHD) is known in organic and inorganic compounds containing the carbon atom in its neutral and cationic forms, information about carbanions is scarce. To understand how δ13C changes in molecules with different charges, the shielding mechanisms of CHX3, CX3+, and CX3- (X = Cl, Br, or I) systems are investigated via density functional theory calculations and further analyzed by decomposition into contributions of natural localized molecular orbitals. An inverse halogen dependence (IHD) is determined for the anion series as a result of the negative spin-orbit contribution instead of scalar paramagnetic effects. The presence of a carbon nonbonding orbital in anions allows magnetic couplings that generate a deshielding effect on the nucleus and contradicts the classical association between δ13C and atomic charge.
Collapse
Affiliation(s)
- Renan V Viesser
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| | - Cláudio F Tormena
- Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Castro AC, Balcells D, Repisky M, Helgaker T, Cascella M. First-Principles Calculation of 1H NMR Chemical Shifts of Complex Metal Polyhydrides: The Essential Inclusion of Relativity and Dynamics. Inorg Chem 2020; 59:17509-17518. [PMID: 33226791 PMCID: PMC7735704 DOI: 10.1021/acs.inorgchem.0c02753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Indexed: 12/03/2022]
Abstract
1H NMR spectroscopy has become an important technique for the characterization of transition-metal hydride complexes, whose metal-bound hydrides are often difficult to locate by X-ray diffraction. In this regard, the accurate prediction of 1H NMR chemical shifts provides a useful, but challenging, strategy to help in the interpretation of the experimental spectra. In this work, we establish a density-functional-theory protocol that includes relativistic, solvent, and dynamic effects at a high level of theory, allowing us to report an accurate and reliable interpretation of 1H NMR hydride chemical shifts of iridium polyhydride complexes. In particular, we have studied in detail the hydride chemical shifts of the [Ir6(IMe)8(CO)2H14]2+ complex in order to validate previous assignments. The computed 1H NMR chemical shifts are strongly dependent on the relativistic treatment, the choice of the DFT exchange-correlation functional, and the conformational dynamics. By combining a fully relativistic four-component electronic-structure treatment with ab initio molecular dynamics, we were able to reliably model both the terminal and bridging hydride chemical shifts and to show that two NMR hydride signals were inversely assigned in the experiment.
Collapse
Affiliation(s)
- Abril C. Castro
- Hylleraas Centre
for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - David Balcells
- Hylleraas Centre
for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular
Sciences, Department of Chemistry, UiT-The Arctic University
of Norway, 9037 Tromsø, Norway
| | - Trygve Helgaker
- Hylleraas Centre
for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Michele Cascella
- Hylleraas Centre
for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
16
|
Malali S, Chyba J, Knor M, Horní M, Nečas M, Novotný J, Marek R. Zwitterionic Ru(III) Complexes: Stability of Metal-Ligand Bond and Host-Guest Binding with Cucurbit[7]uril. Inorg Chem 2020; 59:10185-10196. [PMID: 32633504 DOI: 10.1021/acs.inorgchem.0c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A wide range of ruthenium-based coordination compounds have been reported to possess potential as metallodrugs with anticancer or antimetastatic activity. In this work, we synthesized a set of new zwitterionic Ru(III) compounds bearing ligands derived from N-alkyl (R) systems based on pyridine, 4,4'-bipyridine, or 1,4-diazabicyclo[2.2.2]octane (DABCO). The effects of the ligand(s) and their environment on the coordination stability have been investigated. Whereas the [DABCO-R]+ ligand is shown to be easily split out of a negative [RuCl4]- core, positively charged R-pyridine and R-bipyridine ligands form somewhat more stable Ru(III) complexes and can be used as supramolecular anchors for binding with macrocycles. Therefore, supramolecular host-guest assemblies between the stable zwitterionic Ru(III) guests and the cucurbit[7]uril host were investigated and characterized in detail by using NMR spectroscopy and single-crystal X-ray diffraction. Paramagnetic 1H NMR experiments supplemented by relativistic DFT calculations of the structure and hyperfine NMR shifts were performed to determine the host-guest binding modes in solution. In contrast to the intramolecular hyperfine shifts, dominated by the through-bond Fermi-contact mechanism, supramolecular hyperfine shifts were shown to depend on the "through-space" spin-dipole contributions with structural trends being satisfactorily reproduced by a simple point-dipole approximation.
