1
|
Wang Z, He J. Strong Metal-Support Interaction Facilitates the Separation of Electron-Hole Pairs at Au 13/BiOCl Interface: Insight from Quantum Dynamics. J Phys Chem Lett 2025; 16:611-617. [PMID: 39772619 DOI: 10.1021/acs.jpclett.4c03560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Focusing on Au13/BiOCl, we investigated the effects of the metal-support interaction (MSI) on the photogenerated charge carrier separation using nonadiabatic molecular dynamic simulations combined with time-domain density functional theory. Our results show that the time scales of electron transfer from the Au13 cluster to BiOCl are distinct depending on the intensity of MSI. Oxygen vacancy (OV) can enhance the interaction between the Au13 cluster and BiOCl, leading to a stronger nonadiabatic (NA) coupling in Au13/BiOCl with an OV system compared to that in a pristine Au13/BiOCl system. The time scale of electron transfer in Au13/BiOCl with the OV system is reduced by a factor of 1.65 compared to that of the pristine Au13/BiOCl system. Our study suggests that the electron transfer can be facilitated by enhancing the MSI and provides valuable principles for the design of high-performance photocatalysts.
Collapse
Affiliation(s)
- Zhanjin Wang
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Jinlu He
- Inner Mongolia Key Laboratory of Rare Earth Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
2
|
Zhu L, Zheng Q, Wang Y, Krüger K, Wodtke AM, Bünermann O, Zhao J, Guo H, Jiang B. Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions. JACS AU 2024; 4:4518-4526. [PMID: 39610731 PMCID: PMC11600163 DOI: 10.1021/jacsau.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
To understand the recently observed enigmatic nonadiabatic energy transfer for hyperthermal H atom scattering from a semiconductor surface, Ge(111)c(2 × 8), we present a mixed quantum-classical nonadiabatic molecular dynamics model based on the time-dependent evolution of Kohn-Sham orbitals and a classical path approximation. Our results suggest that facile nonadiabatic electronic transitions from the valence band to the conduction band occur selectively at the rest atom site, where surface states are doubly occupied, but not at the adatom site, where empty surface states are localized. This drastic site specificity can be attributed to the changes of the local band structure upon energetic H collisions at different surface sites, leading to transient near degeneracies and significant couplings between occupied and unoccupied orbitals at the rest atom but not at the adatom. These insights shed valuable light on the collision-induced nonadiabatic dynamics at semiconductor surfaces.
Collapse
Affiliation(s)
- Lingjun Zhu
- Key
Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
| | - Qijing Zheng
- Key
Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department
of Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Yingqi Wang
- Department
of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Kerstin Krüger
- Institute
of Physical Chemistry, Georg-August University, Göttingen 37077, Germany
| | - Alec M. Wodtke
- Institute
of Physical Chemistry, Georg-August University, Göttingen 37077, Germany
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Göttingen 37077, Germany
- International
Center of Advanced Studies of Energy Conversion, Georg-August University, Göttingen 37077, Germany
| | - Oliver Bünermann
- Institute
of Physical Chemistry, Georg-August University, Göttingen 37077, Germany
- Department
of Dynamics at Surfaces, Max-Planck-Institute
for Multidisciplinary Sciences, Göttingen 37077, Germany
- International
Center of Advanced Studies of Energy Conversion, Georg-August University, Göttingen 37077, Germany
| | - Jin Zhao
- Key
Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department
of Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Bin Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department
of Chemical Physics, University of Science
and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Tracy DA, Fernandez-Alberti S, Galindo JF, Tretiak S, Roitberg AE. Nonadiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Phys Chem B 2024; 128:11426-11434. [PMID: 39530349 DOI: 10.1021/acs.jpcb.4c05600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In this article, the nonadiabatic excited-state Molecular dynamics (NEXMD) package is linked with the SANDER package, provided by AMBERTOOLS. The combination of these software packages enables the simulation of photoinduced dynamics of large multichromophoric conjugated molecules involving several coupled electronic excited states embedded in an explicit solvent by using the quantum/mechanics/molecular mechanics (QM/MM) methodology. The fewest switches surface hopping algorithm, as implemented in NEXMD, is used to account for quantum transitions among the adiabatic excited-state simulations of the photoexcitation and subsequent nonadiabatic electronic transitions, and vibrational energy relaxation of a substituted polyphenylenevinylene oligomer (PPV3-NO2) in vacuum and methanol as an explicit solvent has been used as a test case. The impact of including specific solvent molecules in the QM region is also analyzed. Our NEXMD-SANDER QM/MM implementation provides a useful computational tool to simulate qualitatively solvent-dependent effects, like electron transfer, stabilization of charge-separated excited states, and the role of solvent reorganization in the molecular optical properties, observed in solution-based spectroscopic experiments.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Johan Fabian Galindo
- Departamento de Química, Universidad Nacional de Colombia, Sede Bogotá, Bogotá 111321, Colombia
| | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- CONICET─Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
4
|
Ibele LM, Memhood A, Levine BG, Avagliano D. Ab Initio Multiple Spawning Nonadiabatic Dynamics with Different CASPT2 Flavors: A Fully Open-Source PySpawn/OpenMolcas Interface. J Chem Theory Comput 2024. [PMID: 39228232 DOI: 10.1021/acs.jctc.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We introduce an interface between PySpawn, a simulation package to run ab initio multiple spawning (AIMS) nonadiabatic dynamics, and OpenMolcas, a software package to perform multiconfigurational perturbations theory (CASPT2) electronic structure calculations. Our interface allows us to exploit all the functionalities of the two codes: the modular and efficient Python implementation of the AIMS algorithm and the extensive analysis tools offered by PySpawn, with the cutting-edge implementation of CASPT2 equations in OpenMolcas, including the recently introduced analytical gradients and different flavors. Both are fully open-source and free of charge, making the following implementation unique in the current plethora of software for nonadiabatic dynamics. This represents an important step toward a wider application of AIMS-based nonadiabatic dynamics combined with high-accuracy excited-state calculations. The importance and the need for such an implementation are demonstrated by application to the ultrafast relaxation of fulvene from S1 to S0, which is drastically affected by the potential energy surface on which the nuclear wavepacket is propagated. Additionally, the decay is influenced by the CASPT2 flavor adopted, posing interesting questions in the choice of one over the other and opening the door to deeper studies on the effect of CASPT2 formulations in nonadiabatic dynamics.
