1
|
Boehm BJ, McNeill CR, Huang DM. Competing single-chain folding and multi-chain aggregation pathways control solution-phase aggregate morphology of organic semiconducting polymers. NANOSCALE 2022; 14:18070-18086. [PMID: 36448546 DOI: 10.1039/d2nr04750k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the solution-phase behaviour of organic semiconducting polymers is important for systematically improving the performance of devices based on solution-processed thin films of these molecules. Conventional polymer theory predicts that polymer conformations become more compact as solvent quality decreases, but recent experiments have shown the high-performance organic-semiconducting polymer P(NDI2OD-T2) to form extended rod-like aggregates much larger than a single chain in poor solvents, with the formation of these extended aggregates correlated with enhanced electron mobility in films deposited from these solutions. We explain the unexpected formation of extended aggregates using a novel coarse-grained simulation model of P(NDI2OD-T2) that we have developed to study the effect of solvent quality on its solution-phase behaviour. In poor solvents, we find that aggregation through only a few monomers gives effectively inseparable chains, leading to the formation of extended structures of partially overlapping chains via non-equilibrium assembly. This behaviour requires that multi-chain aggregation occurs faster than chain folding, which we show is the case for the chain lengths and concentrations shown experimentally to form rod-like aggregates. This kinetically controlled process introduces a dependence of aggregate structure on concentration, chain length, and chain flexibility, which we show is able to reconcile experimental findings and is generalisable to the solution-phase assembly of other semiflexible polymers.
Collapse
Affiliation(s)
- Belinda J Boehm
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, SA 5005, Australia.
| | - Christopher R McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - David M Huang
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
2
|
Fayaz-Torshizi M, Graham EJ, Adjiman CS, Galindo A, Jackson G, Müller EA. SAFT- γ Force Field for the Simulation of Molecular Fluids 9: Coarse-Grained Models for Polyaromatic Hydrocarbons Describing Thermodynamic, Interfacial, Structural, and Transport Properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Nguyen HTL, Huang DM. Systematic bottom-up molecular coarse-graining via force and torque matching using anisotropic particles. J Chem Phys 2022; 156:184118. [DOI: 10.1063/5.0085006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We derive a systematic and general method for parametrizing coarse-grained molecular models consisting of anisotropic particles from fine-grained (e.g. all-atom) models for condensed-phase molecular dynamics simulations. The method, which we call anisotropic force-matching coarse-graining (AFM-CG), is based on rigorous statistical mechanical principles, enforcing consistency between the coarse-grained and fine-grained phase-space distributions to derive equations for the coarse-grained forces, torques, masses, and moments of inertia in terms of properties of a condensed-phase fine-grained system. We verify the accuracy and efficiency of the method by coarse-graining liquid-state systems of two different anisotropic organic molecules, benzene and perylene, and show that the parametrized coarse-grained models more accurately describe properties of these systems than previous anisotropic coarse-grained models parametrized using other methods that do not account for finite-temperature and many-body effects on the condensed-phase coarse-grained interactions. The AFM-CG method will be useful for developing accurate and efficient dynamical simulation models of condensed-phase systems of molecules consisting of large, rigid, anisotropic fragments, such as liquid crystals, organic semiconductors, and nucleic acids.