Collapse
Affiliation(s)
- Sanaz Malali
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Chyba
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Knor
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Michal Horní
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Marek Nečas
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.,National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
17
|
Vı́cha J, Novotný J, Komorovsky S, Straka M, Kaupp M, Marek R. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends Across the Periodic Table. Chem Rev 2020; 120:7065-7103. [DOI: 10.1021/acs.chemrev.9b00785] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jan Vı́cha
- Centre of Polymer Systems, Tomas Bata University in Zlı́n, tř. Tomáše Bati 5678, CZ-76001 Zlı́n, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610 Prague, Czechia
| | - Martin Kaupp
- Institute of Chemistry, Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia
| |
Collapse
|
18
|
Vícha J, Švec P, Růžičková Z, Samsonov MA, Bártová K, Růžička A, Straka M, Dračínský M. Experimental and Theoretical Evidence of Spin‐Orbit Heavy Atom on the Light Atom
1
H NMR Chemical Shifts Induced through H⋅⋅⋅I
−
Hydrogen Bond. Chemistry 2020; 26:8698-8702. [DOI: 10.1002/chem.202001532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Jan Vícha
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
- Centre of Polymer SystemsTomas Bata University in Zlín Tomáše Bati 5678 Zlín 760 01 Czech Republic
| | - Petr Švec
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Zdeňka Růžičková
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Maksim A. Samsonov
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Kateřina Bártová
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic ChemistryUniversity of Pardubice Studentská 573 Pardubice 53210 Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, AS CR Flemingovo nám. 2 Prague 16610 Czech Republic
| |
Collapse
|
19
|
Repisky M, Komorovsky S, Kadek M, Konecny L, Ekström U, Malkin E, Kaupp M, Ruud K, Malkina OL, Malkin VG. ReSpect: Relativistic spectroscopy DFT program package. J Chem Phys 2020; 152:184101. [DOI: 10.1063/5.0005094] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Michal Repisky
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84536 Bratislava, Slovakia
| | - Marius Kadek
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Lukas Konecny
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Ulf Ekström
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, N-0315 Oslo, Norway
| | - Elena Malkin
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Martin Kaupp
- Technische Universität Berlin, Institute of Chemistry, Strasse des 17 Juni 135, D-10623 Berlin, Germany
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Olga L. Malkina
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84536 Bratislava, Slovakia
| | - Vladimir G. Malkin
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, SK-84536 Bratislava, Slovakia
| |
Collapse
|
20
|
Latypov SK, Kondrashova SA, Polyancev FM, Sinyashin OG. Quantum Chemical Calculations of 31P NMR Chemical Shifts in Nickel Complexes: Scope and Limitations. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shamil K. Latypov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarstan, Russian Federation 420083
| | - Svetlana A. Kondrashova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarstan, Russian Federation 420083
| | - Fedor M. Polyancev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarstan, Russian Federation 420083
| | - Oleg G. Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str. 8, Kazan, Tatarstan, Russian Federation 420083
| |
Collapse
|
21
|
Melo JI, Maldonado AF, Aucar GA. Performance of the LRESC Model on top of DFT Functionals for Relativistic NMR Shielding Calculations. J Chem Inf Model 2020; 60:722-730. [PMID: 31877038 DOI: 10.1021/acs.jcim.9b00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The linear response within the elimination of the small component model (LRESC) is an insightful and computationally efficient method for including relativistic effects on molecular properties like the nuclear magnetic shielding constants, spin-rotation constant, g-tensor, and electric field gradient of heavy atom containing molecules with atoms belonging up to the sixth row of the periodic table. One of its main advantages is its capacity to analyze the electronic origin of the different relativistic correcting terms. Until now, it was always applied on top of Hartree-Fock ground-state wave functions (LRESC/HF) to calculate and analyze NMR shieldings. In this work, we show the performance of the LRESC formalism on top of some density functional theory (DFT) functionals to compute tin shielding