Collapse
Affiliation(s)
- Lea M Ibele
- CNRS, Institut de Chimie Physique UMR8000, Université Paris-Saclay, 91405 Orsay, France
| | - Arshad Memhood
- Department of Chemistry, Institute for Advanced Computational Science, Stony Brook, New York 11794, United States
| | - Benjamin G Levine
- Department of Chemistry, Institute for Advanced Computational Science, Stony Brook, New York 11794, United States
| | - Davide Avagliano
- Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences (iCLeHS UMR 8060), PSL University, 75005 Paris, France
| |
Collapse
|
5
|
Han X, Zhao Q, Yan X, Meng T, He J. Blocking recombination centers by controlling the charge density of a sulfur vacancy in antimony trisulfide. Phys Chem Chem Phys 2023; 25:32622-32631. [PMID: 38009229 DOI: 10.1039/d3cp05217f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
By performing nonadiabatic molecular dynamics combined with ab initio time-domain density functional theory, we have explored the effects of the charge density of a sulfur vacancy on charge trapping and recombination in antimony trisulfide (Sb2S3). The simulations demonstrate that, compared to an antimony vacancy, the sulfur vacancy generates a high charge density trap state within the band gap. This state acts as the recombination center and provides new channels for charge carrier relaxation. Filling the sulfur vacancy with electron donors elevates the defect state to the Fermi level due to the introduced extra electrons. In contrast, the electron acceptor lowers the charge density of the sulfur vacancy by capturing its local electrons, eliminating the charge recombination center and extending the photo-generated charge carrier lifetime. Additionally, compared with electron injection, hole injection can also decrease the charge density of the trap state via neutralizing its local electronic states, eliminate the trap state within the band gap, and suppress nonradiative electron-hole recombination. This study is expected to shed new light on the blocking recombination centers and provide valuable insights into the design of high-performance solar cells.
Collapse
Affiliation(s)
- Xiao Han
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Qi Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Xiaodan Yan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Ting Meng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| | - Jinlu He
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P. R. China.
| |
Collapse
|
6
|
Freixas VM, Malone W, Li X, Song H, Negrin-Yuvero H, Pérez-Castillo R, White A, Gibson TR, Makhov DV, Shalashilin DV, Zhang Y, Fedik N, Kulichenko M, Messerly R, Mohanam LN, Sharifzadeh S, Bastida A, Mukamel S, Fernandez-Alberti S, Tretiak S. NEXMD v2.0 Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2023; 19:5356-5368. [PMID: 37506288 DOI: 10.1021/acs.jctc.3c00583] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity.
Collapse
Affiliation(s)
- Victor M Freixas
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Walter Malone
- Department of Physics, Tuskegee University, Tuskegee, Alabama 36088, United States
| | - Xinyang Li
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Hassiel Negrin-Yuvero
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Royle Pérez-Castillo
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Alexander White
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie R Gibson
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
- School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom
| | | | - Yu Zhang
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nikita Fedik
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maksim Kulichenko
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Richard Messerly
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Luke Nambi Mohanam
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Sahar Sharifzadeh
- Department of Electrical and Computer Engineering, College of Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Adolfo Bastida
- Departamento de Química Física, Universidad de Murcia, Murcia 30100, Spain
| | - Shaul Mukamel
- Departments of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Bhat V, Callaway CP, Risko C. Computational Approaches for Organic Semiconductors: From Chemical and Physical Understanding to Predicting New Materials. Chem Rev 2023. [PMID: 37141497 DOI: 10.1021/acs.chemrev.2c00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
While a complete understanding of organic semiconductor (OSC) design principles remains elusive, computational methods─ranging from techniques based in classical and quantum mechanics to more recent data-enabled models─can complement experimental observations and provide deep physicochemical insights into OSC structure-processing-property relationships, offering new capabilities for in silico OSC discovery and design. In this Review, we trace the evolution of these computational methods and their application to OSCs, beginning with early quantum-chemical methods to investigate resonance in benzene and building to recent machine-learning (ML) techniques and their application to ever more sophisticated OSC scientific and engineering challenges. Along the way, we highlight the limitations of the methods and how sophisticated physical and mathematical frameworks have been created to overcome those limitations. We illustrate applications of these methods to a range of specific challenges in OSCs derived from π-conjugated polymers and molecules, including predicting charge-carrier transport, modeling chain conformations and bulk morphology, estimating thermomechanical properties, and describing phonons and thermal transport, to name a few. Through these examples, we demonstrate how advances in computational methods accelerate the deployment of OSCsin wide-ranging technologies, such as organic photovoltaics (OPVs), organic light-emitting diodes (OLEDs), organic thermoelectrics, organic batteries, and organic (bio)sensors. We conclude by providing an outlook for the future development of computational techniques to discover and assess the properties of high-performing OSCs with greater accuracy.
Collapse
Affiliation(s)
- Vinayak Bhat
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Connor P Callaway
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Chad Risko
- Department of Chemistry & Center for Applied Energy Research, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| |
Collapse
|
8
|
Weight BM, Sifain AE, Gifford BJ, Htoon H, Tretiak S. On-the-Fly Nonadiabatic Dynamics Simulations of Single-Walled Carbon Nanotubes with Covalent Defects. ACS NANO 2023; 17:6208-6219. [PMID: 36972076 DOI: 10.1021/acsnano.2c08579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) with covalent surface defects have been explored recently due to their promise for use in single-photon telecommunication emission and in spintronic applications. The all-atom dynamic evolution of electrostatically bound excitons (the primary electronic excitations) in these systems has only been loosely explored from a theoretical perspective due to the size limitations of these large systems (>500 atoms). In this work, we present computational modeling of nonradiative relaxation in a variety of SWCNT chiralities with single-defect functionalizations. Our excited-state dynamics modeling uses a trajectory surface hopping algorithm accounting for excitonic effects with a configuration interaction approach. We find a strong chirality and defect-composition dependence on the population relaxation (varying over 50-500 fs) between the primary nanotube band gap excitation E11 and the defect-associated, single-photon-emitting E11* state. These simulations give direct insight into the relaxation between the band-edge states and the localized excitonic state, in competition with dynamic trapping/detrapping processes observed in experiment. Engineering fast population decay into the quasi-two-level subsystem with weak coupling to higher-energy states increases the effectiveness and controllability of these quantum light emitters.
