1
|
Hapka M, Pastorczak E, Pernal K. Self-Adapting Short-Range Correlation Functional for Complete Active Space-Based Approximations. J Phys Chem A 2024; 128:7013-7022. [PMID: 39115208 PMCID: PMC11345816 DOI: 10.1021/acs.jpca.4c03299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
We propose a short-range correlation energy correction tailored for active space wave function models. The correction relies on a short-range multideterminant correlation functional computed with a local range-separation parameter that self-adapts to the underlying wave function. This approach is analogous to that of Giner et al. [J. Chem. Phys. 2018, 149, 194301] which addresses the basis set incompleteness error, with the vital distinction that in our protocol the range-separation parameter remains finite in the complete basis set limit, ensuring nonzero short-range correlation. The proposed correlation functional compensates for the missing short-range correlation via two mechanisms: (i) an automatically adapting short-range parameter, which gauges the missing correlation in the electron vicinity, and (ii) the functional's explicit dependence on the on-top pair density, which reduces short-range correlation in regions where electron correlation is mainly static. We integrate our method into the multireference adiabatic connection theory for CASSCF wave functions. The performance of the introduced CAS-AC0-(c,md) model is verified by calculating potential energy curves for alkaline-earth metal dimers (Be2, Mg2, Ca2) and for the chromium dimer, in all cases obtaining promising results.
Collapse
Affiliation(s)
- Michał Hapka
- Faculty
of Chemistry, University of Warsaw, Warsaw 00-927, Poland
| | - Ewa Pastorczak
- Institute
of Physics, Lodz University of Technology, Lodz 93-005, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, Lodz 93-005, Poland
| |
Collapse
|
2
|
Drwal D, Pernal K, Pastorczak E. Multireference Correlated Oscillator Strengths from Adiabatic Connection Approaches Based on Extended Random Phase Approximation. J Chem Theory Comput 2024; 20:3659-3668. [PMID: 38669448 PMCID: PMC11099974 DOI: 10.1021/acs.jctc.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/23/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024]
Abstract
We show that accurate oscillator strengths can be obtained from adiabatic connection (AC) approaches based on the extended random phase approximation (ERPA) combined with multireference (complete active space, CAS) wave functions. The oscillator strengths calculated using the perturbation-corrected ERPA transition density matrices, proposed in this work, and the excitation energies calculated with recently introduced AC correlation energy methods, AC0 and AC0D, compete with accuracy in the perturbational CASPT2 approach and require less computational effort. AC0 and AC0D methods scale more favorably with the number of active orbitals than multiconfigurational perturbation approaches like CASPT2 and NEVPT2 thanks to their dependence on reduced density matrices up to the order of 2. Importantly, the newly developed approach for computing correlated transition dipole moments does not entail any additional costs, as all intermediate quantities become available when AC0 energies are being computed. We also test the performance of the recently proposed AC method corrected for the negative-transition contributions to the correlation energy, AC0D, for triplet excitation energies. Similarly, as for the singlet excitations, the correction improves the performance of the AC0 method, particularly for the low-lying excited states.
Collapse
Affiliation(s)
- Daria Drwal
- Institute of Physics, Lodz
University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz
University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz
University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
3
|
Zuzak R, Kumar M, Stoica O, Soler-Polo D, Brabec J, Pernal K, Veis L, Blieck R, Echavarren AM, Jelinek P, Godlewski S. On-Surface Synthesis and Determination of the Open-Shell Singlet Ground State of Tridecacene. Angew Chem Int Ed Engl 2024; 63:e202317091. [PMID: 38192200 DOI: 10.1002/anie.202317091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
The character of the electronic structure of acenes has been the subject of longstanding discussion. However, convincing experimental evidence of their open-shell character has so far been missing. Here, we present the on-surface synthesis of tridecacene molecules by thermal annealing of octahydrotridecacene on a Au(111) surface. We characterized the electronic structure of the tridecacene by scanning probe microscopy, which reveals the presence of an inelastic signal at 126 meV. We attribute the inelastic signal to spin excitation from the singlet diradical ground state to the triplet excited state. To rationalize the experimental findings, we carried out many-body ab initio calculations as well as model Hamiltonians to take into account the effect of the metallic substrate. Moreover, we provide a detailed analysis of how the dynamic electron correlation and virtual charge fluctuation between the molecule and metallic surface reduces the singlet-triplet band gap. Thus, this work provides the first experimental confirmation of the magnetic character of tridecacene.