constants in SnX4 (X = H, F, Cl, Br, I) molecular systems. We analyze the performance of each LRESC/DFT scheme on reproducing the electronic mechanisms of the shieldings, taking as a benchmark the results of relativistic calculations at the RPA level of approach (4c/RPA). As in previous works, we divide the LRESC relativistic correcting terms into two groups: core-dependent and ligand-dependent contributions. It is shown here that core-dependent corrections are well-reproduced for the selected DFT functionals, but some differences arise in the ligand-dependent ones. We focus on the performance of different functionals, including the same electron correlation part but containing different amounts of HF exchange. The best results are obtained for the BHandHLYP functional (50% of HF exchange) and the worst for BLYP (0%). When the percentage of HF exchange increases, ligand-dependent contributions are better described, and the final LRESC/DFT results are closer to those obtained with LRESC/HF and 4c/RPA methods. The spin-orbit correction to the shielding constant is one of the main ligand-dependent contributions (there are two more) with total value depending on the amount of HF exchange included in the functional. When the amount of HF exchange decreases, the spin-orbit contribution becomes larger, overestimating the shielding constant even when nonrelativisitc DFT values are much smaller than the nonrelativistic HF ones, as it happens for the heaviest molecular system studied here (SnI4).
Collapse
Affiliation(s)
- Juan I Melo
- Departamento de Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires and IFIBA CONICET , Buenos Aires 1428 , Argentina
| | - Alejandro F Maldonado
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina and Institute of Modelling and Innovation on Technology , IMIT CONICET-UNNE , Corrientes W3404AAS , Argentina
| | - Gustavo A Aucar
- Physics Department, Natural and Exact Science Faculty, Northeastern University of Argentina and Institute of Modelling and Innovation on Technology , IMIT CONICET-UNNE , Corrientes W3404AAS , Argentina
| |
Collapse
|
22
|
Foroutan-Nejad C, Vícha J, Ghosh A. Relativity or aromaticity? A first-principles perspective of chemical shifts in osmabenzene and osmapentalene derivatives. Phys Chem Chem Phys 2020; 22:10863-10869. [DOI: 10.1039/d0cp01481h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The topology of the magnetically induced current density in osmabenzene suggests that the molecule is a novel type of Craig–Möbius aromatic system.
Collapse
Affiliation(s)
- Cina Foroutan-Nejad
- Department of Chemistry
- Faculty of Science
- Masaryk University
- Brno
- Czech Republic
| | - Jan Vícha
- Center of Polymer Systems
- University Institute
- Tomas Bata University in Zlín
- Zlín
- Czech Republic
| | - Abhik Ghosh
- Department of Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| |
Collapse
|
23
|
Krivdin LB. Computational 1 H NMR: Part 2. Chemical applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:5-14. [PMID: 31125992 DOI: 10.1002/mrc.4896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/12/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
This is the second one of three closely interrelated reviews dealing with computation of 1 H NMR chemical shifts and 1 H-1 H spin-spin coupling constants prepared for Magnetic Resonance in Chemistry. Presented in this review are some basic notes and illustrative examples of how modern computational 1 H NMR could be used for structural elucidation and stereoelectronic studies of the medium-sized organic molecules involving saturated, unsaturated, aromatic, and heteroaromatic compounds together with their functional derivatives and coordination complexes to get deeper insight into their stereochemical structure and stereodynamic behavior.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
- Chair of Chemistry, Angarsk State Technical University, Tchaikovsky St. 60, 665835, Angarsk, Russia
| |
Collapse
|
24
|
Rusakova IL, Rusakov YY. On the heavy atom on light atom relativistic effect in the NMR shielding constants of phosphine tellurides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:1071-1083. [PMID: 31077441 DOI: 10.1002/mrc.4889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 04/27/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The relativistic HALA effect has been shown to depend on the spatial deformation of the lone electron pairs of a heavy atom, as demonstrated for alkyl and alkene phosphine tellurides. It was found that HALA effect on phosphorous nuclear magnetic resonance shielding constant is strongly dependent on the spatial arrangements of light substituents on phosphorus, resulting in the deformation of the lone electron pairs of tellurium.
