1
|
Grobas Illobre P, Marsili M, Corni S, Stener M, Toffoli D, Coccia E. Time-Resolved Excited-State Analysis of Molecular Electron Dynamics by TDDFT and Bethe-Salpeter Equation Formalisms. J Chem Theory Comput 2021; 17:6314-6329. [PMID: 34486881 PMCID: PMC8515806 DOI: 10.1021/acs.jctc.1c00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/16/2022]
Abstract
In this work, a theoretical and computational set of tools to study and analyze time-resolved electron dynamics in molecules, under the influence of one or more external pulses, is presented. By coupling electronic-structure methods with the resolution of the time-dependent Schrödinger equation, we developed and implemented the time-resolved induced density of the electronic wavepacket, the time-resolved formulation of the differential projection density of states (ΔPDOS), and of transition contribution map (TCM) to look at the single-electron orbital occupation and localization change in time. Moreover, to further quantify the possible charge transfer, we also defined the energy-integrated ΔPDOS and the fragment-projected TCM. We have used time-dependent density-functional theory (TDDFT), as implemented in ADF software, and the Bethe-Salpeter equation, as provided by MolGW package, for the description of the electronic excited states. This suite of postprocessing tools also provides the time evolution of the electronic states of the system of interest. To illustrate the usefulness of these postprocessing tools, excited-state populations have been computed for HBDI (the chromophore of GFP) and DNQDI molecules interacting with a sequence of two pulses. Time-resolved descriptors have been applied to study the time-resolved electron dynamics of HBDI, DNQDI, LiCN (being a model system for dipole switching upon highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) electronic excitation), and Ag22. The computational analysis tools presented in this article can be employed to help the interpretation of fast and ultrafast spectroscopies on molecular, supramolecular, and composite systems.
Collapse
Affiliation(s)
- P. Grobas Illobre
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - M. Marsili
- Dipartimento
di Scienze Chimiche, Universitá di
Padova, via Marzolo 1, Padova 35131, Italy
| | - S. Corni
- Dipartimento
di Scienze Chimiche, Universitá di
Padova, via Marzolo 1, Padova 35131, Italy
- CNR
Istituto di Nanoscienze, via Campi 213/A, Modena 41125, Italy
| | - M. Stener
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - D. Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| | - E. Coccia
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá
di Trieste, via L. Giorgieri 1, Trieste 34127, Italy
| |
Collapse
|
2
|
Chen SF, Vysotski ES, Liu YJ. H 2O-Bridged Proton-Transfer Channel in Emitter Species Formation in Obelin Bioluminescence. J Phys Chem B 2021; 125:10452-10458. [PMID: 34520210 DOI: 10.1021/acs.jpcb.1c03985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioluminescence of a number of marine organisms is conditioned by Ca2+-regulated photoprotein (CaRP) with coelenterazine as the reaction substrate. The reaction product, coelenteramide, at the first singlet excited state (S1) is the emitter of CaRP. The S1-state coelenteramide is produced via the decomposition of coelenterazine dioxetanone. Experiments suggested that the neutral S1-coelenteramide is the primary emitter species. This supposition contradicts with theoretical calculations showing that the anionic S1-coelenteramide is a primary product of the decomposition of coelenterazine dioxetanone. In this study, applying molecular dynamic (MD) simulations and the hybrid quantum mechanics/molecular mechanics (QM/MM) method, we investigated a proton-transfer (PT) process taking place in CaRP obelin from Obelia longissima for emitter formation. Our calculations demonstrate a concerted PT process with a water molecule as a bridge between anionic S1-coelenteramide and the nearest histidine residue. The low activation barrier as well as the strong hydrogen-bond network between the proton donor and the proton acceptor suggests a fast PT process comparable with that of the lifetime of excited anionic S1-coelenteramide. The existence of the PT process eliminates the discrepancy between experimental and theoretical studies. The fast PT process at emitter formation can also take place in other CaRPs.