Collapse
Affiliation(s)
- Rafal Zuzak
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30348, Krakow, Poland
| | - Manish Kumar
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200, Prague, Czech Republic
| | - Otilia Stoica
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
- Departament de Quımica Organica i Analıtica, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Diego Soler-Polo
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200, Prague, Czech Republic
| | - Jiri Brabec
- Department of Theoretical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 18200, Prague, Czech Republic
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90924, Lodz, Poland
| | - Libor Veis
- Department of Theoretical Chemistry, J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, 18200, Prague, Czech Republic
| | - Remi Blieck
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
- Departament de Quımica Organica i Analıtica, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Pavel Jelinek
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 16200, Prague, Czech Republic
| | - Szymon Godlewski
- Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Lojasiewicza 11, 30348, Krakow, Poland
| |
Collapse
|
4
|
Matoušek M, Pernal K, Pavošević F, Veis L. Variational Quantum Eigensolver Boosted by Adiabatic Connection. J Phys Chem A 2024; 128:687-698. [PMID: 38214999 PMCID: PMC10823474 DOI: 10.1021/acs.jpca.3c07590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
In this work, we integrate the variational quantum eigensolver (VQE) with the adiabatic connection (AC) method for efficient simulations of chemical problems on near-term quantum computers. Orbital-optimized VQE methods are employed to capture the strong correlation within an active space, and classical AC corrections recover the dynamical correlation effects comprising electrons outside of the active space. On two challenging strongly correlated problems, namely, the dissociation of N2 and the electronic structure of the tetramethyleneethane biradical, we show that the combined VQE-AC approach enhances the performance of VQE dramatically. Moreover, since the AC corrections do not bring any additional requirements on quantum resources or measurements, they can actually boost the VQE algorithms. Our work paves the way toward quantum simulations of real-life problems on near-term quantum computers.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | | | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
5
|
Xu X, Soriano-Agueda L, López X, Ramos-Cordoba E, Matito E. All-Purpose Measure of Electron Correlation for Multireference Diagnostics. J Chem Theory Comput 2024; 20:721-727. [PMID: 38157841 PMCID: PMC10809408 DOI: 10.1021/acs.jctc.3c01073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
We present an analytical relationship between two natural orbital occupancy-based indices, I N D ¯ and INDmax, and two established electron correlation metrics: the leading term of a configuration interaction expansion, c0, and the D2 diagnostic. Numerical validation revealed that I N D ¯ and INDmax can effectively substitute for c0 and D2, respectively. These indices offer three distinct advantages: (i) they are universally applicable across all electronic structure methods, (ii) their interpretation is more intuitive, and (iii) they can be readily incorporated into the development of hybrid electronic structure methods. Additionally, we draw a distinction between correlation measures and correlation diagnostics, establishing MP2 and CCSD numerical thresholds for INDmax, which are to be used as a multireference diagnostic. Our findings further demonstrate that establishing thresholds for other electronic structure methods can be easily accomplished using small data sets.
Collapse
Affiliation(s)
- Xiang Xu
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Luis Soriano-Agueda
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Xabier López
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - Eloy Ramos-Cordoba
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Polimero
eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, P.K. 1072, 20080 Donostia, Euskadi, Spain
- Ikerbasque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Eduard Matito
- Donostia
International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- Ikerbasque
Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Drwal D, Matousek M, Golub P, Tucholska A, Hapka M, Brabec J, Veis L, Pernal K. Role of Spin Polarization and Dynamic Correlation in Singlet-Triplet Gap Inversion of Heptazine Derivatives. J Chem Theory Comput 2023; 19:7606-7616. [PMID: 37864544 PMCID: PMC10653106 DOI: 10.1021/acs.jctc.3c00781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/23/2023]
Abstract
The new generation of proposed light-emitting molecules for organic light-emitting diodes (OLEDs) has raised considerable research interest due to its exceptional feature─a negative singlet-triplet (ST) gap violating Hund's multiplicity rule in the excited S1 and T1 states. We investigate the role of spin polarization in the mechanism of ST gap inversion. Spin polarization is associated with doubly excited determinants of certain types, whose presence in the wave function expansion favors the energy of the singlet state more than that of the triplet. Using a perturbation theory-based model for spin polarization, we propose a simple descriptor for prescreening of candidate molecules with negative ST gaps and prove its usefulness for heptazine-type molecules. Numerical results show that the quantitative effect of spin polarization decreases linearly with the increasing highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) exchange integral. Comparison of single- and multireference coupled-cluster predictions of ST gaps shows that the former methods provide good accuracy by correctly balancing the effects of doubly excited determinants and dynamic correlation. We also show that accurate ST gaps may be obtained using a complete active space model supplemented with dynamic correlation from multireference adiabatic connection theory.
Collapse
Affiliation(s)
- Daria Drwal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Mikulas Matousek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Pavlo Golub
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Aleksandra Tucholska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Jiri Brabec
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences
of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
7
|
Li S, Misiewicz JP, Evangelista FA. Intruder-free cumulant-truncated driven similarity renormalization group second-order multireference perturbation theory. J Chem Phys 2023; 159:114106. [PMID: 37712785 DOI: 10.1063/5.0159403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Accurate multireference electronic structure calculations are important for constructing potential energy surfaces. Still, even in the case of low-scaling methods, their routine use is limited by the steep growth of the computational and storage costs as the active space grows. This is primarily due to the occurrence of three- and higher-body density matrices or, equivalently, their cumulants. This work examines the effect of various cumulant truncation schemes on the accuracy of the driven similarity renormalization group second-order multireference perturbation theory. We test four different levels of three-body reduced density cumulant truncations that set different classes of cumulant elements to zero. Our test cases include the singlet-triplet gap of CH2, the potential energy curves of the XΣg+1 and AΣu+3 states of N2, and the singlet-triplet splittings of oligoacenes. Our results show that both relative and absolute errors introduced by these cumulant truncations can be as small as 0.5 kcal mol-1 or less. At the same time, the amount of memory required is reduced from O(NA6) to O(NA5), where NA is the number of active orbitals. No additional regularization is needed to prevent the intruder state problem in the cumulant-truncated second-order driven similarity renormalization group multireference perturbation theory methods.
Collapse
Affiliation(s)
- Shuhang Li
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Jonathon P Misiewicz
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
8
|
Giarrusso S, Pribram-Jones A. Møller-Plesset and Density-Fixed Adiabatic Connections for a Model Diatomic System at Different Correlation Regimes. J Chem Theory Comput 2023; 19:5835-5850. [PMID: 37642270 DOI: 10.1021/acs.jctc.3c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In recent years, adiabatic connection (AC) interpolations developed within density functional theory (DFT) have been found to provide good performances in the calculation of interaction energies when used with Hartree-Fock (HF) ingredients. The physical and mathematical reasons for such unanticipated performance have been clarified, to some extent, by studying the strong-interaction limit of the Møller-Plesset (MP) AC. In this work, we calculate both the MP and the DFT AC integrand for the asymmetric Hubbard dimer, which allows for a systematic investigation of different correlation regimes by varying two simple parameters in the Hamiltonian: the external potential, Δv, and the interaction strength, U. Notably, we find that, while the DFT AC integrand appears to be convex in the full parameter space, the MP integrand may change curvature twice. Furthermore, we discuss different aspects of the second-order expansion of the correlation energy in each AC, and we demonstrate why the derivative of the λ-dependent density in the MP AC at λ = 0 (i.e., at the HF density) is zero in the model. Concerning the strong-interaction limit of both ACs in the Hubbard dimer setting, we show that the asymptotic value of the MP AC, W∞HF, is lower than (or equal to) its DFT analogue, W∞KS, if the two are compared at a given density, just like in real space. However, we also show that this is not always the case if the two quantities are compared at a given external potential.