Collapse
|
4
|
Wood EL, Greco C, Ivanov DA, Kremer K, Daoulas KC. Mesoscopic Modeling of a Highly-Ordered Sanidic Polymer Mesophase and Comparison With Experimental Data. J Phys Chem B 2022; 126:2285-2298. [PMID: 35290739 PMCID: PMC8958507 DOI: 10.1021/acs.jpcb.1c10599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Board-shaped polymers
form sanidic mesophases: assemblies of parallel
lamellae of stacked polymer backbones separated by disordered side
chains. Sanidics vary significantly with respect to polymer order
inside their lamellae, making them “stepping stones”
toward the crystalline state. Therefore, they are potentially interesting
for studying crystallization and technological applications. Building
on earlier mesoscopic models of the most disordered sanidics Σd, we focus on the other extreme, near-crystalline order, and
develop a generic model that captures a highly ordered Σr mesophase. Polymers are described by generic hindered-rotation
chains. Anisotropic nonbonded potentials, with strengths comparable
to the thermal energy, mimic board-like monomer shapes. Lamellae equilibrated
with Monte Carlo simulations, for a broad range of model parameters,
have intralamellar order typical for Σr mesophases:
periodically stacked polymers that are mutually registered along their
backbones. Our mesophase shows registration on both monomer and chain
levels. We calculate scattering patterns and compare with data published
for highly ordered sanidic mesophases of two different polymers: polyesters
and polypeptoids. Most of the generic structural features that were
identified in these experiments are present in our model. However,
our mesophase has correlations between chains located in different
lamellae and is therefore closer to the crystalline state than the
experimental samples.
Collapse
Affiliation(s)
- Emma L Wood
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Cristina Greco
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Dimitri A Ivanov
- Institute for Problems of Chemical Physics, Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka, Russia.,Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia.,Institut de Sciences des Matériaux de Mulhouse, CNRS UMR 7361, 15 Jean Starcky, F-68057 Mulhouse, France.,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kostas Ch Daoulas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Reisjalali M, Manurung R, Carbone P, Troisi A. Development of hybrid coarse-grained atomistic models for rapid assessment of local structuring of polymeric semiconductors. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2022; 7:294-305. [PMID: 35646391 PMCID: PMC9074845 DOI: 10.1039/d1me00165e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/06/2022] [Indexed: 05/05/2023]
Abstract
Decades of work in the field of computational study of semiconducting polymers using atomistic models illustrate the challenges of generating equilibrated models for this class of materials. While adopting a coarse-grained model can be helpful, the process of developing a suitable model is particularly non-trivial and time-consuming for semiconducting polymers due to a large number of different interactions with some having an anisotropic nature. This work introduces a procedure for the rapid generation of a hybrid model for semiconducting polymers where atoms of secondary importance (those in the alkyl side chains) are transformed into coarse-grained beads to reduce the computational cost of generating an equilibrated structure. The parameters are determined from easy-to-equilibrate simulations of very short oligomers and the model is constructed to enable a very simple back-mapping procedure to reconstruct geometries with atomistic resolution. The model is illustrated for three related polymers containing DPP (diketopyrrolopyrrole) to evaluate the transferability of the potential across different families of polymers. The accuracy of the model, determined by comparison with the results of fully equilibrated simulations of the same material before and after back-mapping, is fully satisfactory for two out of the three cases considered. We noticed that accuracy can be determined very early in the workflow so that it is easy to assess when the deployment of this method is advantageous. The hybrid representation can be used to evaluate directly the electronic properties of structures sampled by the simulations.
Collapse
Affiliation(s)
- Maryam Reisjalali
- Department of Chemistry, University of Liverpool Crown St L69 7ZD Liverpool UK
| | - Rex Manurung
- Department of Chemistry, University of Liverpool Crown St L69 7ZD Liverpool UK
| | - Paola Carbone
- Department of Chemical Engineering and Analytical Science Oxford Road M13 9PL Manchester UK
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool Crown St L69 7ZD Liverpool UK
| |
Collapse
|
6
|
Friday DM, Jackson NE. Modeling the Interplay of Conformational and Electronic Structure in Conjugated Polyelectrolytes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David M. Friday
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois at Urbana−Champaign, 505 S Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Khot A, Savoie BM. Top–Down Coarse-Grained Framework for Characterizing Mixed Conducting Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Aditi Khot
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Brett M. Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Cohen AE, Jackson NE, de Pablo JJ. Anisotropic Coarse-Grained Model for Conjugated Polymers: Investigations into Solution Morphologies. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander E. Cohen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Nicholas E. Jackson
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
