1
|
Tiwari V, Bhattacharyya A, Karmakar T. A molecular dynamics study on the ion-mediated self-assembly of monolayer-protected nanoclusters. NANOSCALE 2024; 16:15141-15147. [PMID: 39081010 DOI: 10.1039/d4nr02427c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We studied the effects of metal and molecular cations on the aggregation of atomically precise monolayer-protected nanoclusters (MPCs) in an explicit solvent using atomistic molecular dynamics simulations. While divalent cations such as Zn2+ and Cd2+ promote aggregation by forming ligand-cation-ligand bridges between the MPCs, molecular cations such as tetraethylammonium and cholinium inhibit their aggregation by getting adsorbed into the MPC's ligand shell and reducing the ligand's motion. Here, we studied the aggregation of Au25(SR)18 nanoclusters with two types of ligands, para-mercaptobenzoic acid and D-penicillamine, as prototypical examples.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Anushna Bhattacharyya
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
2
|
Tiwari V, Garg S, Karmakar T. Insights into the Interactions of Peptides with Monolayer-Protected Metal Nanoclusters. ACS APPLIED BIO MATERIALS 2024; 7:685-691. [PMID: 36820798 DOI: 10.1021/acsabm.2c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Monolayer-protected atomically precise metal nanoclusters (MPCs) have potential applications in catalysis, imaging, and drug delivery. Understanding their interactions with biomolecules such as peptides is of paramount interest for their use in cell imaging and drug delivery. Here we have carried out atomistic molecular dynamics simulations to investigate the interactions between MPCs and an anticancer peptide, melittin. Melittin gets attached to the MPCs surface by the formation of multiple hydrogen bonds between its amino acid residues with MPCs ligands. Additionally, the positively charged Lys, Arg, and peptide's N-terminal strongly anchor the peptide to the MPC metal surface, providing extra stabilization.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| | - Sonali Garg
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, 110016 New Delhi, India
| |
Collapse
|
3
|
Bhattacharyya A, Tiwari V, Karmakar T. Electrostatic-Driven Self-Assembly of Janus-like Monolayer-Protected Metal Nanoclusters. J Phys Chem Lett 2024; 15:687-692. [PMID: 38206834 DOI: 10.1021/acs.jpclett.3c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The generation of controlled microstructures of functionalized nanoparticles has been a crucial challenge in nanoscience and nanotechnology. Efforts have been made to tune ligand charge states that can affect the aggregation propensity and modulate the self-assembled structures. In this work, we modeled zwitterionic Janus-like monolayer ligand-protected metal nanoclusters (J-MPCs) and studied their self-assembly using atomistic molecular dynamics and on-the-fly probability-based enhanced sampling simulations. The oppositely charged ligand functionalization on two hemispheres of a J-MPC elicits asymmetric solvation, primarily driven by distinctive hydrogen bonding patterns in the ligand-solvent interactions. Electrostatic interactions between the oppositely charged residues in J-MPCs guide the formation of one-dimensional and ring-like self-assembled superstructures with molecular dipoles oriented in specific patterns. The pertinent atomistic insights into the intermolecular interactions governing the self-assembled structures of zwitterionic J-MPCs obtained from this work can be used to design a general strategy to create tunable microstructures of charged MPCs.
Collapse
Affiliation(s)
- Anushna Bhattacharyya
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Janitra RS, Destiarani W, Hardianto A, Baroroh U, Rohmatulloh FG, Rustaman, Subroto T, Rukiah, Yusuf M. Multilayer Model of Gold Nanoparticles (AuNPs) and Its Application in the Classical Molecular Dynamics Simulation of Citrate-Capped AuNPs. J Phys Chem B 2023; 127:7103-7110. [PMID: 37540714 DOI: 10.1021/acs.jpcb.3c00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Studies on the interaction between gold nanoparticles (AuNPs) and functional proteins have been useful in developing diagnostic and therapeutic agents. Such studies require a realistic computational model of AuNPs for successful molecular design works. This study offers a new multilayer model of AuNPs to address the inconsistency between its molecular mechanics' interpretation and AuNP's plasmonic nature. We performed partial charge quantum calculation of AuNPs using Au13 and Au55 models. The result showed that it has partial negative charges on the surface and partial positive charges on the inner part, indicating that the AuNP model should be composed of multiatom types. We tested the partial charge parameters of these gold (Au) atoms in classical molecular dynamics simulation (CMD) of AuNPs. The result showed that our parameters performed better in simulating the adsorption of Na+ and dicarboxy acetone in terms of consistency with surface charge density than the zero charges Au in the interface force field (IFF). We proposed that the multiple-charged AuNP model can be developed further into a simpler four-atom type of Au in a larger AuNP size.
