• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4618911)   Today's Articles (2427)   Subscriber (49402)
For: Kranz JJ, Kubillus M, Ramakrishnan R, von Lilienfeld OA, Elstner M. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning. J Chem Theory Comput 2018;14:2341-2352. [DOI: 10.1021/acs.jctc.7b00933] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Number Cited by Other Article(s)
1
Friede M, Hölzer C, Ehlert S, Grimme S. dxtb-An efficient and fully differentiable framework for extended tight-binding. J Chem Phys 2024;161:062501. [PMID: 39120026 DOI: 10.1063/5.0216715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]  Open
2
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
3
Schwade M, Schilcher MJ, Reverón Baecker C, Grumet M, Egger DA. Temperature-transferable tight-binding model using a hybrid-orbital basis. J Chem Phys 2024;160:134102. [PMID: 38557853 DOI: 10.1063/5.0197986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]  Open
4
Fedik N, Nebgen B, Lubbers N, Barros K, Kulichenko M, Li YW, Zubatyuk R, Messerly R, Isayev O, Tretiak S. Synergy of semiempirical models and machine learning in computational chemistry. J Chem Phys 2023;159:110901. [PMID: 37712780 DOI: 10.1063/5.0151833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]  Open
5
Huang B, von Rudorff GF, von Lilienfeld OA. The central role of density functional theory in the AI age. Science 2023;381:170-175. [PMID: 37440654 DOI: 10.1126/science.abn3445] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 07/15/2023]
6
Goldman N, Fried LE, Lindsey RK, Pham CH, Dettori R. Enhancing the accuracy of density functional tight binding models through ChIMES many-body interaction potentials. J Chem Phys 2023;158:144112. [PMID: 37061479 DOI: 10.1063/5.0141616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]  Open
7
Negre CFA, Wall ME, Niklasson AMN. Graph-based quantum response theory and shadow Born-Oppenheimer molecular dynamics. J Chem Phys 2023;158:074108. [PMID: 36813723 DOI: 10.1063/5.0137119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]  Open
8
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023;127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
9
Fan G, McSloy A, Aradi B, Yam CY, Frauenheim T. Obtaining Electronic Properties of Molecules through Combining Density Functional Tight Binding with Machine Learning. J Phys Chem Lett 2022;13:10132-10139. [PMID: 36269857 DOI: 10.1021/acs.jpclett.2c02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
10
Fedik N, Zubatyuk R, Kulichenko M, Lubbers N, Smith JS, Nebgen B, Messerly R, Li YW, Boldyrev AI, Barros K, Isayev O, Tretiak S. Extending machine learning beyond interatomic potentials for predicting molecular properties. Nat Rev Chem 2022;6:653-672. [PMID: 37117713 DOI: 10.1038/s41570-022-00416-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/09/2022]
11
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022;122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
12
Pham CH, Lindsey RK, Fried LE, Goldman N. High-Accuracy Semiempirical Quantum Models Based on a Minimal Training Set. J Phys Chem Lett 2022;13:2934-2942. [PMID: 35343698 DOI: 10.1021/acs.jpclett.2c00453] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
13
Bissuel D, Albaret T, Niehaus TA. Critical assessment of machine-learned repulsive potentials for the Density Functional based Tight-Binding method: a case study for pure silicon. J Chem Phys 2022;156:064101. [DOI: 10.1063/5.0081159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
14
Huang B, von Lilienfeld OA. Ab Initio Machine Learning in Chemical Compound Space. Chem Rev 2021;121:10001-10036. [PMID: 34387476 PMCID: PMC8391942 DOI: 10.1021/acs.chemrev.0c01303] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/11/2022]
15
Cawkwell MJ, Burch AC, Ferreira SR, Lease N, Manner VW. Atom Equivalent Energies for the Rapid Estimation of the Heat of Formation of Explosive Molecules from Density Functional Tight Binding Theory. J Chem Inf Model 2021;61:3337-3347. [PMID: 34252276 DOI: 10.1021/acs.jcim.1c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Ammothum Kandy AK, Wadbro E, Aradi B, Broqvist P, Kullgren J. Curvature Constrained Splines for DFTB Repulsive Potential Parametrization. J Chem Theory Comput 2021;17:1771-1781. [PMID: 33606527 PMCID: PMC8023658 DOI: 10.1021/acs.jctc.0c01156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Jenness GR, Bresnahan CG, Shukla MK. Adventures in DFTB: Toward an Automatic Parameterization Scheme. J Chem Theory Comput 2020;16:6894-6903. [PMID: 33119287 DOI: 10.1021/acs.jctc.0c00842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Stöhr M, Medrano Sandonas L, Tkatchenko A. Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks. J Phys Chem Lett 2020;11:6835-6843. [PMID: 32787209 DOI: 10.1021/acs.jpclett.0c01307] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