Collapse
Affiliation(s)
- Braden M Weight
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, United States
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E Sifain
- Department of Chemistry, Princeton University, Princeton, New Jersey 08540 United States
| | - Brendan J Gifford
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
9
|
Alfonso Hernandez L, Freixas VM, Rodriguez-Hernandez B, Tretiak S, Fernandez-Alberti S, Oldani N. Exciton-vibrational dynamics induces efficient self-trapping in a substituted nanoring. Phys Chem Chem Phys 2022; 24:24095-24104. [PMID: 36178044 DOI: 10.1039/d2cp03162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cycloparaphenylenes, being the smallest segments of carbon nanotubes, have emerged as prototypes of the simplest carbon nanohoops. Their unique structure-dynamics-optical properties relationships have motivated a wide variety of synthesis of new related nanohoop species. Studies of how chemical changes, introduced in these new materials, lead to systems with new structural, dynamics and optical properties, expand their functionalities for optoelectronics applications. Herein, we study the effect that conjugation extension of a cycloparaphenylene through the introduction of a satellite tetraphenyl substitution has on its structural and dynamical properties. Our non-adiabatic excited state molecular dynamics simulations suggest that this substitution accelerates the electronic relaxation from the high-energy band to the lowest excited state. This is partially due to efficient conjugation achieved between specific phenyl units as introduced by the tetraphenyl substitution. We observe a particular exciton redistribution during relaxation, in which the tetraphenyl substitution plays a significant role. As a result, an efficient inter-band energy transfer takes place. Besides, the observed phonon-exciton interplay induces a significant exciton self-trapping. Our results encourage and guide the future studies of new phenyl substitutions in carbon nanorings with desired optoelectronic properties.
Collapse
Affiliation(s)
- Laura Alfonso Hernandez
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | - Victor M Freixas
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | | | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - Nicolas Oldani
- Departamento de Ciencia Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| |
Collapse
|
10
|
Hu Z, Sun X. All-Atom Nonadiabatic Semiclassical Mapping Dynamics for Photoinduced Charge Transfer of Organic Photovoltaic Molecules in Explicit Solvents. J Chem Theory Comput 2022; 18:5819-5836. [PMID: 36073792 DOI: 10.1021/acs.jctc.2c00631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct all-atom simulation of nonadiabatic dynamics in disordered condensed phases like liquid solutions and amorphous solids has been challenging. The first all-atom simulation of the photoinduced charge-transfer dynamics of a prototypical organic photovoltaic carotenoid-porphyrin-C60 molecular triad in explicit tetrahydrofuran is presented. Based on the Meyer-Miller mapping Hamiltonian, various semiclassical and mixed quantum-classical dynamics are employed, including the linearized semiclassical, symmetrical quasiclassical, mean-field Ehrenfest, classical mapping model, and spin-mapping model approaches. The all-atom nonadiabatic dynamics were compared to multi-state harmonic models with a globally shared bath, and the models built using the ensemble averages on the initial electronic state could reproduce the all-atom results. The solvent effect was found to be critical for the photoinduced charge transfer, and the time-dependent solute-solvent radial distribution functions revealed that only the nonadiabatic dynamics started with the effective forces on the initial electronic state could capture the correct nuclear dynamics. The proposed strategy for modeling condensed-phase nonadiabatic dynamics with atomistic details is readily applied to complex condensed-phase systems.
Collapse
Affiliation(s)
- Zhubin Hu
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Xiang Sun
- Division of Arts and Sciences, New York University Shanghai, 1555 Century Avenue, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China.,State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China.,Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
11
|
Tracy DA, Fernandez-Alberti S, Tretiak S, Roitberg AE. Adiabatic Excited-State Molecular Dynamics with an Explicit Solvent: NEXMD-SANDER Implementation. J Chem Theory Comput 2022; 18:5213-5220. [PMID: 36044726 DOI: 10.1021/acs.jctc.2c00561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method to link the Nonadiabatic EXcited-state Molecular Dynamics (NEXMD) package to the SANDER package supplied by AMBERTOOLS to provide excited-state adiabatic quantum mechanics/molecular mechanics (QM/MM) simulations. NEXMD is a computational package particularly developed to perform simulations of the photoexcitation and subsequent nonadiabatic electronic and vibrational energy relaxation in large multichromophoric conjugated molecules involving several coupled electronic excited states. The NEXMD-SANDER exchange has been optimized in order to achieve excited-state adiabatic dynamics simulations of large conjugated materials in a QM/MM environment, such as an explicit solvent. Dynamics of a substituted polyphenylene vinylene oligomer (PPV3-NO2) in vacuum and different explicit solvents has been used as a test case by performing comparative analysis of changes in its optical spectrum, state-dependent conformational changes, and quantum bond orderings. The method has been tested and compared with respect to previous implicit solvent implementations. Also, the impact on the expansion of the QM region by including a variable number of solvent molecules has been analyzed. Altogether, these results encourage future implementations of NEXMD simulations using the same combination of methods.
Collapse
Affiliation(s)
- Dustin A Tracy
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | | | - Sergei Tretiak
- Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Adrian E Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
12
|
Zheng Y, Han Y, Weight BM, Lin Z, Gifford BJ, Zheng M, Kilin D, Kilina S, Doorn SK, Htoon H, Tretiak S. Photochemical spin-state control of binding configuration for tailoring organic color center emission in carbon nanotubes. Nat Commun 2022; 13:4439. [PMID: 35915090 PMCID: PMC9343348 DOI: 10.1038/s41467-022-31921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Incorporating fluorescent quantum defects in the sidewalls of semiconducting single-wall carbon nanotubes (SWCNTs) through chemical reaction is an emerging route to predictably modify nanotube electronic structures and develop advanced photonic functionality. Applications such as room-temperature single-photon emission and high-contrast bio-imaging have been advanced through aryl-functionalized SWCNTs, in which the binding configurations of the aryl group define the energies of the emitting states. However, the chemistry of binding with atomic precision at the single-bond level and tunable control over the binding configurations are yet to be achieved. Here, we explore recently reported photosynthetic protocol and find that it can control chemical binding configurations of quantum defects, which are often referred to as organic color centers, through the spin multiplicity of photoexcited intermediates. Specifically, photoexcited aromatics react with SWCNT sidewalls to undergo a singlet-state pathway in the presence of dissolved oxygen, leading to ortho binding configurations of the aryl group on the nanotube. In contrast, the oxygen-free photoreaction activates previously inaccessible para configurations through a triplet-state mechanism. These experimental results are corroborated by first principles simulations. Such spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites. Chemical functionalization of the sidewalls of single-wall carbon nanotubes (SWCNTs) is an emerging route to introduce fluorescent quantum defects and tailor the emission properties. Here, authors demonstrate that spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.
Collapse
Affiliation(s)
- Yu Zheng
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Braden M Weight
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA.,Department of Physics, North Dakota State University, Fargo, ND, 58102, USA.,Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Zhiwei Lin
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Brendan J Gifford
- Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Ming Zheng
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, 58102, USA
| | - Stephen K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. .,Center for Nonlinear Studies, and Theoretical Division Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
13
|
Erickson M, Han Y, Rasulev B, Kilin D. Molecular Dynamics Study of the Photodegradation of Polymeric Chains. J Phys Chem Lett 2022; 13:4374-4380. [PMID: 35544382 DOI: 10.1021/acs.jpclett.2c00802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of reusable polymeric materials inspires an attempt to combine renewable biomass with upcycling to form a biorenewable closed system. It has been reported that 2,5-furandicarboxylic acid (FDCA) can be recovered for recycling when incorporated as monomers into photodegradable polymeric systems. Here, we conduct density functional theory (DFT) studies with periodic boundary conditions on microscopic structures involved in the photodegradation of polymeric chains incorporating FDCA and 2-nitro-1,3-benzenedimethanol. The photodegradation process of polymeric chains is studied using time-dependent excited-state molecular dynamics (TDESMD) in vacuum and aqueous environments. Changes in the photophysical properties for reaction intermediates are characterized by ground-state observables. The distribution of reaction intermediates and products is obtained from TDESMD trajectories using cheminformatics techniques. Results show that a higher degree of polymeric chain degradation is achieved in the vacuum environment. Additionally, one finds that the FDCA molecule is recoverable in the aqueous environment, in qualitative agreement with experimental findings.
Collapse
Affiliation(s)
- Meade Erickson
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Yulun Han
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri Kilin
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
14
|
Shu Y, Zhang L, Chen X, Sun S, Huang Y, Truhlar DG. Nonadiabatic Dynamics Algorithms with Only Potential Energies and Gradients: Curvature-Driven Coherent Switching with Decay of Mixing and Curvature-Driven Trajectory Surface Hopping. J Chem Theory Comput 2022; 18:1320-1328. [PMID: 35104136 DOI: 10.1021/acs.jctc.1c01080] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct dynamics by mixed quantum-classical nonadiabatic methods is an important tool for understanding processes involving multiple electronic states. Very often, the computational bottleneck of such direct simulation comes from electronic structure theory. For example, at every time step of a trajectory, nonadiabatic dynamics requires potential energy surfaces, their gradients, and the matrix elements coupling the surfaces. The need for the couplings can be alleviated by employing the time derivatives of the wave functions, which can be evaluated from overlaps of electronic wave functions at successive time steps. However, evaluation of overlap integrals is still expensive for large systems. In addition, for electronic structure methods for which the wave functions or the coupling matrix elements are not available, nonadiabatic dynamics algorithms become inapplicable. In this work, building on recent work by Baeck and An, we propose new nonadiabatic dynamics algorithms that only require adiabatic potential energies and their gradients. The new methods are named curvature-driven coherent switching with decay of mixing (κCSDM) and curvature-driven trajectory surface hopping (κTSH). We show how powerful these new methods are in terms of computation time and accuracy as compared to previous mixed quantum-classical nonadiabatic dynamics algorithms. The lowering of the computational cost will allow longer nonadiabatic trajectories and greater ensemble averaging to be affordable, and the ability to calculate the dynamics without electronic structure coupling matrix elements extends the dynamics capability to new classes of electronic structure methods.
Collapse
Affiliation(s)
- Yinan Shu
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Linyao Zhang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Xiye Chen
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.,School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Shaozeng Sun
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Donald G Truhlar
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| |
Collapse
|
15
|
Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package. Top Curr Chem (Cham) 2022; 380:8. [PMID: 35083549 DOI: 10.1007/s41061-021-00361-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
We present mixed quantum-classical approaches based on the exact factorization framework. The electron-nuclear correlation term in the exact factorization enables us to deal with quantum coherences by accounting for electronic and nuclear nonadiabatic couplings effectively within classical nuclei approximation. We compare coupled- and independent-trajectory approximations with each other to understand algorithms in description of the bifurcation of nuclear wave packets and the correct spatial distribution of electronic wave functions along with nuclear trajectories. Finally, we show numerical results for comparisons of coupled- and independent-trajectory approaches for the photoisomerization of a protonated Schiff base from excited state molecular dynamics (ESMD) simulations with the recently developed Python-based ESMD code, namely, the PyUNIxMD program.
Collapse
|
16
|
Kron K, Rodriguez-Katakura A, Elhessen R, Mallikarjun Sharada S. Photoredox Chemistry with Organic Catalysts: Role of Computational Methods. ACS OMEGA 2021; 6:33253-33264. [PMID: 34926877 PMCID: PMC8674904 DOI: 10.1021/acsomega.1c05787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 05/09/2023]
Abstract
Organic catalysts have the potential to carry out a wide range of otherwise thermally inaccessible reactions via photoredox routes. Early demonstrated successes of organic photoredox catalysts include one-electron CO2 reduction and H2 generation via water splitting. Photoredox systems are challenging to study and design owing to the sheer number and diversity of phenomena involved, including light absorption, emission, intersystem crossing, partial or complete charge transfer, and bond breaking or formation. Designing a viable photoredox route therefore requires consideration of a host of factors such as absorption wavelength, solvent, choice of electron donor or acceptor, and so on. Quantum chemistry methods can play a critical role in demystifying photoredox phenomena. Using one-electron CO2 reduction with phenylene-based chromophores as an illustrative example, this perspective highlights recent developments in quantum chemistry that can advance our understanding of photoredox processes and proposes a way forward for driving the design and discovery of organic catalysts.
Collapse
Affiliation(s)
- Kareesa
J. Kron
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Andres Rodriguez-Katakura
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Rachelle Elhessen
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Titov E, Hummert J, Ikonnikov E, Mitrić R, Kornilov O. Electronic relaxation of aqueous aminoazobenzenes studied by time-resolved photoelectron spectroscopy and surface hopping TDDFT dynamics calculations. Faraday Discuss 2021; 228:226-241. [PMID: 33586720 DOI: 10.1039/d0fd00111b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies of ultrafast relaxation of molecular chromophores are complicated by the fact that most chromophores of biological and technological importance are rather large molecules and are strongly affected by their environment, either solvent or a protein cage. Here we present an approach which allows us to follow transient electronic structure of complex photoexcited molecules. We use the method of time-resolved photoelectron spectroscopy in solution to follow relaxation of two prototypical aqueous chromophores, Methyl Orange and Metanil Yellow, both of which are aminoazobenzene derivatives. Using excitation by 400 nm laser pulses and ionization by wavelength-selected 46.7 nm XUV pulses from high-order harmonic generation we follow relaxation of both molecules via the dark S1 state. The photoelectron spectra yield binding energies of both ground and excited states. We combine the experimental results with surface hopping time-dependent density functional theory (TDDFT) calculations employing B3LYP+D3 and ωB97X-D functionals. The results demonstrate that the method is generally suitable for description of ultrafast dynamics in these molecules and can recover absolute binding energies observed in the experiment. The B3LYP+D3 functional appears to be better suited for these systems, especially in the case of Metanil Yellow, where it indicates the importance of an intramolecular charge transfer state. Our results pave the way towards quantitative understanding of evolving electronic structure in photo-induced relaxation processes.