Collapse
Affiliation(s)
- Sara Giarrusso
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| | - Aurora Pribram-Jones
- Department of Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, California 95343, United States
| |
Collapse
|
9
|
Hapka M, Krzemińska A, Modrzejewski M, Przybytek M, Pernal K. Efficient Calculation of the Dispersion Energy for Multireference Systems with Cholesky Decomposition: Application to Excited-State Interactions. J Phys Chem Lett 2023; 14:6895-6903. [PMID: 37494637 PMCID: PMC10405273 DOI: 10.1021/acs.jpclett.3c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
Accurate and efficient prediction of dispersion interactions in excited-state complexes poses a challenge due to the complex nature of electron correlation effects that need to be simultaneously considered. We propose an algorithm for computing the dispersion energy in nondegenerate ground- or excited-state complexes with arbitrary spin. The algorithm scales with the fifth power of the system size due to employing Cholesky decomposition of Coulomb integrals and a recently developed recursive formula for density response functions of the monomers. As a numerical illustration, we apply the new algorithm in the framework of multiconfigurational symmetry adapted perturbation theory, SAPT(MC), to study interactions in dimers with localized excitons. The SAPT(MC) analysis reveals that the dispersion energy may be the main force stabilizing excited-state dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Krzemińska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Marcin Modrzejewski
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
10
|
Matoušek M, Hapka M, Veis L, Pernal K. Toward more accurate adiabatic connection approach for multireference wavefunctions. J Chem Phys 2023; 158:054105. [PMID: 36754817 DOI: 10.1063/5.0131448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A multiconfigurational adiabatic connection (AC) formalism is an attractive approach to compute the dynamic correlation within the complete active space self-consistent field and density matrix renormalization group (DMRG) models. Practical realizations of AC have been based on two approximations: (i) fixing one- and two-electron reduced density matrices (1- and 2-RDMs) at the zero-coupling constant limit and (ii) extended random phase approximation (ERPA). This work investigates the effect of removing the "fixed-RDM" approximation in AC. The analysis is carried out for two electronic Hamiltonian partitionings: the group product function- and the Dyall Hamiltonians. Exact reference AC integrands are generated from the DMRG full configuration interaction solver. Two AC models are investigated, employing either exact 1- and 2-RDMs or their second-order expansions in the coupling constant in the ERPA equations. Calculations for model molecules indicate that lifting the fixed-RDM approximation is a viable way toward improving the accuracy of existing AC approximations.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
11
|
Mutual information prediction for strongly correlated systems. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Beran P, Pernal K, Pavošević F, Veis L. Projection-Based Density Matrix Renormalization Group in Density Functional Theory Embedding. J Phys Chem Lett 2023; 14:716-722. [PMID: 36648273 PMCID: PMC10017021 DOI: 10.1021/acs.jpclett.2c03298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The density matrix renormalization group (DMRG) method has already proved itself as a very efficient and accurate computational method, which can treat large active spaces and capture the major part of strong correlation. Its application on larger molecules is, however, limited by its own computational scaling as well as demands of methods for treatment of the missing dynamical electron correlation. In this work, we present the first step in the direction of combining DMRG with density functional theory (DFT), one of the most employed quantum chemical methods with favorable scaling, by means of the projection-based wave function (WF)-in-DFT embedding. On two proof-of-concept but important molecular examples, we demonstrate that the developed DMRG-in-DFT approach provides a very accurate description of molecules with a strongly correlated fragment.