19
Manzhos S. Machine learning for the solution of the Schrödinger equation. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab7d30] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
20
Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye MY, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler C, Kowalczyk T, Kubař T, Lee IS, Lutsker V, Maurer RJ, Min SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page AJ, Pecchia A, Penazzi G, Persson MP, Řezáč J, Sánchez CG, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VWZ, Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J Chem Phys 2020;152:124101. [PMID: 32241125 DOI: 10.1063/1.5143190] [Citation(s) in RCA: 409] [Impact Index Per Article: 102.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]  Open
21
Cole JM. A Design-to-Device Pipeline for Data-Driven Materials Discovery. Acc Chem Res 2020;53:599-610. [PMID: 32096410 DOI: 10.1021/acs.accounts.9b00470] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
22
Panosetti C, Engelmann A, Nemec L, Reuter K, Margraf JT. Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression. J Chem Theory Comput 2020;16:2181-2191. [DOI: 10.1021/acs.jctc.9b00975] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
23
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020;5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]  Open
24
Lu X, Duchimaza-Heredia J, Cui Q. Analysis of Density Functional Tight Binding with Natural Bonding Orbitals. J Phys Chem A 2019;123:7439-7453. [PMID: 31373822 DOI: 10.1021/acs.jpca.9b05072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
25
Smith JS, Nebgen BT, Zubatyuk R, Lubbers N, Devereux C, Barros K, Tretiak S, Isayev O, Roitberg AE. Approaching coupled cluster accuracy with a general-purpose neural network potential through transfer learning. Nat Commun 2019;10:2903. [PMID: 31263102 PMCID: PMC6602931 DOI: 10.1038/s41467-019-10827-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/29/2019] [Indexed: 01/01/2023]  Open
26
Podeszwa R, Jankiewicz W, Krzuś M, Witek HA. Correcting long-range electrostatics in DFTB. J Chem Phys 2019;150:234110. [DOI: 10.1063/1.5099694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
27
Pun GPP, Batra R, Ramprasad R, Mishin Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat Commun 2019;10:2339. [PMID: 31138813 PMCID: PMC6538760 DOI: 10.1038/s41467-019-10343-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/26/2019] [Indexed: 11/30/2022]  Open
28
Ceriotti M. Unsupervised machine learning in atomistic simulations, between predictions and understanding. J Chem Phys 2019;150:150901. [PMID: 31005087 DOI: 10.1063/1.5091842] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
29
Chou CP, Sakti AW, Nishimura Y, Nakai H. Development of Divide-and-Conquer Density-Functional Tight-Binding Method for Theoretical Research on Li-Ion Battery. CHEM REC 2019;19:746-757. [PMID: 30462370 DOI: 10.1002/tcr.201800141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 01/24/2023]
30
Chakraborty S, Kayastha P, Ramakrishnan R. The chemical space of B, N-substituted polycyclic aromatic hydrocarbons: Combinatorial enumeration and high-throughput first-principles modeling. J Chem Phys 2019;150:114106. [PMID: 30902009 DOI: 10.1063/1.5088083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
31
Cawkwell MJ, Perriot R. Transferable density functional tight binding for carbon, hydrogen, nitrogen, and oxygen: Application to shock compression. J Chem Phys 2019;150:024107. [DOI: 10.1063/1.5063385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
32
Li H, Collins C, Tanha M, Gordon GJ, Yaron DJ. A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians. J Chem Theory Comput 2018;14:5764-5776. [PMID: 30351008 DOI: 10.1021/acs.jctc.8b00873] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
33
Schütt O, VandeVondele J. Machine Learning Adaptive Basis Sets for Efficient Large Scale Density Functional Theory Simulation. J Chem Theory Comput 2018;14:4168-4175. [PMID: 29957943 PMCID: PMC6096449 DOI: 10.1021/acs.jctc.8b00378] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA