1
|
Hu G, Liu P, Jensen L. Calculating Molecular Polarizabilities Using Exact Frozen Density Embedding with External Orthogonality. J Chem Theory Comput 2024. [PMID: 39105755 DOI: 10.1021/acs.jctc.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Frozen density embedding (FDE) with freeze-thaw cycles is a formally exact embedding scheme. In practice, this method is limited to systems with small density overlaps when approximate nonadditive kinetic energy functionals are used. It has been shown that the use of approximate nonadditive kinetic energy functionals can be avoided when external orthogonality (EO) is enforced, and FDE can then generate exact results even for strongly overlapping subsystems. In this work, we present an implementation of exact FDEc-EO (coupled FDE TDDFT with EO) for the calculation of polarizabilities in the Amsterdam density functional program package. EO is enforced using the level-shift projection operator method, which ensures that orbitals between fragments are orthogonal. For pure functionals, we show that only the symmetric EO contributions to the induced density matrix are needed. This leads to a simplified implementation for the calculation of polarizability that can exactly reproduce the supermolecular TDDFT results. We further discuss the limitation of exact FDEc-EO in interpreting subsystem polarizabilities due to the nonunique partitioning of the total density. We show that this limitation is due to the fact that subsystem polarizability partitioning is dependent on how the subsystems are initially polarized. As supermolecular virtual orbitals are exactly reproduced, this dependence is attributed to the description of the occupied orbitals. In contrast, for excitations of subsystems that are localized within one subsystem, we show that the excitation energies are stable with respect to the order of polarization. This observation shows that impacts from the nonunique nature of exact FDE on subsystem properties can be minimized by better fragmentation of the supermolecular systems if the property is localized. For global properties like polarizability, this is not the case, and nonuniqueness remains independent of the fragmentation used.
Collapse
Affiliation(s)
- Gaohe Hu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Pengchong Liu
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, 104 Benkovic Building, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Khadka D, Jayasinghe-Arachchige VM, Prabhakar R, Ramamurthy V. Application of molecular dynamic simulations in modeling the excited state behavior of confined molecules. Photochem Photobiol Sci 2023:10.1007/s43630-023-00486-2. [PMID: 37843722 DOI: 10.1007/s43630-023-00486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Relative to isotropic organic solvent medium, the structure and conformation of a reactant molecule in an organized and confining medium are often different. In addition, because of the rigidity of the immediate environment, the reacting molecule have a little freedom to undergo large changes even upon gaining energy or modifications in the electronic structure. These alterations give rise to differences in the photochemistry of a molecular and supramolecular species. In this study, one such example is presented. α-Alkyl dibenzylketones upon excitation in isotropic solvents give products via Norrish type I and type II reactions that are independent of the chain length of the alkyl substituent. On the other hand, when these molecules are enclosed within an organic capsule of volume ~ 550 Å3, they give products that are strikingly dependent on the length of the α-alkyl substitution. These previously reported experimental observations are rationalized based on the structures generated by molecular modeling (docking and molecular dynamics (MD) simulations). It is shown that MD simulations that are utilized extensively in biologically important macromolecules can also be useful to understand the excited state behavior of reactive molecules that are part of supramolecular assemblies. These simulations can provide structural information of the reactant molecule and the surroundings complementing that with the one obtained from 1 and 2D NMR experiments. MD simulated structures of seven α-alkyl dibenzylketones encapsulated within the octa acid capsule provide a clear understanding of their unique behavior in this restricted medium. Because of the rigidity of the medium, these structures although generated in the ground state can rationalize the photochemical behavior of the molecules in the excited state.
Collapse
Affiliation(s)
- Dipendra Khadka
- Department of Chemistry, University of Miami, Coral Gables, FL, 33124, USA
| | | | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, Coral Gables, FL, 33124, USA.
| | | |
Collapse
|
3
|
Vögele J, Duchardt-Ferner E, Kruse H, Zhang Z, Sponer J, Krepl M, Wöhnert J. Structural and dynamic effects of pseudouridine modifications on noncanonical interactions in RNA. RNA (NEW YORK, N.Y.) 2023; 29:790-807. [PMID: 36868785 PMCID: PMC10187676 DOI: 10.1261/rna.079506.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Pseudouridine is the most frequently naturally occurring RNA modification, found in all classes of biologically functional RNAs. Compared to uridine, pseudouridine contains an additional hydrogen bond donor group and is therefore widely regarded as a structure stabilizing modification. However, the effects of pseudouridine modifications on the structure and dynamics of RNAs have so far only been investigated in a limited number of different structural contexts. Here, we introduced pseudouridine modifications into the U-turn motif and the adjacent U:U closing base pair of the neomycin-sensing riboswitch (NSR)-an extensively characterized model system for RNA structure, ligand binding, and dynamics. We show that the effects of replacing specific uridines with pseudouridines on RNA dynamics crucially depend on the exact location of the replacement site and can range from destabilizing to locally or even globally stabilizing. By using a combination of NMR spectroscopy, MD simulations and QM calculations, we rationalize the observed effects on a structural and dynamical level. Our results will help to better understand and predict the consequences of pseudouridine modifications on the structure and function of biologically important RNAs.