Collapse
Affiliation(s)
- Evgenii Titov
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | - Johan Hummert
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| | | | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | - Oleg Kornilov
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| |
Collapse
|
18
|
Santoro F, Green JA, Martinez-Fernandez L, Cerezo J, Improta R. Quantum and semiclassical dynamical studies of nonadiabatic processes in solution: achievements and perspectives. Phys Chem Chem Phys 2021; 23:8181-8199. [PMID: 33875988 DOI: 10.1039/d0cp05907b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We concisely review the main methodological approaches to model nonadiabatic dynamics in isotropic solutions and their applications. Three general classes of models are identified as the most used to include solvent effects in the simulations. The first model describes the solvent as a set of harmonic collective modes coupled to the solute degrees of freedom, and the second as a continuum, while the third explicitly includes solvent molecules in the calculations. The issues related to the use of these models in semiclassical and quantum dynamical simulations are discussed, as well as the main limitations and perspectives of each approach.
Collapse
Affiliation(s)
- Fabrizio Santoro
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - James A Green
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Javier Cerezo
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, 28049 Madrid, Spain
| | - Roberto Improta
- CNR-Consiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), via Mezzocannone 16, I-80136 Napoli, Italy.
| |
Collapse
|
19
|
Freixas VM, White AJ, Nelson T, Song H, Makhov DV, Shalashilin D, Fernandez-Alberti S, Tretiak S. Nonadiabatic Excited-State Molecular Dynamics Methodologies: Comparison and Convergence. J Phys Chem Lett 2021; 12:2970-2982. [PMID: 33730495 DOI: 10.1021/acs.jpclett.1c00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Direct atomistic simulation of nonadiabatic molecular dynamics is a challenging goal that allows important insights into fundamental physical phenomena. A variety of frameworks, ranging from fully quantum treatment of nuclei to semiclassical and mixed quantum-classical approaches, were developed. These algorithms are then coupled to specific electronic structure techniques. Such diversity and lack of standardized implementation make it difficult to compare the performance of different methodologies when treating realistic systems. Here, we compare three popular methods for large chromophores: Ehrenfest, surface hopping, and multiconfigurational Ehrenfest with ab initio multiple cloning (MCE-AIMC). These approaches are implemented in the NEXMD software, which features a common computational chemistry model. The resulting comparisons reveal the method performance for population relaxation and coherent vibronic dynamics. Finally, we study the numerical convergence of MCE-AIMC algorithms by considering the number of trajectories, cloning thresholds, and Gaussian wavepacket width. Our results provide helpful reference data for selecting an optimal methodology for simulating excited-state molecular dynamics.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes, Roque Saénz Peña 352, B1876BXD Bernal, Argentina
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Dmitry V Makhov
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Mathematics, University of Bristol, Bristol BS8 1TW, U.K
| | | | | | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
20
|
Smith B, Shakiba M, Akimov AV. Crystal Symmetry and Static Electron Correlation Greatly Accelerate Nonradiative Dynamics in Lead Halide Perovskites. J Phys Chem Lett 2021; 12:2444-2453. [PMID: 33661640 DOI: 10.1021/acs.jpclett.0c03799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using a recently developed many-body nonadiabatic molecular dynamics (NA-MD) framework for large condensed matter systems, we study the phonon-driven nonradiative relaxation of excess electronic excitation energy in cubic and tetragonal phases of the lead halide perovskite CsPbI3. We find that the many-body treatment of the electronic excited states significantly changes the structure of the excited states' coupling, promotes a stronger nonadiabatic coupling of states, and ultimately accelerates the relaxation dynamics relative to the single-particle description of excited states. The acceleration of the nonadiabatic dynamics correlates with the degree of configurational mixing, which is controlled by the crystal symmetry. The higher-symmetry cubic phase of CsPbI3 exhibits stronger configuration mixing than does the tetragonal phase and subsequently yields faster nonradiative dynamics. Overall, using a many-body treatment of excited states and accounting for decoherence dynamics are important for closing the gap between the computationally derived and experimentally measured nonradiative excitation energy relaxation rates.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Alexey V Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
21
|
Smith B, Shakiba M, Akimov AV. Nonadiabatic Dynamics in Si and CdSe Nanoclusters: Many-Body vs Single-Particle Treatment of Excited States. J Chem Theory Comput 2021; 17:678-693. [DOI: 10.1021/acs.jctc.0c01009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| | - Mohammad Shakiba
- Department of Materials Science and Engineering, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran
| | - Alexey V. Akimov
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260 United States
| |
Collapse
|
22
|
Freixas VM, Nelson T, Ondarse-Alvarez D, Nijjar P, Mikhailovsky A, Zhou C, Fernandez-Alberti S, Bazan GC, Tretiak S. Experimental and theoretical study of energy transfer in a chromophore triad: What makes modeling dynamics successful? J Chem Phys 2020; 153:244114. [PMID: 33380074 DOI: 10.1063/5.0028126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Simulation of electronic dynamics in realistically large molecular systems is a demanding task that has not yet achieved the same level of quantitative prediction already realized for its static counterpart. This is particularly true for processes occurring beyond the Born-Oppenheimer regime. Non-adiabatic molecular dynamics (NAMD) simulations suffer from two convoluted sources of error: numerical algorithms for dynamics and electronic structure calculations. While the former has gained increasing attention, particularly addressing the validity of ad hoc methodologies, the effect of the latter remains relatively unexplored. Indeed, the required accuracy for electronic structure calculations to reach quantitative agreement with experiment in dynamics may be even more strict than that required for static simulations. Here, we address this issue by modeling the electronic energy transfer in a donor-acceptor-donor (D-A-D) molecular light harvesting system using fewest switches surface hopping NAMD simulations. In the studied system, time-resolved experimental measurements deliver complete information on spectra and energy transfer rates. Subsequent modeling shows that the calculated electronic transition energies are "sufficiently good" to reproduce experimental spectra but produce over an order of magnitude error in simulated dynamical rates. We further perform simulations using artificially shifted energy gaps to investigate the complex relationship between transition energies and modeled dynamics to understand factors affecting non-radiative relaxation and energy transfer rates.