Collapse
Affiliation(s)
- Regaputra S Janitra
- Biotechnology Master Program, Postgraduate School, Universitas Padjadjaran, Jl. Dipatiukur 35, Bandung 40132, West Java, Indonesia
| | - Wanda Destiarani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Ari Hardianto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
- Department of Biotechnology, Indonesian School of Pharmacy, Jl. Soekarno Hatta No. 354, Bandung 40266, West Java, Indonesia
| | - Fauzian G Rohmatulloh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Rustaman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
| | - Toto Subroto
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| | - Rukiah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung-Sumedang KM 21, Jatinangor 45363, West Java, Indonesia
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Jl. Singaperbangsa 2, Bandung 40132, West Java, Indonesia
| |
Collapse
|
5
|
Tiwari V, Karmakar T. Understanding Molecular Aggregation of Ligand-Protected Atomically-Precise Metal Nanoclusters. J Phys Chem Lett 2023:6686-6694. [PMID: 37463483 DOI: 10.1021/acs.jpclett.3c01770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Monolayer-protected atomically precise nanoclusters (MPCs) are an important class of molecules due to their unique structural features and diverse applications, including bioimaging, sensors, and drug carriers. Understanding the atomistic and dynamical details of their self-assembly process is crucial for designing system-specific applications. Here, we applied molecular dynamics and on-the-fly probability-based enhanced sampling simulations to study the aggregation of Au25(pMBA)18 MPCs in aqueous and methanol solutions. The MPCs interact via both hydrogen bonds and π-stacks between the aromatic ligands to form stable dimers, oligomers, and crystals. The dimerization free energy profiles reveal a pivotal role of the ligand charged state and solvent mediating the molecular aggregation. Furthermore, MPCs' ligands exhibit suppressed conformational flexibility in the solid phase due to facile intercluster hydrogen bonds and π-stacks. Our work provides unprecedented molecular-level dynamical details of the aggregation process and conformational dynamics of MPCs ligands in solution and crystalline phases.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| | - Tarak Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, 110016 New Delhi, India
| |
Collapse
|
6
|
Evstigneeva SS, Chumakov DS, Tumskiy RS, Khlebtsov BN, Khlebtsov NG. Detection and imaging of bacterial biofilms with glutathione-stabilized gold nanoclusters. Talanta 2023; 264:124773. [PMID: 37320983 DOI: 10.1016/j.talanta.2023.124773] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
Bacterial biofilms colonize chronic wounds and surfaces of medical devices, thus making the development of reliable methods for imaging and detection of biofilms crucial. Although fluorescent identification of bacteria is sensitive and non-destructive, the lack of biofilm-specific fluorescent dyes limits the application of this technique to biofilm detection. Here, we demonstrate, for the first time, that fluorescent glutathione-stabilized gold nanoclusters (GSH-AuNCs) without targeting ligands can specifically interact with extracellular matrix components of Gram-negative and Gram-positive bacterial biofilms resulting in fluorescent staining of bacterial biofilms. By contrast, fluorescent bovine serum albumin-stabilized gold nanoclusters and 11-mercaptoundecanoic acid - stabilized gold nanoclusters do not stain the extracellular matrix of biofilms. According to molecular docking studies, GSH-AuNCs show affinity to several targets in extracellular matrix, including amyloid-anchoring proteins, matrix proteins and polysaccharides. Some experimental evidence was obtained for the interaction of GSH-AuNCs with the lipopolysaccharide (LPS) that was isolated from the matrix of Azospirillum baldaniorum biofilms. Based on GSH-AuNCs properties, we propose a new fluorescent method for the measurement of biofilm biomass with a limit of detection 1.7 × 105 CFU/mL. The sensitivity of the method is 10-fold higher than the standard biofilm quantification with the crystal violet assay. There is a good linear relationship between the fluorescence intensity from the biofilms and the number of CFU from the biofilms in the range from 2.6 × 105 to 6.7 × 107 CFU/mL. The developed nanocluster-mediated method of biofilm staining was successfully applied for quantitative detection of biofilm formation on urinary catheter surface. The presented data suggest that fluorescent GSH-AuNCs can be used to diagnose medical device-associated infections.
Collapse
Affiliation(s)
- S S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia.
| | - D S Chumakov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - R S Tumskiy
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia
| | - B N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| | - N G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 13 Prospekt Entuziastov, Saratov, 410049, Russia; Institute of Physics, Saratov State University, 410012, Saratov, Russia
| |
Collapse
|
7
|
Yan X, Yue T, Winkler DA, Yin Y, Zhu H, Jiang G, Yan B. Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation. Chem Rev 2023. [PMID: 37262026 DOI: 10.1021/acs.chemrev.3c00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Decades of nanotoxicology research have generated extensive and diverse data sets. However, data is not equal to information. The question is how to extract critical information buried in vast data streams. Here we show that artificial intelligence (AI) and molecular simulation play key roles in transforming nanotoxicity data into critical information, i.e., constructing the quantitative nanostructure (physicochemical properties)-toxicity relationships, and elucidating the toxicity-related molecular mechanisms. For AI and molecular simulation to realize their full impacts in this mission, several obstacles must be overcome. These include the paucity of high-quality nanomaterials (NMs) and standardized nanotoxicity data, the lack of model-friendly databases, the scarcity of specific and universal nanodescriptors, and the inability to simulate NMs at realistic spatial and temporal scales. This review provides a comprehensive and representative, but not exhaustive, summary of the current capability gaps and tools required to fill these formidable gaps. Specifically, we discuss the applications of AI and molecular simulation, which can address the large-scale data challenge for nanotoxicology research. The need for model-friendly nanotoxicity databases, powerful nanodescriptors, new modeling approaches, molecular mechanism analysis, and design of the next-generation NMs are also critically discussed. Finally, we provide a perspective on future trends and challenges.
Collapse
Affiliation(s)
- Xiliang Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tongtao Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Institute of Coastal Environmental Pollution Control, Ocean University of China, Qingdao 266100, China
| | - David A Winkler
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- School of Pharmacy, University of Nottingham, Nottingham NG7 2QL, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hao Zhu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Franco-Ulloa S, Riccardi L, Rimembrana F, Grottin E, Pini M, De Vivo M. NanoModeler CG: A Tool for Modeling and Engineering Functional Nanoparticles at a Coarse-Grained Resolution. J Chem Theory Comput 2023; 19:1582-1591. [PMID: 36795071 PMCID: PMC10018737 DOI: 10.1021/acs.jctc.2c01029] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Functionalized metal nanoparticles (NPs) are macromolecular assemblies with a tunable physicochemical profile that makes them interesting for biotechnology, materials science, and energy conversion. In this regard, molecular simulations offer a way to scrutinize the structural and dynamical features of monolayer-protected NPs and their interactions with relevant matrices. Previously, we developed NanoModeler, a webserver that automates the preparation of functionalized gold NPs for atomistic molecular dynamics (MD) simulations. Here, we present NanoModeler CG (www.nanomodeler.it), a new release of NanoModeler that now also allows the building and parametrizing of monolayer-protected metal NPs at a coarse-grained (CG) resolution. This new version extends our original methodology to NPs of eight different core shapes, conformed by up to 800,000 beads and coated by eight different monolayer morphologies. The resulting topologies are compatible with the Martini force field but are easily extendable to any other set of parameters parsed by the user. Finally, we demonstrate NanoModeler CG's capabilities by reproducing experimental structural features of alkylthiolated NPs and rationalizing the brush-to-mushroom phase transition of PEGylated anionic NPs. By automating the construction and parametrization of functionalized NPs, the NanoModeler series offers a standardized way to computationally model monolayer-protected nanosized systems.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy.,Expert Analytics, Møllergata 8, Oslo 0179, Norway
| | - Laura Riccardi
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Federico Rimembrana
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Edwin Grottin
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Mattia Pini
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, Genova 16163, Italy
| |
Collapse
|
9
|
Brancolini G, Rotello VM, Corni S. Role of Ionic Strength in the Formation of Stable Supramolecular Nanoparticle-Protein Conjugates for Biosensing. Int J Mol Sci 2022; 23:ijms23042368. [PMID: 35216496 PMCID: PMC8874478 DOI: 10.3390/ijms23042368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
Monolayer-protected gold nanoparticles (AuNPs) exhibit distinct physical and chemical properties depending on the nature of the ligand chemistry. A commonly employed NP monolayer comprises hydrophobic molecules linked to a shell of PEG and terminated with functional end group, which can be charged or neutral. Different layers of the ligand shell can also interact in different manners with proteins, expanding the range of possible applications of these inorganic nanoparticles. AuNP-fluorescent Green Fluorescent Protein (GFP) conjugates are gaining increasing attention in sensing applications. Experimentally, their stability is observed to be maintained at low ionic strength conditions, but not at physiologically relevant conditions of higher ionic strength, limiting their applications in the field of biosensors. While a significant amount of fundamental work has been done to quantify electrostatic interactions of colloidal nanoparticle at the nanoscale, a theoretical description of the ion distribution around AuNPs still remains relatively unexplored. We perform extensive atomistic simulations of two oppositely charged monolayer-protected AuNPs interacting with fluorescent supercharged GFPs co-engineered to have complementary charges. These simulations were run at different ionic strengths to disclose the role of the ionic environment on AuNP–GFP binding. The results highlight the capability of both AuNPs to intercalate ions and water molecules within the gold–sulfur inner shell and the different tendency of ligands to bend inward allowing the protein to bind not only with the terminal ligands but also the hydrophobic alkyl chains. Different binding stability is observed in the two investigated cases as a function of the ligand chemistry.
Collapse
Affiliation(s)
- Giorgia Brancolini
- Institute of Nanoscience, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy;
- Correspondence: ; Tel.: +39-059-2055333
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, 710 North Pleasant Street, Amherst, MA 01003, USA;
| | - Stefano Corni
- Institute of Nanoscience, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy;
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
10
|
Liu H, Pei Y. Atomistic Molecular Dynamics Simulation Study on the Interaction between Atomically Precise Thiolate-Protected Gold Nanoclusters and Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1653-1661. [PMID: 35080404 DOI: 10.1021/acs.langmuir.1c02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The interaction of atomically precise monolayer thiolate (SR) protected gold nanoclusters (Au NCs) with the phospholipid membranes has been studied by the all-atom molecular dynamics (AAMD) simulations. The effect of cluster size, type, and the surface charge density of protection ligand was studied. The simulation results show gold nanoclusters with different size and surface modifications have much different transmembrane behaviors. The Au25(SR)18 cluster was found to possess the best affinity to the phospholipid membranes among six atomically accurate clusters Au25(SR)18, Au36(SR)24, Au44(SR)28, Au68(SR)32, Au144(SR)60, and Au314(SR)96. Using the Au25 NC as a model, this work also found that the aggregation mode of the surface ligands and the surface charge density are the important factors affecting the interaction between the gold nanoclusters and the phospholipid membranes. Moreover, the balance of hydrophilic and hydrophobic ligands on the surface of Au NCs is beneficial to the high permeability.