Collapse
Affiliation(s)
- Jennifer Vögele
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Zhengyue Zhang
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
- CEITEC-Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jiri Sponer
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438 Frankfurt, Germany
| |
Collapse
|
4
|
Mráziková K, Kruse H, Mlýnský V, Auffinger P, Šponer J. Multiscale Modeling of Phosphate···π Contacts in RNA U-Turns Exposes Differences between Quantum-Chemical and AMBER Force Field Descriptions. J Chem Inf Model 2022; 62:6182-6200. [PMID: 36454943 DOI: 10.1021/acs.jcim.2c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Phosphate···π, also called anion···π, contacts occur between nucleobases and anionic phosphate oxygens (OP2) in r(GNRA) and r(UNNN) U-turn motifs (N = A,G,C,U; R = A,G). These contacts were investigated using state-of-the-art quantum-chemical methods (QM) to characterize their physicochemical properties and to serve as a reference to evaluate AMBER force field (AFF) performance. We found that phosphate···π interaction energies calculated with the AFF for dimethyl phosphate···nucleobase model systems are less stabilizing in comparison with double-hybrid DFT and that minimum contact distances are larger for all nucleobases. These distance stretches are also observed in large-scale AFF vs QM/MM computations and classical molecular dynamics (MD) simulations on several r(gcGNRAgc) tetraloop hairpins when compared to experimental data extracted from X-ray/cryo-EM structures (res. ≤ 2.5 Å) using the WebFR3D bioinformatic tool. MD simulations further revealed shifted OP2/nucleobase positions. We propose that discrepancies between the QM and AFF result from a combination of missing polarization in the AFF combined with too large AFF Lennard-Jones (LJ) radii of nucleobase carbon atoms in addition to an exaggerated short-range repulsion of the r-12 LJ repulsive term. We compared these results with earlier data gathered on lone pair···π contacts in CpG Z-steps occurring in r(UNCG) tetraloops. In both instances, charge transfer calculations do not support any significant n → π* donation effects. We also investigated thiophosphate···π contacts that showed reduced stabilizing interaction energies when compared to phosphate···π contacts. Thus, we challenge suggestions that the experimentally observed enhanced thermodynamic stability of phosphorothioated r(GNRA) tetraloops can be explained by larger London dispersion.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg67084, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65Brno, Czech Republic
| |
Collapse
|
5
|
Paloncýová M, Pykal M, Kührová P, Banáš P, Šponer J, Otyepka M. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204408. [PMID: 36216589 DOI: 10.1002/smll.202204408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Utilization of nucleic acids (NAs) in nanotechnologies and nanotechnology-related applications is a growing field with broad application potential, ranging from biosensing up to targeted cell delivery. Computer simulations are useful techniques that can aid design and speed up development in this field. This review focuses on computer simulations of hybrid nanomaterials composed of NAs and other components. Current state-of-the-art molecular dynamics simulations, empirical force fields (FFs), and coarse-grained approaches for the description of deoxyribonucleic acid and ribonucleic acid are critically discussed. Challenges in combining biomacromolecular and nanomaterial FFs are emphasized. Recent applications of simulations for modeling NAs and their interactions with nano- and biomaterials are overviewed in the fields of sensing applications, targeted delivery, and NA templated materials. Future perspectives of development are also highlighted.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Martin Pykal
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Petra Kührová
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Pavel Banáš
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
| | - Jiří Šponer
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, v. v. i., Královopolská 135, Brno, 612 65, Czech Republic
| | - Michal Otyepka
- Regional Center of Advanced Technologies and Materials, The Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 779 00, Czech Republic
- IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
6
|
Pokorná P, Krepl M, Campagne S, Šponer J. Conformational Heterogeneity of RNA Stem-Loop Hairpins Bound to FUS-RNA Recognition Motif with Disordered RGG Tail Revealed by Unbiased Molecular Dynamics Simulations. J Phys Chem B 2022; 126:9207-9221. [PMID: 36348631 DOI: 10.1021/acs.jpcb.2c06168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
RNA-protein complexes use diverse binding strategies, ranging from structurally well-defined interfaces to completely disordered regions. Experimental characterization of flexible segments is challenging and can be aided by atomistic molecular dynamics (MD) simulations. Here, we used an extended set of microsecond-scale MD trajectories (400 μs in total) to study two FUS-RNA constructs previously characterized by nuclear magnetic resonance (NMR) spectroscopy. The FUS protein contains a well-structured RNA recognition motif domain followed by a presumably disordered RGG tail that binds RNA stem-loop hairpins. Our simulations not only provide several suggestions complementing the experiments but also reveal major methodological difficulties in studies of such complex RNA-protein interfaces. Despite efforts to stabilize the binding via system-specific force-field adjustments, we have observed progressive distortions of the RNA-protein interface inconsistent with experimental data. We propose that the dynamics is so rich that its converged description is not achievable even upon stabilizing the system. Still, after careful analysis of the trajectories, we have made several suggestions regarding the binding. We identify substates in the RNA loops, which can explain the NMR data. The RGG tail localized in the minor groove remains disordered, sampling countless transient interactions with the RNA. There are long-range couplings among the different elements contributing to the recognition, which can lead to allosteric communication throughout the system. Overall, the RNA-FUS systems form dynamical ensembles that cannot be fully represented by single static structures. Thus, albeit imperfect, MD simulations represent a viable tool to investigate dynamic RNA-protein complexes.