Collapse
Affiliation(s)
- Irina L Rusakova
- A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS, Irkutsk, Russia
| | - Yuriy Yu Rusakov
- A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS, Irkutsk, Russia
| |
Collapse
|
25
|
Tsipis AC. Trans-philicity (trans-influence/trans-effect) ladders for square planar platinum(II) complexes constructed by 35 Cl NMR probe. J Comput Chem 2019; 40:2550-2562. [PMID: 31301188 DOI: 10.1002/jcc.26031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 01/29/2023]
Abstract
The unified term of trans-philicity is proposed to cover the trans-effect/trans-influence concepts. NMR trans-philicity ladders are built for a broad series of square planar trans-Pt(NH3 )2 (Cl)L and trans-Pt(CO)2 (Cl)L complexes employing 35 Cl NMR probe and quantified by calculation of NMR trans-philicity indicators. The trans-philicity is linearly correlated with the ligand electronic PL constant, a measure of the net donor power of the ligand. The nature of cis-ligands does not affect trans-philicity ladders but strongly affects trans-philicity strength. Solvent has significant effect on the σcalcd 35 Cl shielding constants, with the polar Dimethylformamide (DMF) solvent inducing downfield shifts relative to σcalcd 35 Cl with nonpolar benzene solvent. Good correlations between σcalcd 35 Cl shielding constants and the estimated R(Pt-Cl) bond distances demonstrate the relation of trans-philicity with trans-influence and trans-effect phenomena and put the grounds for the establishment of the new concept of trans-philicity in the realm of square planar Pt(II) and other transition metal complexes. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Athanassios C Tsipis
- Laboratory of Inorganic and General Chemistry, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
26
|
Quantum chemical calculations of 31P NMR chemical shifts of P-donor ligands in platinum(II) complexes. J Mol Model 2019; 25:329. [PMID: 31656972 DOI: 10.1007/s00894-019-4222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
This work aims to find the most suitable method that is practically applicable for the calculation of 31P NMR chemical shifts of Pt(II) complexes. The influence of various all-electron and ECP basis sets, DFT functionals, and solvent effects on the optimized geometry was tested. A variety of combinations of DFT functionals BP86, B3LYP, PBE0, TPSSh, CAM-B3LYP, and ωB97XD with all-electron basis sets 6-31G, 6-31G(d), 6-31G(d,p), 6-311G(d,p), and TZVP and ECP basis sets SDD, LanL2DZ, and CEP-31G were used. Chemical shielding constants were then calculated using BP86, PBE0, and B3LYP functionals in combination with the TZ2P basis. The magnitude of spin-orbit interactions was also evaluated.
Collapse
|
27
|
Gordon CP, Raynaud C, Andersen RA, Copéret C, Eisenstein O. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Acc Chem Res 2019; 52:2278-2289. [PMID: 31339693 DOI: 10.1021/acs.accounts.9b00225] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Metal-bonded carbon atoms in metal-alkyl, metal-carbene/alkylidene, and metal-carbyne/alkylidyne species often show significantly more deshielded isotropic chemical shifts than their organic counterparts (alkanes, alkenes, and alkynes). While isotropic chemical shift is universally used to characterize a chemical compound in solution, it is an average value of the three principal components of the chemical shift tensor (δ11 > δ22 > δ33). The tensor components, which are accessible by solid-state NMR spectroscopy, can provide detailed information about the electronic structure (frontier molecular orbitals) at the observed nuclei. This information can be accessed in detail by quantum chemical calculations, most notably by an analysis of the paramagnetic contribution to the NMR shielding tensor. The paramagnetic term mainly results from the coupling of occupied and empty molecular orbitals close in energy-the frontier molecular orbitals-under the effect of the external magnetic field (B0). In organometallic compounds, a large deshielding of the isotropic carbon-13 chemical shift of the metal-bonded carbon atom is commonly related to the coupling between the occupied σM-C orbital and low-lying vacant orbitals of πM═C* character. The deshielding at the