Collapse
Affiliation(s)
- Victor M Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | - Tammie Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | - Parmeet Nijjar
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-1062, USA
| | - Alexander Mikhailovsky
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Cheng Zhou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | | | - Guillermo C Bazan
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
23
|
Fedorov DA, Seritan S, Fales BS, Martínez TJ, Levine BG. PySpawn: Software for Nonadiabatic Quantum Molecular Dynamics. J Chem Theory Comput 2020; 16:5485-5498. [PMID: 32687710 DOI: 10.1021/acs.jctc.0c00575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ab initio multiple spawning (AIMS) method enables nonadiabatic quantum molecular dynamics simulations in an arbitrary number of dimensions, with potential energy surfaces provided by electronic structure calculations performed on-the-fly. However, the intricacy of the AIMS algorithm complicates software development, deployment on modern shared computer resources, and postsimulation data analysis. PySpawn is a nonadiabatic molecular dynamics software package that addresses these issues. The program is designed to be easily interfaced with electronic structure software, and an interface to the TeraChem software package is described here. PySpawn introduces a task-based reorganization of the AIMS algorithm, allowing fine-grained restart capability and setting the stage for efficient parallelization in a future release. PySpawn includes a user-friendly and interactive Python analysis module that will enable novice users to painlessly adopt AIMS. As a demonstration of PySpawn's simulation capability and analysis module, we report complete active space self-consistent field-based AIMS simulations of the 1,2-dithienyl-1,2-dicyanoethene molecule, a promising molecular photoswitch.
Collapse
Affiliation(s)
- Dmitry A Fedorov
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Stefan Seritan
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - B Scott Fales
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94305, United States
| | - Benjamin G Levine
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
24
|
Malone W, Nebgen B, White A, Zhang Y, Song H, Bjorgaard JA, Sifain AE, Rodriguez-Hernandez B, Freixas VM, Fernandez-Alberti S, Roitberg AE, Nelson TR, Tretiak S. NEXMD Software Package for Nonadiabatic Excited State Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:5771-5783. [DOI: 10.1021/acs.jctc.0c00248] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Walter Malone
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Benjamin Nebgen
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander White
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Josiah A. Bjorgaard
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew E. Sifain
- U.S. Army Research Laboratory, Aberdeen Proving Ground, Aberdeen, Maryland 21005, United States
| | | | - Victor M. Freixas
- Universidad Nacional de Quilmes/CONICET, Roque Saenz Peña 352, B1876BXD Bernal, Argentina
| | | | - Adrian E. Roitberg
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Tammie R. Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
25
|
Rodríguez-Hernández B, Oldani N, Martínez-Mesa A, Uranga-Piña L, Tretiak S, Fernandez-Alberti S. Photoexcited energy relaxation and vibronic couplings in π-conjugated carbon nanorings. Phys Chem Chem Phys 2020; 22:15321-15332. [PMID: 32628225 DOI: 10.1039/d0cp01452d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Conjugated carbon nanorings exhibit unique photophysical properties that, combined with their tunable sizes and conformations, make them suitable for a variety of practical applications. These properties are intimately associated to their strained, bent and sterically hindered cyclic structures. Herein we perform a comparative analysis of the photoinduced dynamics in carbon nanorings composed of nine phenyl units([9]CPP) and nine naphthyl units ([9]CN) respectively. The sterically demanding naphthyl units lead to large dihedral angles between neighboring units. Nevertheless, the ultrafast electronic and vibrational energy relaxation and redistribution is found to be similar for both systems. We observe that vibronic couplings, introduced by nonadiabatic energy transfer between electronic excited states, ensure the intramolecular vibrational energy redistribution through specific vibrational modes. The comparative impact of the internal conversion process on the exciton spatial localization and intra-ring migration indicates that naphthyl units in [9]CN achieve more efficient but less dynamical self-trapping compared to that of phenyl units in [9]CPP. That is, during the photoinduced process, the exciton in [9]CN is more static and localized than the exciton in [9]CPP. The internal conversion processes take place through a specific set of middle- to high-frequency normal modes, which directly influence the spatial exciton redistribution during the internal conversion, self-trapping and intra-ring migration.
Collapse
Affiliation(s)
- B Rodríguez-Hernández
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina.
| | | | | | | | | | | |
Collapse
|
26
|
Mališ M, Luber S. Trajectory Surface Hopping Nonadiabatic Molecular Dynamics with Kohn–Sham ΔSCF for Condensed-Phase Systems. J Chem Theory Comput 2020; 16:4071-4086. [DOI: 10.1021/acs.jctc.0c00372] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Momir Mališ
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Sandra Luber
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
27
|
Zhang Y, Li L, Tretiak S, Nelson T. Nonadiabatic Excited-State Molecular Dynamics for Open-Shell Systems. J Chem Theory Comput 2020; 16:2053-2064. [DOI: 10.1021/acs.jctc.9b00928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Linqiu Li
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
28
|
Smith B, Akimov AV. Modeling nonadiabatic dynamics in condensed matter materials: some recent advances and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:073001. [PMID: 31661681 DOI: 10.1088/1361-648x/ab5246] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review focuses on recent developments in the field of nonadiabatic molecular dynamics (NA-MD), with particular attention given to condensed-matter systems. NA-MD simulations for small molecular systems can be performed using high-level electronic structure (ES) calculations, methods accounting for the quantization of nuclear motion, and using fewer approximations in the dynamical methodology itself. Modeling condensed-matter systems imposes many limitations on various aspects of NA-MD computations, requiring approximations at various levels of theory-from the ES, to the ways in which the coupling of electrons and nuclei are accounted for. Nonetheless, the approximate treatment of NA-MD in condensed-phase materials has gained a spin lately in many applied studies. A number of advancements of the methodology and computational tools have been undertaken, including general-purpose methods, as well as those tailored to nanoscale and condensed matter systems. This review summarizes such methodological and software developments, puts them into the broader context of existing approaches, and highlights some of the challenges that remain to be solved.
Collapse
Affiliation(s)
- Brendan Smith
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States of America
| | | |
Collapse
|
29
|
Nelson TR, White AJ, Bjorgaard JA, Sifain AE, Zhang Y, Nebgen B, Fernandez-Alberti S, Mozyrsky D, Roitberg AE, Tretiak S. Non-adiabatic Excited-State Molecular Dynamics: Theory and Applications for Modeling Photophysics in Extended Molecular Materials. Chem Rev 2020; 120:2215-2287. [PMID: 32040312 DOI: 10.1021/acs.chemrev.9b00447] [Citation(s) in RCA: 237] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Optically active molecular materials, such as organic conjugated polymers and biological systems, are characterized by strong coupling between electronic and vibrational degrees of freedom. Typically, simulations must go beyond the Born-Oppenheimer approximation to account for non-adiabatic coupling between excited states. Indeed, non-adiabatic dynamics is commonly associated with exciton dynamics and photophysics involving charge and energy transfer, as well as exciton dissociation and charge recombination. Understanding the photoinduced dynamics in such materials is vital to providing an accurate description of exciton formation, evolution, and decay. This interdisciplinary field has matured significantly over the past decades. Formulation of new theoretical frameworks, development of more efficient and accurate computational algorithms, and evolution of high-performance computer hardware has extended these simulations to very large molecular systems with hundreds of atoms, including numerous studies of organic semiconductors and biomolecules. In this Review, we will describe recent theoretical advances including treatment of electronic decoherence in surface-hopping methods, the role of solvent effects, trivial unavoided crossings, analysis of data based on transition densities, and efficient computational implementations of these numerical methods. We also emphasize newly developed semiclassical approaches, based on the Gaussian approximation, which retain phase and width information to account for significant decoherence and interference effects while maintaining the high efficiency of surface-hopping approaches. The above developments have been employed to successfully describe photophysics in a variety of molecular materials.