Collapse
Affiliation(s)
- Shu-Feng Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| | - Ya-Jun Liu
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China.,Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
3
|
Noguchi Y, Hiyama M, Shiga M, Akiyama H, Sugino O. Quantum-mechanical hydration plays critical role in the stability of firefly oxyluciferin isomers: State-of-the-art calculations of the excited states. J Chem Phys 2021; 153:201103. [PMID: 33261487 DOI: 10.1063/5.0031356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stabilizing mechanisms of three possible isomers (phenolate-keto, phenolate-enol, and phenol-enolate) of the oxyluciferin anion hydrated with quantum explicit water molecules in the first singlet excited state were investigated using first-principles Born-Oppenheimer molecular dynamics simulations for up to 1.8 ns (or 3.7 × 106 MD steps), revealing that the surrounding water molecules were distributed to form clear single-layered structures for phenolate-keto and multi-layered structures for phenolate-enol and phenol-enolate isomers. The isomers employed different stabilizing mechanisms compared to the ground state. Only the phenolate-keto isomer became attracted to the water molecules in its excited state and was stabilized by increasing the number of hydrogen bonds with nearby water molecules. The most stable isomer in the excited state was the phenolate-keto, and the phenolate-enol and phenol-enolate isomers were higher in energy by ∼0.38 eV and 0.57 eV, respectively, than the phenolate-keto. This was in contrast to the case of ground state in which the phenolate-enol was the most stable isomer.
Collapse
Affiliation(s)
- Yoshifumi Noguchi
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University, Johoku 3-5-1, Hamamatsu, Shizuoka 432-8561, Japan
| | - Miyabi Hiyama
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Motoyuki Shiga
- Center for Computational Science and E-Systems, Japan Atomic Energy Agency, 148-4 Kashiwanoha Campus, 178-4 Wakashiba, Kashiwa, Chiba 277-0871, Japan
| | - Hidefumi Akiyama
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Osamu Sugino
- Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| |
Collapse
|
4
|
Nakano K, Attaccalite C, Barborini M, Capriotti L, Casula M, Coccia E, Dagrada M, Genovese C, Luo Y, Mazzola G, Zen A, Sorella S. TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo. J Chem Phys 2020; 152:204121. [DOI: 10.1063/5.0005037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Kousuke Nakano
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
- Japan Advanced Institute of Science and Technology (JAIST), Asahidai 1-1, Nomi, Ishikawa 923-1292, Japan
| | - Claudio Attaccalite
- Aix-Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy, 13288 Marseille, France
| | | | - Luca Capriotti
- New York University, Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, USA
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Michele Casula
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, IRD UMR 206, MNHN, 4 Place Jussieu, 75252 Paris, France
| | - Emanuele Coccia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Mario Dagrada
- Forescout Technologies, John F. Kennedylaan 2, 5612AB Eindhoven, The Netherlands
| | - Claudio Genovese
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| | - Ye Luo
- Computational Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
- Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, USA
| | | | - Andrea Zen
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
| | - Sandro Sorella
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
5
|
Sangalli D, Ferretti A, Miranda H, Attaccalite C, Marri I, Cannuccia E, Melo P, Marsili M, Paleari F, Marrazzo A, Prandini G, Bonfà P, Atambo MO, Affinito F, Palummo M, Molina-Sánchez A, Hogan C, Grüning M, Varsano D, Marini A. Many-body perturbation theory calculations using the yambo code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:325902. [PMID: 30943462 DOI: 10.1088/1361-648x/ab15d0] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
yambo is an open source project aimed at studying excited state properties of condensed matter systems from first principles using many-body methods. As input, yambo requires ground state electronic structure data as computed by density functional theory codes such as Quantum ESPRESSO and Abinit. yambo's capabilities include the calculation of linear response quantities (both independent-particle and including electron-hole interactions), quasi-particle corrections based on the GW formalism, optical absorption, and other spectroscopic quantities. Here we describe recent developments ranging from the inclusion of important but oft-neglected physical effects such as electron-phonon interactions to the implementation of a real-time propagation scheme for simulating linear and non-linear optical properties. Improvements to numerical algorithms and the user interface are outlined. Particular emphasis is given to the new and efficient parallel structure that makes it possible to exploit modern high performance computing architectures. Finally, we demonstrate the possibility to automate workflows by interfacing with the yambopy and AiiDA software tools.