Collapse
Affiliation(s)
- Pavel Beran
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 121 16Prague, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005Lodz, Poland
| | - Fabijan Pavošević
- Center
for Computational Quantum Physics, Flatiron
Institute, 162 Fifth Avenue, New York, 10010New York, United
States
| | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223Prague 8, Czech Republic
| |
Collapse
|
13
|
Wang M, Fang WH, Li C. Assessment of State-Averaged Driven Similarity Renormalization Group on Vertical Excitation Energies: Optimal Flow Parameters and Applications to Nucleobases. J Chem Theory Comput 2023; 19:122-136. [PMID: 36534617 DOI: 10.1021/acs.jctc.2c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We present a comprehensive excited-state benchmark for the state-averaged (SA) driven similarity renormalization group (DSRG) [Li, C.; Evangelista, F. A. J. Chem. Phys. 2018, 148, 124106]. Following the QUEST database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; Loos, P.-F. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1517], 280 vertical transition energies of 35 medium-sized molecules are computed using the SA-DSRG derived second- and third-order perturbation theories (PT2/PT3) along with a nonperturbative approach [sq-LDSRG(2)]. Comparing to the theoretical best estimates, the optimal flow parameter is found to be 0.35 and 2.0 Eh-2 for SA-DSRG-PT2 and SA-DSRG-PT3, respectively. For SA-sq-LDSRG(2), a flow parameter of 1.5 Eh-2 provides converged equations without compromising the accuracy. We then assess the accuracy of the SA-DSRG hierarchy using these parameters. The SA-DSRG-PT2 scheme outperforms the level-shifted CASPT2 by 0.10 eV in mean absolute error (MAE), yet this accuracy is slightly inferior than that of CASPT2 with the ionization-potential-electron-affinity shift. Both SA-DSRG-PT3 and SA-sq-LDSRG(2) yield a MAE of 0.10 eV, which is comparable to that of CASPT3 (0.09 eV). Finally, we compute vertical excitation energies of several low-lying singlet states of nucleobases. The SA-sq-LDSRG(2) approach provides highly accurate results for π → π* excitations, while n → π* transitions are better described by SA-DSRG-PT3.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
15
|
Stroscio GD, Zhou C, Truhlar DG, Gagliardi L. Multiconfiguration Pair-Density Functional Theory Calculations of Iron(II) Porphyrin: Effects of Hybrid Pair-Density Functionals and Expanded RAS and DMRG Active Spaces on Spin-State Orderings. J Phys Chem A 2022; 126:3957-3963. [PMID: 35674705 DOI: 10.1021/acs.jpca.2c02347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron(II) porphyrins play critical roles in enzymes and synthetic catalysts. Computationally determining the spin-state ordering for even the unsubstituted iron(II) porphyrin (FeP) is challenging due to its large size. Multiconfiguration pair-density functional theory (MC-PDFT), a method capable of accurately capturing correlation with lower cost than comparably accurate methods, was previously used to predict a triplet ground state for FeP across a wide range of active spaces up to (34e, 35o). The purpose of this present MC-PDFT study is to determine the effects of including nonlocal exchange in the energy calculation and of using a larger active space size [DMRG(40e, 42o) and RAS(40, 2, 2; 16, 6, 20)] on the calculated FeP spin-state ordering. The recently developed hybrid MC-PDFT method, which uses a weighted average of the MC-PDFT energy and the energy expectation value of the reference wave function, is applied with a weight of the reference wave function energy of λ. We find that increasing λ stabilizes the quintet relative to the triplets. The hybrid tPBE0 functional (tPBE with λ set to 0.25) consistently predicts a triplet ground state with the quintet lying above by 0.10-0.16 eV, depending on the reference wave function. These values are particularly interesting in light of tPBE0's very strong performance for a diverse set of other systems.
Collapse
Affiliation(s)
- Gautam D Stroscio
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637-5418, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chen Zhou
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago, Illinois 60637-5418, United States.,Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
16
|
Drwal D, Beran P, Hapka M, Modrzejewski M, Sokół A, Veis L, Pernal K. Efficient Adiabatic Connection Approach for Strongly Correlated Systems: Application to Singlet-Triplet Gaps of Biradicals. J Phys Chem Lett 2022; 13:4570-4578. [PMID: 35580342 PMCID: PMC9150121 DOI: 10.1021/acs.jpclett.2c00993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Strong electron correlation can be captured with multireference wave function methods, but an accurate description of the electronic structure requires accounting for the dynamic correlation, which they miss. In this work, a new approach for the correlation energy based on the adiabatic connection (AC) is proposed. The ACn method accounts for terms up to order n in the coupling constant, and it is size-consistent and free from instabilities. It employs the multireference random phase approximation and the Cholesky decomposition technique, leading to a computational cost growing with the fifth power of the system size. Because of the dependence on only one- and two-electron reduced density matrices, ACn is more efficient than existing ab initio multireference dynamic correlation methods. ACn affords excellent results for singlet-triplet gaps of challenging organic biradicals. The development presented in this work opens new perspectives for accurate calculations of systems with dozens of strongly correlated electrons.
Collapse
Affiliation(s)
- Daria Drwal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Pavel Beran
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 2027/3, 12116 Prague 2, Czech Republic
| | - Michał Hapka
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Marcin Modrzejewski
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Adam Sokół
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
17
|
Jangrouei MR, Krzemińska A, Hapka M, Pastorczak E, Pernal K. Dispersion Interactions in Exciton-Localized States. Theory and Applications to π-π* and n-π* Excited States. J Chem Theory Comput 2022; 18:3497-3511. [PMID: 35587598 PMCID: PMC9202351 DOI: 10.1021/acs.jctc.2c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
We address the problem
of intermolecular interaction energy calculations
in molecular complexes with localized excitons. Our focus is on the
correct representation of the dispersion energy. We derive an extended
Casimir-Polder formula for direct computation of this contribution
through second order in the intermolecular interaction operator V̂. An alternative formula, accurate to infinite order
in V̂, is derived within the framework of the
adiabatic connection (AC) theory. We also propose a new parametrization
of the VV10 nonlocal correlation density functional, so that it corrects
the CASSCF energy for the dispersion contribution and can be applied
to excited-state complexes. A numerical investigation is carried out
for benzene, pyridine, and peptide complexes with the local exciton
corresponding to the lowest π–π* or n– π*
states. The extended Casimir-Polder formula is implemented in the
framework of multiconfigurational symmetry-adapted perturbation theory,
SAPT(MC). A SAPT(MC) analysis shows that the creation of a localized
exciton affects mostly the electrostatic component of the interaction
energy of investigated complexes. Nevertheless, the changes in Pauli
repulsion and dispersion energies cannot be neglected. We verify the
performance of several perturbation- and AC-based methods. Best results
are obtained with a range-separated variant of an approximate AC approach
employing extended random phase approximation and CASSCF wave functions.