Collapse
Affiliation(s)
- Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Sébastien Campagne
- INSERM U1212, CNRS UMR 5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
7
|
Bheemireddy S, Sandhya S, Srinivasan N, Sowdhamini R. Computational tools to study RNA-protein complexes. Front Mol Biosci 2022; 9:954926. [PMID: 36275618 PMCID: PMC9585174 DOI: 10.3389/fmolb.2022.954926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
RNA is the key player in many cellular processes such as signal transduction, replication, transport, cell division, transcription, and translation. These diverse functions are accomplished through interactions of RNA with proteins. However, protein–RNA interactions are still poorly derstood in contrast to protein–protein and protein–DNA interactions. This knowledge gap can be attributed to the limited availability of protein-RNA structures along with the experimental difficulties in studying these complexes. Recent progress in computational resources has expanded the number of tools available for studying protein-RNA interactions at various molecular levels. These include tools for predicting interacting residues from primary sequences, modelling of protein-RNA complexes, predicting hotspots in these complexes and insights into derstanding in the dynamics of their interactions. Each of these tools has its strengths and limitations, which makes it significant to select an optimal approach for the question of interest. Here we present a mini review of computational tools to study different aspects of protein-RNA interactions, with focus on overall application, development of the field and the future perspectives.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sankaran Sandhya
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, M.S. Ramaiah University of Applied Sciences, Bengaluru, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| | | | - Ramanathan Sowdhamini
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bangalore, India
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, India
- *Correspondence: Sankaran Sandhya, ; Ramanathan Sowdhamini,
| |
Collapse
|
8
|
Jing Z, Ren P. Molecular Dynamics Simulations of Protein RNA Complexes by Using an Advanced Electrostatic Model. J Phys Chem B 2022; 126:7343-7353. [PMID: 36107618 PMCID: PMC9530969 DOI: 10.1021/acs.jpcb.2c05278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-RNA interactions are integral to the biological functions of RNA. It is well recognized that molecular dynamics (MD) simulations of protein-RNA complexes are more challenging than those of each component. The difficulty arises from the strong electrostatic interactions and the delicate balance between various types of physical forces at the interface. Previously, MD simulations of protein-RNA complexes have predominantly employed fixed-charge force fields. Although force field modifications have been developed to address problems identified in the simulations, some protein-RNA structures are still hard to reproduce by simulations. Here, we present MD simulations of two representative protein-RNA complexes using the AMOEBA polarizable force field. The van der Waals parameters were refined to reproduce accurate quantum-mechanical data of base-base and base-amino acid interactions. It was found that the refined parameters produced a more stable hydrogen-bond network in the interface. One of the complexes remained stable during the short simulations, whereas it could quickly break down in previous simulations using fixed-charge force fields. There was reversible breaking and formation of hydrogen bonds that are observed in the crystal structure, which may indicate the difference in solution and crystal structures. While further improvement and validation of the force fields are still needed, this work demonstrates that polarizable force fields are promising for the study of protein-RNA complexes.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
9
|
Mahdizadeh SJ, Pålsson E, Carlesso A, Chevet E, Eriksson LA. QM/MM Well-Tempered Metadynamics Study of the Mechanism of XBP1 mRNA Cleavage by Inositol Requiring Enzyme 1α RNase. J Chem Inf Model 2022; 62:4247-4260. [PMID: 35960929 PMCID: PMC9472280 DOI: 10.1021/acs.jcim.2c00735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A range of in silico methodologies were herein employed to study the unconventional XBP1 mRNA cleavage mechanism performed by the unfolded protein response (UPR) mediator Inositol Requiring Enzyme 1α (IRE1). Using Protein-RNA molecular docking along with a series of extensive restrained/unrestrained atomistic molecular dynamics (MD) simulations, the dynamical behavior of the system was evaluated and a reliable model of the IRE1/XBP1 mRNA complex was constructed. From a series of well-converged quantum mechanics molecular mechanics well-tempered metadynamics (QM/MM WT-MetaD) simulations using the Grimme dispersion interaction corrected semiempirical parametrization method 6 level of theory (PM6-D3) and the AMBER14SB-OL3 force field, the free energy profile of the cleavage mechanism was determined, along with intermediates and transition state structures. The results show two distinct reaction paths based on general acid-general base type mechanisms, with different activation energies that perfectly match observations from experimental mutagenesis data. The study brings unique atomistic insights into the cleavage mechanism of XBP1 mRNA by IRE1 and clarifies the roles of the catalytic residues H910 and Y892. Increased understanding of the details in UPR signaling can assist in the development of new therapeutic agents for its modulation.
Collapse
Affiliation(s)
- Sayyed Jalil Mahdizadeh
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Emil Pålsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Antonio Carlesso
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden.,Faculty of Biomedical Sciences, Euler Institute, Università della Svizzera Italiana (USI),, Lugano 6904, Switzerland.,Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes 1, 35000 Rennes, France.,Centre Eugène Marquis, 35000 Rennes, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
10
|
Maier S, Thapa B, Erickson J, Raghavachari K. Comparative assessment of QM-based and MM-based models for prediction of protein-ligand binding affinity trends. Phys Chem Chem Phys 2022; 24:14525-14537. [PMID: 35661842 DOI: 10.1039/d2cp00464j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Methods which accurately predict protein-ligand binding strengths are critical for drug discovery. In the last two decades, advances in chemical modelling have enabled steadily accelerating progress in the discovery and optimization of structure-based drug design. Most computational methods currently used in this context are based on molecular mechanics force fields that often have deficiencies in describing the quantum mechanical (QM) aspects of molecular binding. In this study, we show the competitiveness of our QM-based Molecules-in-Molecules (MIM) fragmentation method for characterizing binding energy trends for seven different datasets of protein-ligand complexes. By using molecular fragmentation, the MIM method allows for accelerated QM calculations. We demonstrate that for classes of structurally similar ligands bound to a common receptor, MIM provides excellent correlation to experiment, surpassing the more popular Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics Generalized Born Surface Area (MM/GBSA) methods. The MIM method offers a relatively simple, well-defined protocol by which binding trends can be ascertained at the QM level and is suggested as a promising option for lead optimization in structure-based drug design.