Collapse
Affiliation(s)
- D Sangalli
- Istituto di Struttura della Materia-Consiglio Nazionale delle Ricerche (CNR-ISM), Division of Ultrafast Processes in Materials (FLASHit), Via Salaria Km 29.5, CP 10, I-00016 Monterotondo Stazione, Italy. European Theoretical Spectroscopy Facility (ETSF
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Archibald R, Krogel JT, Kent PRC. Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo. J Chem Phys 2018; 149:164116. [DOI: 10.1063/1.5040584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- R. Archibald
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J. T. Krogel
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - P. R. C. Kent
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
7
|
Kim J, Baczewski AT, Beaudet TD, Benali A, Bennett MC, Berrill MA, Blunt NS, Borda EJL, Casula M, Ceperley DM, Chiesa S, Clark BK, Clay RC, Delaney KT, Dewing M, Esler KP, Hao H, Heinonen O, Kent PRC, Krogel JT, Kylänpää I, Li YW, Lopez MG, Luo Y, Malone FD, Martin RM, Mathuriya A, McMinis J, Melton CA, Mitas L, Morales MA, Neuscamman E, Parker WD, Pineda Flores SD, Romero NA, Rubenstein BM, Shea JAR, Shin H, Shulenburger L, Tillack AF, Townsend JP, Tubman NM, Van Der Goetz B, Vincent JE, Yang DC, Yang Y, Zhang S, Zhao L. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:195901. [PMID: 29582782 DOI: 10.1088/1361-648x/aab9c3] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
QMCPACK is an open source quantum Monte Carlo package for ab initio electronic structure calculations. It supports calculations of metallic and insulating solids, molecules, atoms, and some model Hamiltonians. Implemented real space quantum Monte Carlo algorithms include variational, diffusion, and reptation Monte Carlo. QMCPACK uses Slater-Jastrow type trial wavefunctions in conjunction with a sophisticated optimizer capable of optimizing tens of thousands of parameters. The orbital space auxiliary-field quantum Monte Carlo method is also implemented, enabling cross validation between different highly accurate methods. The code is specifically optimized for calculations with large numbers of electrons on the latest high performance computing architectures, including multicore central processing unit and graphical processing unit systems. We detail the program's capabilities, outline its structure, and give examples of its use in current research calculations. The package is available at http://qmcpack.org.
Collapse
Affiliation(s)
- Jeongnim Kim
- Intel Corporation, Hillsboro, OR 987124, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
García-Iriepa C, Gosset P, Berraud-Pache R, Zemmouche M, Taupier G, Dorkenoo KD, Didier P, Léonard J, Ferré N, Navizet I. Simulation and Analysis of the Spectroscopic Properties of Oxyluciferin and Its Analogues in Water. J Chem Theory Comput 2018; 14:2117-2126. [DOI: 10.1021/acs.jctc.7b01240] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Cristina García-Iriepa
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Pauline Gosset
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, 67034 Strasbourg, France
| | - Romain Berraud-Pache
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Madjid Zemmouche
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - Grégory Taupier
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
| | - Kokou Dodzi Dorkenoo
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
| | - Pascal Didier
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, 67034 Strasbourg, France
| | - Jérémie Léonard
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg UMR 7504 and Labex NIE, 67034 Strasbourg, France
| | - Nicolas Ferré
- Aix-Marseille Univ, CNRS, Institut de Chimie Radicalaire, 13013 Marseille, France
| | - Isabelle Navizet
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Échelle, MSME, UMR 8208 CNRS, UPEM, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
9
|
Blase X, Duchemin I, Jacquemin D. The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chem Soc Rev 2018; 47:1022-1043. [DOI: 10.1039/c7cs00049a] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the Bethe–Salpeter formalism and analyze its performances for the calculation of the excited state properties of molecular systems.
Collapse
Affiliation(s)
- Xavier Blase
- Univ. Grenoble Alpes
- CNRS
- Inst NEEL
- F-38042 Grenoble
- France
| | - Ivan Duchemin
- Univ. Grenoble Alpes
- CEA
- INAC-MEM
- L-Sim
- F-38000 Grenoble
| | - Denis Jacquemin
- CEISAM UMR CNRS 6230
- Université de Nantes
- 44322 Nantes Cedex 3
- France
| |
Collapse
|