Collapse
Affiliation(s)
- Mohammad Reza Jangrouei
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093, Warsaw, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005, Lodz, Poland
| |
Collapse
|
18
|
Kowalski PH, Krzemińska A, Pernal K, Pastorczak E. Dispersion Interactions between Molecules in and out of Equilibrium Geometry: Visualization and Analysis. J Phys Chem A 2022; 126:1312-1319. [PMID: 35166552 PMCID: PMC8883464 DOI: 10.1021/acs.jpca.2c00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The London dispersion interactions between systems undergoing bond breaking, twisting, or compression are not well studied due to the scarcity and the high computational cost of methods being able to describe both the dynamic correlation and the multireference character of the system. Recently developed methods based on the Generalized Valence Bond wave function, such as EERPA-GVB and SAPT(GVB) (SAPT = symmetry-adapted perturbation theory), allow one to accurately compute and analyze noncovalent interactions between multireference systems. Here, we augment this analysis by introducing a local indicator for dispersion interactions inspired by Mata and Wuttke's Dispersion Interaction Density [ J. Comput. Chem. 2017, 38, 15-23] applied on top of an EERPA-GVB computation. Using a few model systems, we show what insights into the nature and evolution of the dispersion interaction during bond breaking and twisting such an approach is able to offer. The new indicator can be used at a minimal cost additional to an EERPA-GVB computation and can be complemented by an energy decomposition employing the SAPT(GVB) method. We explain the physics behind the initial increase, followed by a decrease in the interaction of linear molecules upon bond stretching. Namely, the elongation of covalent bonds leads to the enhancement of attractive dispersion interactions. For even larger bond lengths, this effect is canceled by the increase of the repulsive exchange forces resulting in a suppression of the interaction and finally leading to repulsion between monomers.
Collapse
Affiliation(s)
- Piotr H Kowalski
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| |
Collapse
|
19
|
Cheng Y, Xie Z, Ma H. Post-Density Matrix Renormalization Group Methods for Describing Dynamic Electron Correlation with Large Active Spaces. J Phys Chem Lett 2022; 13:904-915. [PMID: 35049302 DOI: 10.1021/acs.jpclett.1c04078] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The ab initio density matrix renormalization group (DMRG) method has been well-established and has become one of the most accurate numerical methods for the precise electronic structure solution of large active spaces. In the past few years, to capture the missing dynamic correlation, various post-DMRG approaches have been proposed through the combination of DMRG and multireference quantum chemical methods or density functional theory. With this in mind, this work provides a brief overview of ab initio DMRG principles and the new developments within post-DMRG methods. For clarity, post-DMRG methods are classified into two main categories depending on whether high-order n-electron reduced density matrices are used, and their merits and disadvantages are properly discussed. Finally, we conclude by discussing unsolved bottlenecks and giving development perspectives of post-DMRG approaches, which are expected to yield quantitative descriptions of complex electronic structures in large strongly correlated molecules and materials.
Collapse
Affiliation(s)
- Yifan Cheng
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Zhaoxuan Xie
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Beran P, Matoušek M, Hapka M, Pernal K, Veis L. Density Matrix Renormalization Group with Dynamical Correlation via Adiabatic Connection. J Chem Theory Comput 2021; 17:7575-7585. [PMID: 34762423 DOI: 10.1021/acs.jctc.1c00896] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The quantum chemical version of the density matrix renormalization group (DMRG) method has established itself as one of the methods of choice for calculations of strongly correlated molecular systems. Despite its great ability to capture strong electronic correlation in large active spaces, it is not suitable for computations of dynamical electron correlation. In this work, we present a new approach to the electronic structure problem of strongly correlated molecules, in which DMRG is responsible for a proper description of the strong correlation, whereas dynamical correlation is computed via the recently developed adiabatic connection (AC) technique which requires only up to two-body active space reduced density matrices. We report the encouraging results of this approach on typical candidates for DMRG computations, namely, n-acenes (n = 2 → 7), Fe(II)-porphyrin, and the Fe3S4 cluster.
Collapse
Affiliation(s)
- Pavel Beran
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Mikuláš Matoušek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
21
|
Hapka M, Przybytek M, Pernal K. Symmetry-Adapted Perturbation Theory Based on Multiconfigurational Wave Function Description of Monomers. J Chem Theory Comput 2021; 17:5538-5555. [PMID: 34517707 PMCID: PMC8444344 DOI: 10.1021/acs.jctc.1c00344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present a formulation
of the multiconfigurational (MC) wave
function symmetry-adapted perturbation theory (SAPT). The method is
applicable to noncovalent interactions between monomers which require
a multiconfigurational description, in particular when the interacting
system is strongly correlated or in an electronically excited state.
SAPT(MC) is based on one- and two-particle reduced density matrices
of the monomers and assumes the single-exchange approximation for
the exchange energy contributions. Second-order terms are expressed
through response properties from extended random phase approximation
(ERPA). The dispersion components of SAPT(MC) have been introduced
in our previous works [HapkaM.2019, 15, 1016−102730525591; HapkaM.2019, 15, 6712–672331670950]. SAPT(MC) is applied either with generalized valence
bond perfect pairing (GVB) or with complete active space self-consistent
field (CASSCF) treatment of the monomers. We discuss two model multireference
systems: the H2 ··· H2 dimer
in out-of-equilibrium geometries and interaction between the argon
atom and excited state of ethylene. Using the C2H4* ··· Ar complex as an example, we examine second-order
terms arising from negative transitions in the linear response function
of an excited monomer. We demonstrate that the negative-transition
terms must be accounted for to ensure qualitative prediction of induction
and dispersion energies and develop a procedure allowing for their
computation. Factors limiting the accuracy of SAPT(MC) are discussed
in comparison with other second-order SAPT schemes on a data set of
small single-reference dimers.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Przybytek
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
22
|
Khedkar A, Roemelt M. Modern multireference methods and their application in transition metal chemistry. Phys Chem Chem Phys 2021; 23:17097-17112. [PMID: 34355719 DOI: 10.1039/d1cp02640b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transition metal chemistry is a challenging playground for quantum chemical methods owing to the simultaneous presence of static and dynamic electron correlation effects in many systems. Wavefunction based multireference (MR) methods constitute a physically sound and systematically improvable Ansatz to deal with this complexity but suffer from some conceptual difficulties and high computational costs. The latter problem partially arises from the unfavorable scaling of the Full Configuration Interaction (Full-CI) problem which in the majority of MR methods is solved for a subset of the molecular orbital space, the so-called active space. In the last years multiple methods such as modern variants of selected CI, Full-CI Quantum Monte Carlo (FCIQMC) and the density matrix renormalization group (DMRG) have been developed that solve the Full-CI problem approximately for a fraction of the computational cost required by conventional techniques thereby significantly extending the range of applicability of modern MR methods. This perspective review outlines recent advancements in the field of MR electronic structure methods together with the resulting chances and challenges for theoretical studies in the field of transition metal chemistry. In light of its emerging importance a special focus is put on the selection of adequate active spaces and the concomitant development of numerous selection aides in recent years.