α-carbon hence probes the extent of σM-C and πM═C* interactions. This molecular orbital view readily explains the strong deshielding and large anisotropy (evidenced by the span Ω = δ11 - δ33) observed in metal alkylidenes and alkylidynes (200 < δiso < 400 ppm). Fischer carbenes are generally more deshielded than Schrock or Grubbs alkylidenes due to their low-lying πM═C* orbital. Chemical shift hence shows their higher electrophilic character, connecting NMR spectroscopy to reactivity patterns. Similarly, the α-carbon of metal-alkyls display deshielded chemical shifts in specific coordination environments. This deshielding, which is often prominently pronounced for cationic species, indicates the presence of partial π-bond character in the metal-carbon bond, making these bonds topologically equivalent to alkylidene π-bonds. The π-character in metal-alkyl bonds favors (i) α-H abstraction processes in metal bis-alkyl compounds yielding metal alkylidenes, (ii) [2 + 2]-retrocyclization of metallacyclobutanes that participate in olefin metathesis, (iii) olefin insertion in cationic metal alkyls thus explaining polymerization activity trends and the importance of α-H agostic interactions, and (iv) C-H bond activation on metal-alkyls via σ-bond metathesis. The presence of π-character in the metal-carbon bonds involved in these processes rationalizes the parallel reactivity patterns of metal-alkyls toward olefin insertion and σ-bond metathesis and the fact that σ-bond metathesis, olefin insertion, and olefin metathesis are commonly observed with metal atoms in the same ligand field. Because of the similarities in the frontier molecular orbitals involved in these processes, these reactions can be viewed as isolobal. This explains why certain fragments, such as bent metallocenes (d0 Cp2M) or T-shaped L3M, are ubiquitous in these reactions.
Collapse
Affiliation(s)
- Christopher P. Gordon
- ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg. 1-5, CH-8093 Zürich, Switzerland
| | | | - Richard A. Andersen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christophe Copéret
- ETH Zürich, Department of Chemistry and Applied Biosciences, Vladimir Prelog Weg. 1-5, CH-8093 Zürich, Switzerland
| | - Odile Eisenstein
- ICGM, Université Montpellier, CNRS, ENSCM, 34095 Montpellier, France
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O.
Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
28
|
Krivdin LB. Computational protocols for calculating 13C NMR chemical shifts. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 112-113:103-156. [PMID: 31481156 DOI: 10.1016/j.pnmrs.2019.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
The most recent results dealing with the computation of 13C NMR chemical shifts in chemistry (small molecules, saturated, unsaturated and aromatic compounds, heterocycles, functional derivatives, coordination complexes, carbocations, and natural products) are reviewed, paying special attention to theoretical background and accuracy, the latter involving solvent effects, vibrational corrections, and relativistic effects.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia.
| |
Collapse
|
29
|
Vícha J, Foroutan-Nejad C, Straka M. 1H NMR is not a proof of hydrogen bonds in transition metal complexes. Nat Commun 2019; 10:1643. [PMID: 30967536 PMCID: PMC6456571 DOI: 10.1038/s41467-019-09625-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Affiliation(s)
- J Vícha
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída T. Bati, 5678, CZ-76001, Zlín, Czech Republic.
| | - C Foroutan-Nejad
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| | - M Straka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic.
| |
Collapse
|
30
|
Castro AC, Fliegl H, Cascella M, Helgaker T, Repisky M, Komorovsky S, Medrano MÁ, Quiroga AG, Swart M. Four-component relativistic 31P NMR calculations for trans-platinum(ii) complexes: importance of the solvent and dynamics in spectral simulations. Dalton Trans 2019; 48:8076-8083. [PMID: 30916692 DOI: 10.1039/c9dt00570f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a combined experimental-theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac-Kohn-Sham method (mDKS) based on the Dirac-Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.