Collapse
Affiliation(s)
- Sarah Maier
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Bishnu Thapa
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA. .,Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 47285, USA
| | - Jon Erickson
- Lilly Research Laboratories, Eli Lilly & Co., Indianapolis, Indiana 47285, USA
| | | |
Collapse
|
11
|
Tzeliou CE, Mermigki MA, Tzeli D. Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules 2022; 27:molecules27092660. [PMID: 35566011 PMCID: PMC9105939 DOI: 10.3390/molecules27092660] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
The multiscaling quantum mechanics/molecular mechanics (QM/MM) approach was introduced in 1976, while the extensive acceptance of this methodology started in the 1990s. The combination of QM/MM approach with molecular dynamics (MD) simulation, otherwise known as the QM/MM/MD approach, is a powerful and promising tool for the investigation of chemical reactions’ mechanism of complex molecular systems, drug delivery, properties of molecular devices, organic electronics, etc. In the present review, the main methodologies in the multiscaling approaches, i.e., density functional theory (DFT), semiempirical methodologies (SE), MD simulations, MM, and their new advances are discussed in short. Then, a review on calculations and reactions on metalloproteins is presented, where particular attention is given to nitrogenase that catalyzes the conversion of atmospheric nitrogen molecules N₂ into NH₃ through the process known as nitrogen fixation and the FeMo-cofactor.
Collapse
Affiliation(s)
- Christina Eleftheria Tzeliou
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Markella Aliki Mermigki
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 157 71 Athens, Greece; (C.E.T.); (M.A.M.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 116 35 Athens, Greece
- Correspondence: ; Tel.: +30-210-727-4307
| |
Collapse
|
12
|
Giacobelli VG, Fujishima K, Lepšík M, Tretyachenko V, Kadavá T, Makarov M, Bednárová L, Novák P, Hlouchová K. In vitro evolution reveals non-cationic protein-RNA interaction mediated by metal ions. Mol Biol Evol 2022; 39:6524634. [PMID: 35137196 PMCID: PMC8892947 DOI: 10.1093/molbev/msac032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA–peptide/protein interactions have been of utmost importance to life since its earliest forms, reaching even before the last universal common ancestor (LUCA). However, the ancient molecular mechanisms behind this key biological interaction remain enigmatic because extant RNA–protein interactions rely heavily on positively charged and aromatic amino acids that were absent (or heavily under-represented) in the early pre-LUCA evolutionary period. Here, an RNA-binding variant of the ribosomal uL11 C-terminal domain was selected from an approximately 1010 library of partially randomized sequences, all composed of ten prebiotically plausible canonical amino acids. The selected variant binds to the cognate RNA with a similar overall affinity although it is less structured in the unbound form than the wild-type protein domain. The variant complex association and dissociation are both slower than for the wild-type, implying different mechanistic processes involved. The profile of the wild-type and mutant complex stabilities along with molecular dynamics simulations uncovers qualitative differences in the interaction modes. In the absence of positively charged and aromatic residues, the mutant uL11 domain uses ion bridging (K+/Mg2+) interactions between the RNA sugar-phosphate backbone and glutamic acid residues as an alternative source of stabilization. This study presents experimental support to provide a new perspective on how early protein–RNA interactions evolved, where the lack of aromatic/basic residues may have been compensated by acidic residues plus metal ions.
Collapse
Affiliation(s)
- Valerio G Giacobelli
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague, 12800, Czech Republic
| | - Kosuke Fujishima
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 1528550, Japan.,Graduate School of Media and Governance, Keio University, Fujisawa, 2520882, Japan
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - Vyacheslav Tretyachenko
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague, 12800, Czech Republic
| | - Tereza Kadavá
- Department of Biochemistry, Faculty of Science, Charles University, Prague, 12800, Czech Republic
| | - Mikhail Makarov
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague, 12800, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, 16610, Czech Republic
| | - Petr Novák
- Institute of Microbiology, The Czech Academy of Sciences, Vestec, 25250, Czech Republic
| | - Klára Hlouchová
- Department of Cell Biology, Faculty of Science, Charles University, BIOCEV, Prague, 12800, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, 16610, Czech Republic
| |
Collapse
|
13
|
Multiscale Modeling of Wobble to Watson-Crick-Like Guanine-Uracil Tautomerization Pathways in RNA. Int J Mol Sci 2021; 22:ijms22115411. [PMID: 34063755 PMCID: PMC8196565 DOI: 10.3390/ijms22115411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 01/02/2023] Open
Abstract
Energetically unfavorable Watson–Crick (WC)-like tautomeric forms of nucleobases are known to introduce spontaneous mutations, and contribute to replication, transcription, and translation errors. Recent NMR relaxation dispersion techniques were able to show that wobble (w) G•U mispair exists in equilibrium with the short-lived, low-population WC-like enolic tautomers. Presently, we have investigated the wG•U → WC-like enolic reaction pathway using various theoretical methods: quantum mechanics (QM), molecular dynamics (MD), and combined quantum mechanics/molecular mechanics (QM/MM). The previous studies on QM gas phase calculations were inconsistent with experimental data. We have also explored the environmental effects on the reaction energies by adding explicit water. While the QM-profile clearly becomes endoergic in the presence of water, the QM/MM-profile remains consistently endoergic in the presence and absence of water. Hence, by including microsolvation and QM/MM calculations, the experimental data can be explained. For the G•Uenol→ Genol•U pathway, the latter appears to be energetically more favorable throughout all computational models. This study can be considered as a benchmark of various computational models of wG•U to WC-like tautomerization pathways with and without the environmental effects, and may contribute on further studies of other mispairs as well.