Collapse
Affiliation(s)
- Tammie R Nelson
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Alexander J White
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Josiah A Bjorgaard
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Andrew E Sifain
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States.,U.S. Army Research Laboratory , Aberdeen Proving Ground , Maryland 21005 , United States
| | - Yu Zhang
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Benjamin Nebgen
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | | - Dmitry Mozyrsky
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Sergei Tretiak
- Theoretical Division , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| |
Collapse
|
30
|
Patrizi B, Cozza C, Pietropaolo A, Foggi P, Siciliani de Cumis M. Synergistic Approach of Ultrafast Spectroscopy and Molecular Simulations in the Characterization of Intramolecular Charge Transfer in Push-Pull Molecules. Molecules 2020; 25:E430. [PMID: 31968694 PMCID: PMC7024558 DOI: 10.3390/molecules25020430] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/28/2022] Open
Abstract
The comprehensive characterization of Intramolecular Charge Transfer (ICT) stemming in push-pull molecules with a delocalized π-system of electrons is noteworthy for a bespoke design of organic materials, spanning widespread applications from photovoltaics to nanomedicine imaging devices. Photo-induced ICT is characterized by structural reorganizations, which allows the molecule to adapt to the new electronic density distribution. Herein, we discuss recent photophysical advances combined with recent progresses in the computational chemistry of photoactive molecular ensembles. We focus the discussion on femtosecond Transient Absorption Spectroscopy (TAS) enabling us to follow the transition from a Locally Excited (LE) state to the ICT and to understand how the environment polarity influences radiative and non-radiative decay mechanisms. In many cases, the charge transfer transition is accompanied by structural rearrangements, such as the twisting or molecule planarization. The possibility of an accurate prediction of the charge-transfer occurring in complex molecules and molecular materials represents an enormous advantage in guiding new molecular and materials design. We briefly report on recent advances in ultrafast multidimensional spectroscopy, in particular, Two-Dimensional Electronic Spectroscopy (2DES), in unraveling the ICT nature of push-pull molecular systems. A theoretical description at the atomistic level of photo-induced molecular transitions can predict with reasonable accuracy the properties of photoactive molecules. In this framework, the review includes a discussion on the advances from simulation and modeling, which have provided, over the years, significant information on photoexcitation, emission, charge-transport, and decay pathways. Density Functional Theory (DFT) coupled with the Time-Dependent (TD) framework can describe electronic properties and dynamics for a limited system size. More recently, Machine Learning (ML) or deep learning approaches, as well as free-energy simulations containing excited state potentials, can speed up the calculations with transferable accuracy to more complex molecules with extended system size. A perspective on combining ultrafast spectroscopy with molecular simulations is foreseen for optimizing the design of photoactive compounds with tunable properties.
Collapse
Affiliation(s)
- Barbara Patrizi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.P.); (P.F.)
- European Laboratory for Non-Linear Spectroscopy (LENS),Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Concetta Cozza
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (C.C.); (A.P.)
| | - Adriana Pietropaolo
- Dipartimento di Scienze della Salute, Università di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (C.C.); (A.P.)
| | - Paolo Foggi
- National Institute of Optics-National Research Council (INO-CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; (B.P.); (P.F.)
- European Laboratory for Non-Linear Spectroscopy (LENS),Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | | |
Collapse
|
31
|
He J, Fang WH, Long R. Unravelling the effects of oxidation state of interstitial iodine and oxygen passivation on charge trapping and recombination in CH 3NH 3PbI 3 perovskite: a time-domain ab initio study. Chem Sci 2019; 10:10079-10088. [PMID: 32055362 PMCID: PMC6991187 DOI: 10.1039/c9sc02353d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022] Open
Abstract
Understanding nonradiative charge recombination mechanisms is a prerequisite for advancing perovskite solar cells. By performing time-domain density functional theory combined with nonadiabatic (NA) molecular dynamics simulations, we show that electron-hole recombination in perovskites strongly depends on the oxidation state of interstitial iodine and oxygen passivation. The simulations demonstrate that electron-hole recombination in CH3NH3PbI3 occurs within several nanoseconds, agreeing well with experiment. The negative interstitial iodine delays charge recombination by a factor of 1.3. The deceleration is attributed to the fact that interstitial iodine anion forms a chemical bond with its nearest lead atoms, eliminates the trap state, and decreases the NA electron-phonon coupling. The positive interstitial iodine attracts its neighbouring lattice iodine anions, resulting in the formation of an I-trimer and producing an electron trap. Electron trapping proceeds on a very fast timescale, tens of picoseconds, and captures the majority of free electrons available to directly recombine with free holes while inhibiting the recombination of free electrons and holes, delaying the recombination by a factor of 1.5. However, the positive interstitial iodine easily converts to a neutral iodine defect by capturing an electron, giving rise to a singly occupied state above the valence band maximum and acting as a hole trap. The photoexcitation valence band hole becomes trapped by the hole trap state very rapidly, followed by acceleration of recombination with the conduction band free electron by a factor of 1.6. Surprisingly, molecular oxygen interacting with interstitial iodine anion forms a stable IO3 -1 species, which inhibits ion migration, stabilizes perovskites, and suppresses the electron-hole recombination by a factor of 2.7. Our simulations reveal the microscopic effects of the oxidation state of interstitial iodine defects and oxygen passivation in perovskites, suggesting an effective way to improve perovskite photovoltaic and optoelectronic devices.
Collapse
Affiliation(s)
- Jinlu He
- College of Chemistry , Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China .
| | - Wei-Hai Fang
- College of Chemistry , Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China .
| | - Run Long
- College of Chemistry , Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education , Beijing Normal University , Beijing , 100875 , P. R. China .
| |
Collapse
|
32
|
Zhang Y, Nelson T, Tretiak S. Non-adiabatic molecular dynamics of molecules in the presence of strong light-matter interactions. J Chem Phys 2019; 151:154109. [PMID: 31640366 DOI: 10.1063/1.5116550] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Tammie Nelson
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
33
|
Ondarse-Alvarez D, Nelson T, Lupton JM, Tretiak S, Fernandez-Alberti S. Let Digons be Bygones: The Fate of Excitons in Curved π-Systems. J Phys Chem Lett 2018; 9:7123-7129. [PMID: 30508376 DOI: 10.1021/acs.jpclett.8b03160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We explore the diverse origins of unpolarized absorption and emission of molecular polygons consisting of π-conjugated oligomer chains held in a bent geometry by strain controlled at the vertex units. For this purpose, we make use of atomistic nonadiabatic excited-state molecular dynamics simulations of a bichromophore molecular polygon (digon) with bent chromophore chains. Both structural and photoexcited dynamics were found to affect polarization features. Bending strain induces exciton localization on individual chromophore units of the conjugated chains. The latter display different transition dipole moment orientations, a feature not present in the linear oligomer counterparts. In addition, bending makes exciton localization very sensitive to molecular distortions induced by thermal fluctuations. The excited-state dynamics reveals an ultrafast intramolecular energy redistribution that spreads the exciton equally among spatially separated chromophore fragments within the molecular system. As a result, digons become virtually unpolarized absorbers and emitters, in agreement with recent experimental studies on the single-molecule level.
Collapse
Affiliation(s)
| | - Tammie Nelson
- Theoretical Division, Physics and Chemistry of Materials (T-1) , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | - John M Lupton
- Institut für Angewandte und Experimentelle Physik , Universität Regensburg , Universitätsstrasse 31 , 93053 Regensburg , Germany
| | - Sergei Tretiak
- Theoretical Division, Physics and Chemistry of Materials (T-1) , Los Alamos National Laboratory , Los Alamos , New Mexico 87545 , United States
| | | |
Collapse
|
34
|
Sifain AE, Gifford BJ, Gao DW, Lystrom L, Nelson TR, Tretiak S. NEXMD Modeling of Photoisomerization Dynamics of 4-Styrylquinoline. J Phys Chem A 2018; 122:9403-9411. [DOI: 10.1021/acs.jpca.8b09103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew E. Sifain
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0485, United States
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brendan J. Gifford
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - David W. Gao
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Los Alamos High School, Los Alamos, New Mexico 87544, United States
| | - Levi Lystrom
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Tammie R. Nelson
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
35
|
Akimov AV. A Simple Phase Correction Makes a Big Difference in Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2018; 9:6096-6102. [PMID: 30286602 DOI: 10.1021/acs.jpclett.8b02826] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The outcomes of nonadiabatic molecular dynamics (NA-MD) calculations are modulated by the parameters entering the time-dependent Schrödinger equation (TD-SE). The adiabatic states are commonly used as the basis in which the TD-SE is integrated. However, the phase inconsistencies of such states along the nuclear trajectories obtained in NA-MD simulations may render the wave function and other relevant properties ill-behaving, adversely affecting the dynamics. This work illustrates the consequence of adiabatic state phase inconsistencies in nonadiabatic Ehrenfest dynamics. A simple phase-correction approach is proposed and is demonstrated to alter the dynamics to make it consistent with the reference calculations done in the phase-consistent diabatic representation.
Collapse
Affiliation(s)
- Alexey V Akimov
- Department of Chemistry , University at Buffalo, The State University of New York , Buffalo , New York 14260 , United States
| |
Collapse
|
36
|
Titov E, Humeniuk A, Mitrić R. Exciton localization in excited-state dynamics of a tetracene trimer: a surface hopping LC-TDDFTB study. Phys Chem Chem Phys 2018; 20:25995-26007. [PMID: 30298878 DOI: 10.1039/c8cp05240a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Excitons in the molecular aggregates of chromophores are key participants in important processes such as photosynthesis or the functioning of organic photovoltaic devices. Therefore, the exploration of exciton dynamics is crucial. Here we report on exciton localization during excited-state dynamics of the recently synthesized tetracene trimer [Liu et al., Org. Lett., 2017, 19, 580]. We employ the surface hopping approach to nonadiabatic molecular dynamics in conjunction with the long-range corrected time-dependent density functional tight binding (LC-TDDFTB) method [Humeniuk and Mitrić, Comput. Phys. Commun., 2017, 221, 174]. Utilizing a set of descriptors based on the transition density matrix, we perform comprehensive analysis of exciton dynamics. The obtained results reveal an ultrafast exciton localization to a single tetracene unit of the trimer during excited-state dynamics, along with exciton transfer between units.
Collapse
Affiliation(s)
- Evgenii Titov
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Straße 42, 97074 Würzburg, Germany.
| | | | | |
Collapse
|
37
|
Lystrom L, Zhang Y, Tretiak S, Nelson T. Site-Specific Photodecomposition in Conjugated Energetic Materials. J Phys Chem A 2018; 122:6055-6061. [DOI: 10.1021/acs.jpca.8b04381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Levi Lystrom
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Yu Zhang
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Tammie Nelson
- Theoretical Division, Physics and Chemistry of Materials (T-1), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
38
|
Ondarse-Alvarez D, Oldani N, Roitberg AE, Kleiman V, Tretiak S, Fernandez-Alberti S. Energy transfer and spatial scrambling of an exciton in a conjugated dendrimer. Phys Chem Chem Phys 2018; 20:29648-29660. [DOI: 10.1039/c8cp05852k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoexcitation of multichromophoric light harvesting molecules induces a number of intramolecular electronic energy relaxation and redistribution pathways that can ultimately lead to ultrafast exciton self-trapping on a single chromophore unit.
Collapse
Affiliation(s)
- D. Ondarse-Alvarez
- Departamento de Ciencia y Tecnologia
- Universidad Nacional de Quilmes/CONICET
- B1876BXD Bernal
- Argentina
| | - N. Oldani
- Departamento de Ciencia y Tecnologia
- Universidad Nacional de Quilmes/CONICET
- B1876BXD Bernal
- Argentina
| | - A. E. Roitberg
- Department of Chemistry of Chemistry
- University of Florida
- Gainesville
- USA
| | - V. Kleiman
- Department of Chemistry of Chemistry
- University of Florida
- Gainesville
- USA
| | - S. Tretiak
- Theoretical Division
- Center for Nonlinear Studies (CNLS), and Center for Integrated Nanotechnologies (CINT)
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - S. Fernandez-Alberti
- Departamento de Ciencia y Tecnologia
- Universidad Nacional de Quilmes/CONICET
- B1876BXD Bernal
- Argentina
| |
Collapse
|