Collapse
Affiliation(s)
- Abhishek Khedkar
- Lehrstuhl für theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany.
| | | |
Collapse
|
23
|
Pernal K, Hapka M. Range‐separated multiconfigurational density functional theory methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Michał Hapka
- Lodz University of Technology Institute of Physics Lodz Poland
- Faculty of Chemistry University of Warsaw Warsaw Poland
| |
Collapse
|
24
|
Drwal D, Pastorczak E, Pernal K. Excited states in the adiabatic connection fluctuation-dissipation theory: Recovering missing correlation energy from the negative part of the density response spectrum. J Chem Phys 2021; 154:164102. [PMID: 33940850 DOI: 10.1063/5.0046852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The adiabatic connection (AC) theory offers an alternative to the perturbation theory methods for computing correlation energy in the multireference wavefunction framework. We show that the AC correlation energy formula can be expressed in terms of the density linear response function as a sum of components related to positive and negative parts of the transition energy spectrum. Consequently, generalization of the adiabatic connection fluctuation-dissipation theory to electronically excited states is obtained. The component of the linear response function related to the negative-transition energy enters the correlation energy expression with an opposite sign to that of the positive-transition part and is non-negligible in the description of excited states. To illustrate this, we analyze the approximate AC model in which the linear response function is obtained in the extended random phase approximation (ERPA). We demonstrate that AC can be successfully combined with the ERPA for excited states, provided that the negative-excitation component of the response function is rigorously accounted for. The resulting AC0D model, an extension of the AC0 scheme introduced in our earlier works, is applied to a benchmark set of singlet excitation energies of organic molecules. AC0D constitutes a significant improvement over AC0 by bringing the excitation energies of the lowest excited states to a satisfactory agreement with theoretical best estimates, which parallels or even exceeds the accuracy of the n-electron valence state perturbation theory method. For higher excitations, AC0D is less reliable due to the gradual deterioration of the underlying ERPA linear response.
Collapse
Affiliation(s)
- Daria Drwal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
25
|
Hapka M, Krzemińska A, Pernal K. How Much Dispersion Energy Is Included in the Multiconfigurational Interaction Energy? J Chem Theory Comput 2020; 16:6280-6293. [PMID: 32877179 PMCID: PMC7586340 DOI: 10.1021/acs.jctc.0c00681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 11/30/2022]
Abstract
We demonstrate how to quantify the amount of dispersion interaction recovered by supermolecular calculations with the multiconfigurational self-consistent field (MCSCF) wave functions. For this purpose, we present a rigorous derivation which connects the portion of dispersion interaction captured by the assumed wave function model-the residual dispersion interaction-with the size of the active space. Based on the obtained expression for the residual dispersion contribution, we propose a dispersion correction for the MCSCF that avoids correlation double counting. Numerical demonstration for model four-electron dimers in both ground and excited states described with the complete active space self-consistent field (CASSCF) reference serves as a proof-of-concept for the method. Accurate results, largely independent of the size of the active space, are obtained. For many-electron systems, routine CASSCF interaction energy calculations recover a tiny fraction of the full second-order dispersion energy. We found that the residual dispersion is non-negligible only for purely dispersion-bound complexes.
Collapse
Affiliation(s)
- Michał Hapka
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
- Faculty
of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Agnieszka Krzemińska
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
26
|
Maradzike E, Hapka M, Pernal K, DePrince AE. Reduced Density Matrix-Driven Complete Active Apace Self-Consistent Field Corrected for Dynamic Correlation from the Adiabatic Connection. J Chem Theory Comput 2020; 16:4351-4360. [PMID: 32538086 DOI: 10.1021/acs.jctc.0c00324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recently proposed multireference adiabatic connection (AC) formalism [Pernal, Phys. Rev. Lett. 120, 013001 (2018)] is applied to recover dynamic electron correlation effects lacking in variational two-electron reduced density matrix (v2RDM)-driven complete active space self-consistent field theory (CASSCF). The AC approach is validated by computing potential energy curves for the dissociation of molecular nitrogen and the symmetric double dissociation of H2O while enforcing two sets of approximate N-representability conditions in the underlying v2RDM-driven CASSCF calculations (either two-particle or two-particle plus partial three-particle conditions). The AC yields smaller absolute errors than second-order N-electron perturbation theory (NEVPT2) at all molecular geometries for both sets of the N-representability conditions considered. The efficacy of the approach for thermochemistry is also assessed for a set of 31 small-molecule reactions. When imposing partial three-particle N-representability conditions, mean and maximum unsigned errors in reaction energies from the AC are superior to those from NEVPT2.
Collapse
Affiliation(s)
- Elvis Maradzike
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.,Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
27
|
Vuckovic S, Fabiano E, Gori-Giorgi P, Burke K. MAP: An MP2 Accuracy Predictor for Weak Interactions from Adiabatic Connection Theory. J Chem Theory Comput 2020; 16:4141-4149. [PMID: 32379454 DOI: 10.1021/acs.jctc.0c00049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Second-order Møller-Plesset perturbation theory (MP2) approximates the exact Hartree-Fock (HF) adiabatic connection (AC) curve by a straight line. Thus, by using the deviation of the exact curve from the linear behavior, we construct an indicator for the accuracy of MP2. We then use an interpolation along the HF AC to transform the exact form of our indicator into a highly practical MP2 accuracy predictor (MAP) that comes at a negligible additional computational cost. We show that this indicator is already applicable to systems that dissociate into fragments with a nondegenerate ground state, and we illustrate its usefulness by applying it to the S22 and S66 datasets.
Collapse
Affiliation(s)
- Stefan Vuckovic
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, Lecce 73100, Italy
| | - Paola Gori-Giorgi
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling, FEW, Vrije Universiteit, De Boelelaan 1083, Amsterdam 1081HV, The Netherlands
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
28
|
Hoffmann R, Malrieu JP. Simulation vs. Understanding: A Tension, in Quantum Chemistry and Beyond. Part B. The March of Simulation, for Better or Worse. Angew Chem Int Ed Engl 2020; 59:13156-13178. [PMID: 31675462 DOI: 10.1002/anie.201910283] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Indexed: 11/08/2022]
Abstract
In the second part of this Essay, we leave philosophy, and begin by describing Roald's being trashed by simulation. This leads us to a general sketch of artificial intelligence (AI), Searle's Chinese room, and Strevens' account of what a go-playing program knows. Back to our terrain-we ask "Quantum Chemistry, † ca. 2020?" Then we move to examples of Big Data, machine learning and neural networks in action, first in chemistry and then affecting social matters, trivial to scary. We argue that moral decisions are hardly to be left to a computer. And that posited causes, even if recognized as provisional, represent a much deeper level of understanding than correlations. At this point, we try to pull the reader up, giving voice to the opposing view of an optimistic, limitless future. But we don't do justice to that view-how could we, older mammals on the way to extinction that we are? We try. But then we return to fuss, questioning the ascetic dimension of scientists, their romance with black boxes. And argue for a science of many tongues.
Collapse
Affiliation(s)
- Roald Hoffmann
- Dept. of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, USA
| | - Jean-Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques, Université de Toulouse 3, 118 route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
29
|
Hoffmann R, Malrieu J. Simulation vs. Understanding: A Tension, in Quantum Chemistry and Beyond. Part B. The March of Simulation, for Better or Worse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Roald Hoffmann
- Dept. of Chemistry and Chemical Biology Cornell University Ithaca NY 14850 USA
| | - Jean‐Paul Malrieu
- Laboratoire de Chimie et Physique Quantiques Université de Toulouse 3 118 route de Narbonne 31062 Toulouse France
| |
Collapse
|
30
|
Hapka M, Pastorczak E, Krzemińska A, Pernal K. Long-range-corrected multiconfiguration density functional with the on-top pair density. J Chem Phys 2020; 152:094102. [DOI: 10.1063/1.5138980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Michał Hapka
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Agnieszka Krzemińska
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
31
|
Baiardi A, Reiher M. The density matrix renormalization group in chemistry and molecular physics: Recent developments and new challenges. J Chem Phys 2020; 152:040903. [DOI: 10.1063/1.5129672] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Alberto Baiardi
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
32
|
Vu N, Mitxelena I, DePrince AE. An adiabatic connection for doubly-occupied configuration interaction wave functions. J Chem Phys 2019; 151:244121. [PMID: 31893894 DOI: 10.1063/1.5130660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An adiabatic connection (AC) is developed as an electron correlation correction for doubly occupied configuration interaction (DOCI) wave functions. Following the work of Pernal [Phys. Rev. Lett. 120, 013001 (2018)], the working equations of the approach, termed AC-DOCI, are rooted in the extended random phase approximation (ERPA) and require knowledge of only the ground-state two-electron reduced density matrix (2RDM) from the DOCI. As such, the AC is naturally suited to modeling electron correlation in variational 2RDM (v2RDM)-based approximations to the DOCI. The v2RDM-driven AC-DOCI is applied to the dissociation of molecular nitrogen and the double dissociation of water; the approach yields energies that are similar in quality to those from second-order multireference perturbation theory near equilibrium, but the quality of the AC-DOCI energy degrades at stretched geometries. The exact adiabatic connection path suggests the assumption that the one-electron reduced-density matrix is constant along the AC path is invalid at stretched geometries, but this deficiency alone cannot explain the observed behavior. Rather, it appears that the ERPA's single-particle-transition ansatz cannot, in general, provide good approximations to the 2RDM along the AC path. The AC-DOCI is also applied to a set of 45 reaction energies; for these systems, the approach has an average accuracy that is comparable to that of single-reference second-order many-body perturbation theory.