Collapse
|
14
|
Zhang Z, Vögele J, Mráziková K, Kruse H, Cang X, Wöhnert J, Krepl M, Šponer J. Phosphorothioate Substitutions in RNA Structure Studied by Molecular Dynamics Simulations, QM/MM Calculations, and NMR Experiments. J Phys Chem B 2021; 125:825-840. [PMID: 33467852 DOI: 10.1021/acs.jpcb.0c10192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Phosphorothioates (PTs) are important chemical modifications of the RNA backbone where a single nonbridging oxygen of the phosphate is replaced with a sulfur atom. PT can stabilize RNAs by protecting them from hydrolysis and is commonly used as a tool to explore their function. It is, however, unclear what basic physical effects PT has on RNA stability and electronic structure. Here, we present molecular dynamics (MD) simulations, quantum mechanical (QM) calculations, and NMR spectroscopy measurements, exploring the effects of PT modifications in the structural context of the neomycin-sensing riboswitch (NSR). The NSR is the smallest biologically functional riboswitch with a well-defined structure stabilized by a U-turn motif. Three of the signature interactions of the U-turn: an H-bond, an anion-π interaction, and a potassium binding site; are formed by RNA phosphates, making the NSR an ideal model for studying how PT affects RNA structure and dynamics. By comparing with high-level QM calculations, we reveal the distinct physical properties of the individual interactions facilitated by the PT. The sulfur substitution, besides weakening the direct H-bond interaction, reduces the directionality of H-bonding while increasing its dispersion and induction components. It also reduces the induction and increases the dispersion component of the anion-π stacking. The sulfur force-field parameters commonly employed in the literature do not reflect these distinctions, leading to the unsatisfactory description of PT in simulations of the NSR. We show that it is not possible to accurately describe the PT interactions using one universal set of van der Waals sulfur parameters and provide suggestions for improving the force-field performance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic
| | - Jennifer Vögele
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Klaudia Mráziková
- Faculty of Science, Masaryk University, Kotlarska 2, 602 00 Brno, Czech Republic.,Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Xiaohui Cang
- Institute of Genetics, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jens Wöhnert
- Institute of Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.,Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
15
|
Gonzalez TR, Martin KP, Barnes JE, Patel JS, Ytreberg FM. Assessment of software methods for estimating protein-protein relative binding affinities. PLoS One 2020; 15:e0240573. [PMID: 33347442 PMCID: PMC7751979 DOI: 10.1371/journal.pone.0240573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022] Open
Abstract
A growing number of computational tools have been developed to accurately and rapidly predict the impact of amino acid mutations on protein-protein relative binding affinities. Such tools have many applications, for example, designing new drugs and studying evolutionary mechanisms. In the search for accuracy, many of these methods employ expensive yet rigorous molecular dynamics simulations. By contrast, non-rigorous methods use less exhaustive statistical mechanics, allowing for more efficient calculations. However, it is unclear if such methods retain enough accuracy to replace rigorous methods in binding affinity calculations. This trade-off between accuracy and computational expense makes it difficult to determine the best method for a particular system or study. Here, eight non-rigorous computational methods were assessed using eight antibody-antigen and eight non-antibody-antigen complexes for their ability to accurately predict relative binding affinities (ΔΔG) for 654 single mutations. In addition to assessing accuracy, we analyzed the CPU cost and performance for each method using a variety of physico-chemical structural features. This allowed us to posit scenarios in which each method may be best utilized. Most methods performed worse when applied to antibody-antigen complexes compared to non-antibody-antigen complexes. Rosetta-based JayZ and EasyE methods classified mutations as destabilizing (ΔΔG < -0.5 kcal/mol) with high (83-98%) accuracy and a relatively low computational cost for non-antibody-antigen complexes. Some of the most accurate results for antibody-antigen systems came from combining molecular dynamics with FoldX with a correlation coefficient (r) of 0.46, but this was also the most computationally expensive method. Overall, our results suggest these methods can be used to quickly and accurately predict stabilizing versus destabilizing mutations but are less accurate at predicting actual binding affinities. This study highlights the need for continued development of reliable, accessible, and reproducible methods for predicting binding affinities in antibody-antigen proteins and provides a recipe for using current methods.
Collapse
Affiliation(s)
- Tawny R. Gonzalez
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
| | - Kyle P. Martin
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Jonathan E. Barnes
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| | - Jagdish Suresh Patel
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - F. Marty Ytreberg
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, United States of America
- Department of Physics, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
16
|
Mráziková K, Mlýnský V, Kührová P, Pokorná P, Kruse H, Krepl M, Otyepka M, Banáš P, Šponer J. UUCG RNA Tetraloop as a Formidable Force-Field Challenge for MD Simulations. J Chem Theory Comput 2020; 16:7601-7617. [PMID: 33215915 DOI: 10.1021/acs.jctc.0c00801] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Explicit solvent atomistic molecular dynamics (MD) simulations represent an established technique to study structural dynamics of RNA molecules and an important complement for diverse experimental methods. However, performance of molecular mechanical (MM) force fields (ff's) remains far from satisfactory even after decades of development, as apparent from a problematic structural description of some important RNA motifs. Actually, some of the smallest RNA molecules belong to the most challenging systems for MD simulations and, among them, the UUCG tetraloop is saliently difficult. We report a detailed analysis of UUCG MD simulations, depicting the sequence of events leading to the loss of the UUCG native state during MD simulations. The total amount of MD simulation data analyzed in this work is close to 1.3 ms. We identify molecular interactions, backbone conformations, and substates that are involved in the process. Then, we unravel specific ff deficiencies using diverse quantum mechanical/molecular mechanical (QM/MM) and QM calculations. Comparison between the MM and QM methods shows discrepancies in the description of the 5'-flanking phosphate moiety and both signature sugar-base interactions. Our work indicates that poor behavior of the UUCG tetraloop in simulations is a complex issue that cannot be attributed to one dominant and straightforwardly correctable factor. Instead, there is a concerted effect of multiple ff inaccuracies that are coupled and amplifying each other. We attempted to improve the simulation behavior by some carefully tailored interventions, but the results were still far from satisfactory, underlying the difficulties in development of accurate nucleic acid ff's.