Collapse
Affiliation(s)
- Abril C Castro
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, 17003, Girona, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bora PL, Novotný J, Ruud K, Komorovsky S, Marek R. Electron-Spin Structure and Metal–Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. J Chem Theory Comput 2018; 15:201-214. [DOI: 10.1021/acs.jctc.8b00914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pankaj L. Bora
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czechia
| | - Jan Novotný
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czechia
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Science, Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czechia
| |
Collapse
|
32
|
Rusakov YY, Rusakova IL, Krivdin LB. Relativistic heavy atom effect on the 31 P NMR parameters of phosphine chalcogenides. Part 1. Chemical shifts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1061-1073. [PMID: 29775489 DOI: 10.1002/mrc.4752] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Four-component density functional theory calculations of 31 P NMR chemical shifts have been performed for the representative series of 56 phosphine chalcogenides in order to investigate an influence of different functional groups on the heavy atom relativistic effect on the NMR chemical shifts of light phosphorous atoms (Heavy Atom on Light Atom effect). The validity of the 4-component density functional theory approach used for the wide-scale calculations of the phosphorous chemical shifts in a wide series of phosphine chalcogenides has been confirmed on a small series of 5 representative compounds with the aid of high-quality coupled cluster singles and doubles calculations taking into account solvent, vibrational, and the relativistic corrections in comparison with the experiment.
Collapse
Affiliation(s)
- Yury Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - Irina L Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| |
Collapse
|
33
|
Rusakov YY, Rusakova IL. Relativistic heavy atom effect on 13 C NMR chemical shifts initiated by adjacent multiple chalcogens. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:716-726. [PMID: 29412478 DOI: 10.1002/mrc.4720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we have investigated the cumulative peculiarity of the "heavy atom on light atom" effect on the 13 C NMR chemical shifts, initiated by the adjacent chalcogens. For this purpose, the most accurate hybrid computational scheme for the calculation of chemical shifts of carbon nuclei, directly bonded with several heavy chalcogens, is introduced and attested on the representative series of molecules. The best hybrid scheme combines the nonrelativistic coupled cluster-based approach with the different types of corrections, including vibrational, solvent, and relativistic. The dependences of the total relativistic corrections to carbon shielding constants in 2 series of model compounds, namely, X═13 C═Y (X, Y = O, S, Se, Te) and C(XH)m (YH)n (ZH)p (QH)s H1-m H1-n H1-p H1-s (X, Y, Z, Q = S, Se, Te and m, n, p, s = 0, 1), on the total atomic number of the adjacent chalcogens have been obtained.
Collapse
Affiliation(s)
- Yu Yu Rusakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| | - I L Rusakova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033, Irkutsk, Russia
| |
Collapse
|
34
|
Jeremias L, Novotný J, Repisky M, Komorovsky S, Marek R. Interplay of Through-Bond Hyperfine and Substituent Effects on the NMR Chemical Shifts in Ru(III) Complexes. Inorg Chem 2018; 57:8748-8759. [PMID: 30004686 DOI: 10.1021/acs.inorgchem.8b00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The links between the molecular structure and nuclear magnetic resonance (NMR) parameters of paramagnetic transition-metal complexes are still relatively unexplored. This applies particularly to the contact term of the hyperfine contribution to the NMR chemical shift. We report combining experimental NMR with relativistic density functional theory (DFT) to study a series of Ru(III) complexes with 2-substituted β-diketones. A series of complexes with systematically varied substituents was synthesized and analyzed using 1H and 13C NMR spectroscopy. The NMR spectra recorded at several temperatures were used to construct Curie plots and estimate the temperature-independent (orbital) and temperature-dependent (hyperfine) contributions to the NMR shift. Relativistic DFT calculations of electron paramagnetic resonance and NMR parameters were performed to interpret the experimental observations. The effects of individual factors such as basis set, density functional, exact-exchange admixture, and relativity are analyzed and discussed. Based on the calibration study in this work, the fully relativistic Dirac-Kohn-Sham (DKS) method, the GIAO approach (orbital shift), the PBE0 functional with the triple-ζ valence basis sets, and the polarizable continuum model for describing solvent effects were selected to calculate the NMR parameters. The hyperfine contribution to the total paramagnetic NMR (pNMR) chemical shift is shown to be governed by the Fermi-contact (FC) term, and the substituent effect (H vs Br) on the through-bond FC shifts is analyzed, interpreted, and discussed in terms of spin-density distribution, atomic spin populations, and molecular-orbital theory. In contrast to the closed-shell systems of Rh(III), the presence of a single unpaired electron in the open-shell Ru(III) analogs significantly alters the NMR resonances of the ligand atoms distant from the metal center in synergy with the substituent effect.