Collapse
Affiliation(s)
- Nam Vu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Ion Mitxelena
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), P.K. 1072, 20080 Donostia, Euskadi, Spain
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| |
Collapse
|
33
|
Hapka M, Przybytek M, Pernal K. Second-Order Exchange-Dispersion Energy Based on a Multireference Description of Monomers. J Chem Theory Comput 2019; 15:6712-6723. [PMID: 31670950 DOI: 10.1021/acs.jctc.9b00925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a method for calculation of the second-order exchange-dispersion energy in the framework of the symmetry-adapted perturbation theory (SAPT) for weakly interacting monomers described with multiconfigurational wave functions. The proposed formalism is based on response properties obtained from extended random phase approximation (ERPA) equations and assumes the single-exchange (S2) approximation. The approach is applicable to closed shell systems where static correlation cannot be neglected or to systems in nondegenerate excited states. We examine the new method in combination with either generalized valence bond perfect pairing (GVB) or complete active space self-consistent field (CASSCF) description of the interacting monomers. For model multireference dimers in ground states (H2···H2, Be···Be, He···H2), exchange-dispersion energies are reproduced accurately. For the interaction between the excited hydrogen molecule and the helium atom we found unacceptably large errors which is attributed to the neglect of diagonal double excitations in the employed approximation to the linear response function.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland.,Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Michał Przybytek
- Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Katarzyna Pernal
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| |
Collapse
|
34
|
Pastorczak E, Hapka M, Veis L, Pernal K. Capturing the Dynamic Correlation for Arbitrary Spin-Symmetry CASSCF Reference with Adiabatic Connection Approaches: Insights into the Electronic Structure of the Tetramethyleneethane Diradical. J Phys Chem Lett 2019; 10:4668-4674. [PMID: 31356083 DOI: 10.1021/acs.jpclett.9b01582] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The recently proposed approach to multireference dynamic correlation energy based on the adiabatic connection (AC) is extended to an arbitrary spin symmetry of the reference state. We show that both the spin-free AC approach and its computationally inexpensive approximation, AC0, when combined with a complete active space wave function, constitute viable alternatives to the perturbation-based and density-functional-based multiconfiguration methods. In particular, the AC0 approach, thanks to its favorable scaling with the system size and the size of the active space, allows for treating larger systems than its perturbation-based counterparts while maintaining comparable accuracy. We show the method's robustness on illustrative chemical systems, including the elusive tetramethyleneethane (TME) diradical, potential energy surfaces of which present a challenge to most computational approaches. For the latter system, AC0 outperforms other methods, staying in close agreement with the full configuration interaction quantum Monte Carlo benchmark. A careful analysis of the contributions to the correlation energy of TME's lowest singlet and triplet states reveals the subtle interplay of the dynamic and static correlation as the key to understanding the shape of the diradical's potential energy surfaces.
Collapse
Affiliation(s)
- Ewa Pastorczak
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| | - Michał Hapka
- Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic , v.v.i., Dolejškova 3 , 18223 Prague 8 , Czech Republic
| | - Katarzyna Pernal
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| |
Collapse
|
35
|
Pastorczak E, Jensen HJA, Kowalski PH, Pernal K. Generalized Valence Bond Perfect-Pairing Made Versatile Through Electron-Pairs Embedding. J Chem Theory Comput 2019; 15:4430-4439. [PMID: 31287698 DOI: 10.1021/acs.jctc.9b00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ewa Pastorczak
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | | | - Piotr H. Kowalski
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
36
|
Hapka M, Przybytek M, Pernal K. Second-Order Dispersion Energy Based on Multireference Description of Monomers. J Chem Theory Comput 2019; 15:1016-1027. [PMID: 30525591 DOI: 10.1021/acs.jctc.8b01058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We propose a method for calculating a second-order dispersion energy for weakly interacting multireference systems in arbitrary electronic states. It is based on response properties obtained from extended random phase approximation equations. The introduced formalism is general and requires only one- and two-particle reduced density matrices of monomers. We combine the new method with either generalized valence bond perfect pairing (GVB) or complete active space (CAS) self-consistent field description of the interacting systems. In addition to a general scheme, three approximations, leading to significant reduction of the computational cost, are developed by exploiting Dyall partitioning of the monomer Hamiltonians. For model multireference systems (H2···H2 and Be···Be) the method is accurate, unlike its single-reference-based counterpart. Neither GVB nor CAS description of single-reference monomers improves the dispersion energy with respect to the Hartree-Fock-based results.
Collapse
Affiliation(s)
- Michał Hapka
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland.,Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Michał Przybytek
- Faculty of Chemistry , University of Warsaw , ul. L. Pasteura 1 , 02-093 Warsaw , Poland
| | - Katarzyna Pernal
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| |
Collapse
|
37
|
Pernal K. Exact and approximate adiabatic connection formulae for the correlation energy in multireference ground and excited states. J Chem Phys 2018; 149:204101. [DOI: 10.1063/1.5048988] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland
| |
Collapse
|
38
|
Schriber JB, Hannon KP, Li C, Evangelista FA. A Combined Selected Configuration Interaction and Many-Body Treatment of Static and Dynamical Correlation in Oligoacenes. J Chem Theory Comput 2018; 14:6295-6305. [DOI: 10.1021/acs.jctc.8b00877] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jeffrey B. Schriber
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. Hannon
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Pastorczak E, Pernal K. Electronic Excited States from the Adiabatic-Connection Formalism with Complete Active Space Wave Functions. J Phys Chem Lett 2018; 9:5534-5538. [PMID: 30192553 DOI: 10.1021/acs.jpclett.8b02391] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is demonstrated how the recently proposed multireference adiabatic-connection (AC) approximation for electron correlation energy ( Pernal , K. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions . Phys. Rev. Lett. 2018 , 120 , 013001 ) can be extended to predicting correlation energy in excited states of molecules. It is the first successful application of the AC approach to computing excited-states energies of molecules using a complete active space (CAS) wave function as a reference. The unique feature of the AC-CAS approach with respect to popular methods such as CASPT2 and NEVPT2 is that it requires only one- and two-particle reduced density matrices, making it possible to efficiently treat large spaces of active electrons. Application of the simpler variant of AC, the AC0, which is based on the first-order expansion of the AC integrand at the uncorrelated system limit, to excited states yields excitation energies with accuracy rivaling that of the NEVPT2 method but at greatly reduced computational cost.
Collapse
Affiliation(s)
- Ewa Pastorczak
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| | - Katarzyna Pernal
- Institute of Physics , Lodz University of Technology , ul. Wolczanska 219 , 90-924 Lodz , Poland
| |
Collapse
|