Collapse
Affiliation(s)
- Klaudia Mráziková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavlína Pokorná
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Holger Kruse
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michal Otyepka
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Pavel Banáš
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic.,Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
17
|
Siani P, Motta S, Ferraro L, Dohn AO, Di Valentin C. Dopamine-Decorated TiO 2 Nanoparticles in Water: A QM/MM vs an MM Description. J Chem Theory Comput 2020; 16:6560-6574. [PMID: 32880452 PMCID: PMC7735700 DOI: 10.1021/acs.jctc.0c00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Nanoparticle functionalization
is a modern strategy in nanotechnology
to build up devices for several applications. Modeling fully decorated
metal oxide nanoparticles of realistic size (few nanometers) in an
aqueous environment is a challenging task. In this work, we present
a case study relevant for solar-light exploitation and for biomedical
applications, i.e., a dopamine-functionalized TiO2 nanoparticle
(1700 atoms) in bulk water, for which we have performed an extensive
comparative investigation with both MM and QM/MM approaches of the
structural properties and of the conformational dynamics. We have
used a combined multiscale protocol for a more efficient exploration
of the complex conformational space. On the basis of the results of
this study and of some QM and experimental data, we have defined strengths
and limitations of the existing force field parameters. Our findings
will be useful for an improved modeling and simulation of many other
similar hybrid bioinorganic nanosystems in an aqueous environment
that are pivotal in a broad range of nanotechnological applications.
Collapse
Affiliation(s)
- Paulo Siani
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Stefano Motta
- Dipartimento di Scienze dell'Ambiente e della Terra, Università di Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Lorenzo Ferraro
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark.,Faculty of Physical Sciences and Science Institute, University of Iceland, 107 Reykjavík, Iceland
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, 20125 Milano, Italy
| |
Collapse
|
18
|
Khrenova MG, Tsirelson VG, Nemukhin AV. Dynamical properties of enzyme-substrate complexes disclose substrate specificity of the SARS-CoV-2 main protease as characterized by the electron density descriptors. Phys Chem Chem Phys 2020; 22:19069-19079. [PMID: 32812956 DOI: 10.1039/d0cp03560b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dynamical approach is proposed to discriminate between reactive (rES) and nonreactive (nES) enzyme-substrate complexes taking the SARS-CoV-2 main protease (Mpro) as an important example. Molecular dynamics simulations with the quantum mechanics/molecular mechanics potentials (QM(DFT)/MM-MD) followed by the electron density analysis are employed to evaluate geometry and electronic properties of the enzyme with different substrates along MD trajectories. We demonstrate that mapping the Laplacian of the electron density and the electron localization function provides easily visible images of the substrate activation that allow one to distinguish rES and nES. The computed fractions of reactive enzyme-substrate complexes along MD trajectories well correlate with the findings of recent experimental studies on the substrate specificity of Mpro. The results of our simulations demonstrate the role of the theory level used in QM subsystems for a proper description of the nucleophilic attack of the catalytic cysteine residue in Mpro. The activation of the carbonyl group of a substrate is correctly characterized with the hybrid DFT functional PBE0, whereas the use of a GGA-type PBE functional, that lacks the admixture of the Hartree-Fock exchange fails to describe activation.