9
|
Jin J, Han Y, Pak AJ, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). I. General theory and model. J Chem Phys 2021; 154:044104. [PMID: 33514116 PMCID: PMC7826168 DOI: 10.1063/5.0026651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Water is undoubtedly one of the most important molecules for a variety of chemical and physical systems, and constructing precise yet effective coarse-grained (CG) water models has been a high priority for computer simulations. To recapitulate important local correlations in the CG water model, explicit higher-order interactions are often included. However, the advantages of coarse-graining may then be offset by the larger computational cost in the model parameterization and simulation execution. To leverage both the computational efficiency of the CG simulation and the inclusion of higher-order interactions, we propose a new statistical mechanical theory that effectively projects many-body interactions onto pairwise basis sets. The many-body projection theory presented in this work shares similar physics from liquid state theory, providing an efficient approach to account for higher-order interactions within the reduced model. We apply this theory to project the widely used Stillinger-Weber three-body interaction onto a pairwise (two-body) interaction for water. Based on the projected interaction with the correct long-range behavior, we denote the new CG water model as the Bottom-Up Many-Body Projected Water (BUMPer) model, where the resultant CG interaction corresponds to a prior model, the iteratively force-matched model. Unlike other pairwise CG models, BUMPer provides high-fidelity recapitulation of pair correlation functions and three-body distributions, as well as N-body correlation functions. BUMPer extensively improves upon the existing bottom-up CG water models by extending the accuracy and applicability of such models while maintaining a reduced computational cost.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Abstract
Four decades of molecular theory and computation have helped form the modern understanding of the physical chemistry of organic semiconductors. Whereas these efforts have historically centered around characterizations of electronic structure at the single-molecule or dimer scale, emerging trends in noncrystalline molecular and polymeric semiconductors are motivating the need for modeling techniques capable of morphological and electronic structure predictions at the mesoscale. Provided the challenges associated with these prediction tasks, the community has begun to evolve a computational toolkit for organic semiconductors incorporating techniques from the fields of soft matter, coarse-graining, and machine learning. Here, we highlight recent advances in coarse-grained methodologies aimed at the multiscale characterization of noncrystalline organic semiconductors. As organic semiconductor performance is dependent on the interplay of mesoscale morphology and molecular electronic structure, specific emphasis is placed on coarse-grained modeling approaches capable of both structural and electronic predictions without recourse to all-atom representations.
Collapse
Affiliation(s)
- Nicholas E Jackson
- Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Organic Photovoltaics: Relating Chemical Structure, Local Morphology, and Electronic Properties. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
Jackson NE, Bowen AS, de Pablo JJ. Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b02020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Nicholas E. Jackson
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Alec S. Bowen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Juan J. de Pablo
- Center for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
13
|
Boehm BJ, Nguyen HTL, Huang DM. The interplay of interfaces, supramolecular assembly, and electronics in organic semiconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:423001. [PMID: 31212263 DOI: 10.1088/1361-648x/ab2ac2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic semiconductors, which include a diverse range of carbon-based small molecules and polymers with interesting optoelectronic properties, offer many advantages over conventional inorganic semiconductors such as silicon and are growing in importance in electronic applications. Although these materials are now the basis of a lucrative industry in electronic displays, many promising applications such as photovoltaics remain largely untapped. One major impediment to more rapid development and widespread adoption of organic semiconductor technologies is that device performance is not easily predicted from the chemical structure of the constituent molecules. Fundamentally, this is because organic semiconductor molecules, unlike inorganic materials, interact by weak non-covalent forces, resulting in significant structural disorder that can strongly impact electronic properties. Nevertheless, directional forces between generally anisotropic organic-semiconductor molecules, combined with translational symmetry breaking at interfaces, can be exploited to control supramolecular order and consequent electronic properties in these materials. This review surveys recent advances in understanding of supramolecular assembly at organic-semiconductor interfaces and its impact on device properties in a number of applications, including transistors, light-emitting diodes, and photovoltaics. Recent progress and challenges in computer simulations of supramolecular assembly and orientational anisotropy at these interfaces is also addressed.
Collapse
Affiliation(s)
- Belinda J Boehm
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, SA 5005, Australia
| | | | | |
Collapse
|