Collapse
Affiliation(s)
- Lukáš Jeremias
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5/A4 , CZ-625 00 Brno , Czechia
| | - Jan Novotný
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5/A4 , CZ-625 00 Brno , Czechia
| | - Michal Repisky
- Hylleraas Centre for Quantum Molecular Science, Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry , Slovak Academy of Sciences , Dúbravská cesta 9 , SK-84536 Bratislava , Slovakia
| | - Radek Marek
- CEITEC-Central European Institute of Technology , Masaryk University , Kamenice 5/A4 , CZ-625 00 Brno , Czechia
| |
Collapse
|
35
|
Rocchigiani L, Fernandez-Cestau J, Chambrier I, Hrobárik P, Bochmann M. Unlocking Structural Diversity in Gold(III) Hydrides: Unexpected Interplay of cis/ trans-Influence on Stability, Insertion Chemistry, and NMR Chemical Shifts. J Am Chem Soc 2018; 140:8287-8302. [PMID: 29860842 PMCID: PMC6047844 DOI: 10.1021/jacs.8b04478] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 11/29/2022]
Abstract
The synthesis of new families of stable or at least spectroscopically observable gold(III) hydride complexes is reported, including anionic cis-hydrido chloride, hydrido aryl, and cis-dihydride complexes. Reactions between (C^C)AuCl(PR3) and LiHBEt3 afford the first examples of gold(III) phosphino hydrides (C^C)AuH(PR3) (R = Me, Ph, p-tolyl; C^C = 4,4'-di- tert-butylbiphenyl-2,2'-diyl). The X-ray structure of (C^C)AuH(PMe3) was determined. LiHBEt3 reacts with (C^C)AuCl(py) to give [(C^C)Au(H)Cl]-, whereas (C^C)AuH(PR3) undergoes phosphine displacement, generating the dihydride [(C^C)AuH2]-. Monohydrido complexes hydroaurate dimethylacetylene dicarboxylate to give Z-vinyls. (C^N^C)Au pincer complexes give the first examples of gold(III) bridging hydrides. Stability, reactivity and bonding characteristics of Au(III)-H complexes crucially depend on the interplay between cis and trans-influence. Remarkably, these new gold(III) hydrides extend the range of observed NMR hydride shifts from δ -8.5 to +7 ppm. Relativistic DFT calculations show that the origin of this wide chemical shift variability as a function of the ligands depends on the different ordering and energy gap between "shielding" Au(dπ)-based orbitals and "deshielding" σ(Au-H)-type MOs, which are mixed to some extent upon inclusion of spin-orbit (SO) coupling. The resulting 1H hydride shifts correlate linearly with the DFT optimized Au-H distances and Au-H bond covalency. The effect of cis ligands follows a nearly inverse ordering to that of trans ligands. This study appears to be the first systematic delineation of cis ligand influence on M-H NMR shifts and provides the experimental evidence for the dramatic change of the 1H hydride shifts, including the sign change, upon mutual cis and trans ligand alternation.
Collapse
Affiliation(s)
- Luca Rocchigiani
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Julio Fernandez-Cestau
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Isabelle Chambrier
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| | - Peter Hrobárik
- Institut
für Chemie, Technische Universität
Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany
- Department
of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-84215 Bratislava, Slovakia
| | - Manfred Bochmann
- School
of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ Norwich, United Kingdom
| |
Collapse
|
36
|
NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d 0 group 4 metal complexes. Proc Natl Acad Sci U S A 2018; 115:E5867-E5876. [PMID: 29891699 DOI: 10.1073/pnas.1803382115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d0 metal-alkyl complexes (M = Ti, Zr, and Hf) show specific activity and selectivity in olefin polymerization and oligomerization depending on their ligand set and charge. Here, we show by a combined experimental and computational study that the 13C NMR chemical shift tensors of the α-carbon of metal alkyls that undergo olefin insertion signal the presence of partial alkylidene character in the metal-carbon bond, which facilitates this reaction. The alkylidene character is traced back to the π-donating interaction of a filled orbital on the alkyl group with an empty low-lying metal d-orbital of appropriate symmetry. This molecular orbital picture establishes a connection between olefin insertion into a metal-alkyl bond and olefin metathesis and a close link between the Cossee-Arlmann and Green-Rooney polymerization mechanisms. The 13C NMR chemical shifts, the α-H agostic interaction, and the low activation barrier of ethylene insertion are, therefore, the results of the same orbital interactions, thus establishing chemical shift tensors as a descriptor for olefin insertion.