Collapse
Affiliation(s)
- Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect, 33, bld. 2, Moscow, 119071, Russia and Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vladimir G Tsirelson
- Mendeleev University of Chemical Technology, Miusskaya Square, 9, Moscow, 125047, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia. and Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
19
|
Ohri A, P Seelam P, Sharma P. A quantum chemical view of the interaction of RNA nucleobases and base pairs with the side chains of polar amino acids. J Biomol Struct Dyn 2020; 39:5411-5426. [PMID: 32662328 DOI: 10.1080/07391102.2020.1787225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydrogen bonding between amino acids and nucleobases is important for RNA-protein recognition. As a first step toward understanding the physicochemical features of these contacts, the present work employs density functional theory calculations to critically analyze the intrinsic structures and strength of all theoretically possible model hydrogen-bonded complexes involving RNA nucleobase edges and polar amino acid side chains. Our geometry optimizations uncover a number of unique complexes that involve variable hydrogen-bonding characteristics, including conventional donor-acceptor interactions, bifurcated interactions and single hydrogen-bonded contacts. Further, significant strength of these complexes in the gas phase (-27 kJ mol-1 to -226 kJ mol-1) and solvent phase (-19 kJ mol-1 to -78 kJ mol-1) points toward the ability of associated contacts to provide stability to RNA-protein complexes. More importantly, for the first time, our study uncovers the features of complexes involving protonated nucleobases, as well as those involving the weakly polar cysteine side chain, and thereby highlights their potential importance in biological processes that involve RNA-protein interactions. Additional analysis on select base pair-amino acid complexes uncovers the ability of amino acid side chain to simultaneously interact with both nucleobases of the base pair, and highlights the greater strength of such interactions compared to base-amino acid interactions. Overall, our analysis provides a basic physicochemical framework for understanding the molecular basis of nucleic acid-protein interactions. Further, our quantum chemical data can be used to design better algorithms for automated search of these contacts at the RNA-protein interface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashita Ohri
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | - Preethi P Seelam
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana, India.,Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| |
Collapse
|
20
|
Dong C, Montes M, Al-Sawai WM. Xanthine oxidoreductase inhibition – A review of computational aspect. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620400088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Xanthine Oxidoreductase (XOR) exists in a variety of organisms from bacteria to humans and catalyzes the oxidation of hypoxanthine to xanthine and from xanthine to uric acid. Excessive uric acid could lead to gout and hyperuricemia. In this paper, we have reviewed the recent computational studies on xanthine oxidase inhibition. Computational methods, such as molecular dynamics (molecular mechanics), quantum mechanics, and quantum mechanics/molecular mechanics (QM/MM), have been employed to investigate the binding affinity of xanthine oxidase with synthesized and isolated nature inhibitors. The limitations of different computational methods for xanthine oxidase inhibition studies were also discussed. Implications of the computational approach could be used to help to understand the existing arguments on substrate/product orientation in xanthine oxidase inhibition, which allows designing new inhibitors with higher efficacy.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| | - Milka Montes
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| | - Wael M. Al-Sawai
- Department of Mathematics & Physics, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| |
Collapse
|
21
|
Mehmood R, Kulik HJ. Both Configuration and QM Region Size Matter: Zinc Stability in QM/MM Models of DNA Methyltransferase. J Chem Theory Comput 2020; 16:3121-3134. [PMID: 32243149 DOI: 10.1021/acs.jctc.0c00153] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantum-mechanical/molecular-mechanical (QM/MM) methods are essential to the study of metalloproteins, but the relative importance of sampling and degree of QM treatment in achieving quantitative predictions is poorly understood. We study the relative magnitude of configurational and QM-region sensitivity of energetic and electronic properties in a representative Zn2+ metal binding site of a DNA methyltransferase. To quantify property variations, we analyze snapshots extracted from 250 ns of molecular dynamics simulation. To understand the degree of QM-region sensitivity, we perform analysis using QM regions ranging from a minimal 49-atom region consisting only of the Zn2+ metal and its four coordinating Cys residues up to a 628-atom QM region that includes residues within 12 Å of the metal center. Over the configurations sampled, we observe that illustrative properties (e.g., rigid Zn2+ removal energy) exhibit large fluctuations that are well captured with even minimal QM regions. Nevertheless, for both energetic and electronic properties, we observe a slow approach to asymptotic limits with similarly large changes in absolute values that converge only with larger (ca. 300-atom) QM region sizes. For the smaller QM regions, the electronic description of Zn2+ binding is incomplete: the metal binds too tightly and is too stabilized by the strong electrostatic potential of MM point charges, and the Zn-S bond covalency is overestimated. Overall, this work suggests that efficient sampling with QM/MM in small QM regions is an effective method to explore the influence of enzyme structure on target properties. At the same time, accurate descriptions of electronic and energetic properties require a larger QM region than the minimal metal-coordinating residues in order to converge treatment of both metal-local bonding and the overall electrostatic environment.
Collapse
Affiliation(s)
- Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Badu S, Prabhakar S, Melnik R, Singh S. Atomistic to continuum model for studying mechanical properties of RNA nanotubes. Comput Methods Biomech Biomed Engin 2020; 23:396-407. [PMID: 32116031 DOI: 10.1080/10255842.2020.1733991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With rapid advancements in the emerging field of RNA nanotechnology, its current and potential applications, new important problems arise in our quest to better understand properties of RNA nanocomplexes. In this paper, our focus is on the modeling of RNA nanotubes which are important for many biological processes. These RNA complexes are also important for human beings, with their theurapeutical and biomedical applications discussed vigorously in the literature over the recent years. Here, we develop a continuum model of RNA nanotubes, originally obtained from self assembly of RNA building blocks in the molecular dynamics simulation. Based on the finite element method, we calculate the elastic properties of these nanostructures and provide a relationship between stress and strain induced in the RNA nanotube. We also analyze the variations in the displacement vector along the assembly axis for RNA nanotubes of different sizes. In particular, we show that oscillations in the amplitudes of strains and displacements significantly differ for such RNA nanotubes. These findings are discussed in the context of atomistic simulations and experimental results in this field.
Collapse
Affiliation(s)
- Shyam Badu
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Sanjay Prabhakar
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| | - Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| |
Collapse
|
23
|
Jing Z, Qi R, Thibonnier M, Ren P. Molecular Dynamics Study of the Hybridization between RNA and Modified Oligonucleotides. J Chem Theory Comput 2019; 15:6422-6432. [PMID: 31553600 PMCID: PMC6889957 DOI: 10.1021/acs.jctc.9b00519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are attractive drug candidates for many diseases as they can modulate the expression of gene networks. Recently, we discovered that DNAs targeting microRNA-22-3p (miR-22-3p) hold the potential for treating obesity and related metabolic disorders (type 2 diabetes mellitus, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD)) by turning fat-storing white adipocytes into fat-burning adipocytes. In this work, we explored the effects of chemical modifications, including phosphorothioate (PS), locked nucleic acid (LNA), and peptide nucleic acid (PNA), on the structure and energy of DNA analogs by using molecular dynamics (MD) simulations. To achieve a reliable prediction of the hybridization free energy, the AMOEBA polarizable force field and the free energy perturbation technique were employed. The calculated hybridization free energies are generally compatible with previous experiments. For LNA and PNA, the enhanced duplex stability can be explained by the preorganization mechanism, i.e., the single strands adopt stable helical structures similar to those in the duplex. For PS, the S and R isomers (Sp and Rp) have preferences for C2'-endo and C3'-endo sugar puckering conformations, respectively, and therefore Sp is less stable than Rp in DNA/RNA hybrids. In addition, the solvation penalty of Rp accounts for its destabilization effect. PS-LNA is similar to LNA as the sugar puckering is dominated by the locked sugar ring. This work demonstrated that MD simulations with polarizable force fields are useful for the understanding and design of modified nucleic acids.
Collapse
Affiliation(s)
- Zhifeng Jing
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | - Rui Qi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| | | | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
24
|
Borišek J, Saltalamacchia A, Gallì A, Palermo G, Molteni E, Malcovati L, Magistrato A. Disclosing the Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations. Biomolecules 2019; 9:E633. [PMID: 31640290 PMCID: PMC6843770 DOI: 10.3390/biom9100633] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The spliceosome accurately promotes precursor messenger-RNA splicing by recognizing specific noncoding intronic tracts including the branch point sequence (BPS) and the 3'-splice-site (3'SS). Mutations of Hsh155 (yeast)/SF3B1 (human), which is a protein of the SF3b factor involved in BPS recognition and induces altered BPS binding and 3'SS selection, lead to mis-spliced mRNA transcripts. Although these mutations recur in hematologic malignancies, the mechanism by which they change gene expression remains unclear. In this study, multi-microsecond-long molecular-dynamics simulations of eighth distinct ∼700,000 atom models of the spliceosome Bact complex, and gene sequencing of SF3B1, disclose that these carcinogenic isoforms destabilize intron binding and/or affect the functional dynamics of Hsh155/SF3B1 only when binding non-consensus BPSs, as opposed to the non-pathogenic variants newly annotated here. This pinpoints a cross-talk between the distal Hsh155 mutation and BPS recognition sites. Our outcomes unprecedentedly contribute to elucidating the principles of pre-mRNA recognition, which provides critical insights on the mechanism underlying constitutive/alternative/aberrant splicing.
Collapse
Affiliation(s)
- Jure Borišek
- CNR-IOM-Democritos National Simulation Center c/o SISSA, 34136 Trieste, Italy.
- National Institute of Chemistry, 1000 Ljubljana, Slovenia.
| | | | - Anna Gallì
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy.
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, Riverside CA 92521, USA.
| | - Elisabetta Molteni
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | - Luca Malcovati
- Department of Hematology, IRCCS S. Matteo Hospital Foundation, 27100 Pavia, Italy.
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
25
|
Kührová P, Mlýnský V, Zgarbová M, Krepl M, Bussi G, Best RB, Otyepka M, Šponer J, Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J Chem Theory Comput 2019; 15:3288-3305. [PMID: 30896943 PMCID: PMC7491206 DOI: 10.1021/acs.jctc.8b00955] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular dynamics (MD) simulations became a leading tool for investigation of structural dynamics of nucleic acids. Despite recent efforts to improve the empirical potentials (force fields, ffs), RNA ffs have persisting deficiencies, which hamper their utilization in quantitatively accurate simulations. Previous studies have shown that at least two salient problems contribute to difficulties in the description of free-energy landscapes of small RNA motifs: (i) excessive stabilization of the unfolded single-stranded RNA ensemble by intramolecular base-phosphate and sugar-phosphate interactions and (ii) destabilization of the native folded state by underestimation of stability of base pairing. Here, we introduce a general ff term (gHBfix) that can selectively fine-tune nonbonding interaction terms in RNA ffs, in particular, the H bonds. The gHBfix potential affects the pairwise interactions between all possible pairs of the specific atom types, while all other interactions remain intact; i.e., it is not a structure-based model. In order to probe the ability of the gHBfix potential to refine the ff nonbonded terms, we performed an extensive set of folding simulations of RNA tetranucleotides and tetraloops. On the basis of these data, we propose particular gHBfix parameters to modify the AMBER RNA ff. The suggested parametrization significantly improves the agreement between experimental data and the simulation conformational ensembles, although our current ff version still remains far from being flawless. While attempts to tune the RNA ffs by conventional reparametrizations of dihedral potentials or nonbonded terms can lead to major undesired side effects, as we demonstrate for some recently published ffs, gHBfix has a clear promising potential to improve the ff performance while avoiding introduction of major new imbalances.
Collapse
Affiliation(s)
- Petra Kührová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Vojtěch Mlýnský
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Marie Zgarbová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Miroslav Krepl
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | - Jiří Šponer
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, tř. 17 listopadu 12, 771 46, Olomouc, Czech Republic
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic
| |
Collapse
|
26
|
Kagra D, Preethi SP, Sharma P. Interaction of aspartic acid and asparagine with RNA nucleobases: a quantum chemical view. J Biomol Struct Dyn 2019; 38:943-955. [PMID: 30938649 DOI: 10.1080/07391102.2019.1592025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deepika Kagra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, Punjab, India
| | - S P Preethi
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology Hyderabad (IIIT-H), Gachibowli, Hyderabad, Telangana, India.,Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, Punjab, India
| |
Collapse
|