Collapse
|
37
|
Vícha J, Komorovsky S, Repisky M, Marek R, Straka M. Relativistic Spin–Orbit Heavy Atom on the Light Atom NMR Chemical Shifts: General Trends Across the Periodic Table Explained. J Chem Theory Comput 2018; 14:3025-3039. [DOI: 10.1021/acs.jctc.8b00144] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Vícha
- Center of Polymer Systems, University Institute, Tomas Bata University in Zlín, Třída T. Bati, 5678, CZ-76001, Zlín, Czech Republic
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Science, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Michal Repisky
- Center for Theoretical and Computational Chemistry, Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Radek Marek
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic
| | - Michal Straka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, CZ-16610, Prague, Czech Republic
| |
Collapse
|
38
|
Gordon CP, Yamamoto K, Searles K, Shirase S, Andersen RA, Eisenstein O, Copéret C. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift. Chem Sci 2018; 9:1912-1918. [PMID: 29675237 PMCID: PMC5890791 DOI: 10.1039/c7sc05039a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
Metal alkylidenes, which are key organometallic intermediates in reactions such as olefination or alkene and alkane metathesis, are typically generated from metal dialkyl compounds [M](CH2R)2 that show distinctively deshielded chemical shifts for their α-carbons. Experimental solid-state NMR measurements combined with DFT/ZORA calculations and a chemical shift tensor analysis reveal that this remarkable deshielding originates from an empty metal d-orbital oriented in the M-Cα-Cα' plane, interacting with the Cα p-orbital lying in the same plane. This π-type interaction inscribes some alkylidene character into Cα that favors alkylidene generation via α-H abstraction. The extent of the deshielding and the anisotropy of the alkyl chemical shift tensors distinguishes [M](CH2R)2 compounds that form alkylidenes from those that do not, relating the reactivity to molecular orbitals of the respective molecules. The α-carbon chemical shifts and tensor orientations thus predict the reactivity of metal alkyl compounds towards alkylidene generation.
Collapse
Affiliation(s)
- Christopher P Gordon
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Keishi Yamamoto
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Keith Searles
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Satoru Shirase
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland . .,Department of Chemistry , Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Richard A Andersen
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - Odile Eisenstein
- Institut Charles Gerhardt , UMR 5253 CNRS-UM-ENSCM , Université de Montpellier , 34095 Montpellier , France . .,Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| |
Collapse
|
39
|
Relativistic effects in the NMR spectra of compounds containing heavy chalcogens. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Novotný J, Přichystal D, Sojka M, Komorovsky S, Nečas M, Marek R. Hyperfine Effects in Ligand NMR: Paramagnetic Ru(III) Complexes with 3-Substituted Pyridines. Inorg Chem 2017; 57:641-652. [DOI: 10.1021/acs.inorgchem.7b02440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jan Novotný
- CEITEC −
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
| | - David Přichystal
- CEITEC −
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
- Department of Chemistry,
Faculty of Science, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
| | - Martin Sojka
- CEITEC −
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
- Department of Chemistry,
Faculty of Science, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
| | - Stanislav Komorovsky
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84536 Bratislava, Slovakia
| | - Marek Nečas
- CEITEC −
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
- Department of Chemistry,
Faculty of Science, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
| | - Radek Marek
- CEITEC −
Central European Institute of Technology, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
- Department of Chemistry,
Faculty of Science, Masaryk University, Kamenice 5, CZ − 62500 Brno, Czechia
| |
Collapse
|