Collapse
Affiliation(s)
- Hengzhi Liu
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|
11
|
Choi YK, Kern NR, Kim S, Kanhaiya K, Afshar Y, Jeon SH, Jo S, Brooks BR, Lee J, Tadmor EB, Heinz H, Im W. CHARMM-GUI Nanomaterial Modeler for Modeling and Simulation of Nanomaterial Systems. J Chem Theory Comput 2022; 18:479-493. [PMID: 34871001 PMCID: PMC8752518 DOI: 10.1021/acs.jctc.1c00996] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular modeling and simulation are invaluable tools for nanoscience that predict mechanical, physicochemical, and thermodynamic properties of nanomaterials and provide molecular-level insight into underlying mechanisms. However, building nanomaterial-containing systems remains challenging due to the lack of reliable and integrated cyberinfrastructures. Here we present Nanomaterial Modeler in CHARMM-GUI, a web-based cyberinfrastructure that provides an automated process to generate various nanomaterial models, associated topologies, and configuration files to perform state-of-the-art molecular dynamics simulations using most simulation packages. The nanomaterial models are based on the interface force field, one of the most reliable force fields (FFs). The transferability of nanomaterial models among the simulation programs was assessed by single-point energy calculations, which yielded 0.01% relative absolute energy differences for various surface models and equilibrium nanoparticle shapes. Three widely used Lennard-Jones (LJ) cutoff methods are employed to evaluate the compatibility of nanomaterial models with respect to conventional biomolecular FFs: simple truncation at r = 12 Å (12 cutoff), force-based switching over 10 to 12 Å (10-12 fsw), and LJ particle mesh Ewald with no cutoff (LJPME). The FF parameters with these LJ cutoff methods are extensively validated by reproducing structural, interfacial, and mechanical properties. We find that the computed density and surface energies are in good agreement with reported experimental results, although the simulation results increase in the following order: 10-12 fsw <12 cutoff < LJPME. Nanomaterials in which LJ interactions are a major component show relatively higher deviations (up to 4% in density and 8% in surface energy differences) compared with the experiment. Nanomaterial Modeler's capability is also demonstrated by generating complex systems of nanomaterial-biomolecule and nanomaterial-polymer interfaces with a combination of existing CHARMM-GUI modules. We hope that Nanomaterial Modeler can be used to carry out innovative nanomaterial modeling and simulations to acquire insight into the structure, dynamics, and underlying mechanisms of complex nanomaterial-containing systems.
Collapse
Affiliation(s)
- Yeol Kyo Choi
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Nathan R. Kern
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Seonghan Kim
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80301, USA
| | - Yaser Afshar
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sun Hee Jeon
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Sunhwan Jo
- Leadership Computing Facility, Argonne National Laboratory, 9700 Cass Ave, Argonne, IL 60439, USA
| | - Bernard R. Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jumin Lee
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Ellad B. Tadmor
- Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO 80301, USA
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
12
|
Pecina A, Rosa-Gastaldo D, Riccardi L, Franco-Ulloa S, Milan E, Scrimin P, Mancin F, De Vivo M. On the Metal-Aided Catalytic Mechanism for Phosphodiester Bond Cleavage Performed by Nanozymes. ACS Catal 2021; 11:8736-8748. [PMID: 34476110 PMCID: PMC8397296 DOI: 10.1021/acscatal.1c01215] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/03/2021] [Indexed: 12/20/2022]
Abstract
![]()
Recent studies have
shown that gold nanoparticles (AuNPs) functionalized
with Zn(II) complexes can cleave phosphate esters and nucleic acids.
Remarkably, such synthetic nanonucleases appear to catalyze metal
(Zn)-aided hydrolytic reactions of nucleic acids similar to metallonuclease
enzymes. To clarify the reaction mechanism of these nanocatalysts,
here we have comparatively analyzed two nanonucleases with a >10-fold
difference in the catalytic efficiency for the hydrolysis of the 2-hydroxypropyl-4-nitrophenylphosphate
(HPNP, a typical RNA model substrate). We have used microsecond-long
atomistic simulations, integrated with NMR experiments, to investigate
the structure and dynamics of the outer coating monolayer of these
nanoparticles, either alone or in complex with HPNP, in solution.
We show that the most efficient one is characterized by coating ligands
that promote a well-organized monolayer structure, with the formation
of solvated bimetallic catalytic sites. Importantly, we have found
that these nanoparticles can mimic two-metal-ion enzymes for nucleic
acid processing, with Zn ions that promote HPNP binding at the reaction
center. Thus, the two-metal-ion-aided hydrolytic strategy of such
nanonucleases helps in explaining their catalytic efficiency for substrate
hydrolysis, in accordance with the experimental evidence. These mechanistic
insights reinforce the parallelism between such functionalized AuNPs
and proteins toward the rational design of more efficient catalysts.
Collapse
Affiliation(s)
- Adam Pecina
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Sebastian Franco-Ulloa
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Emil Milan
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Paolo Scrimin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
13
|
Franco-Ulloa S, Guarnieri D, Riccardi L, Pompa PP, De Vivo M. Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. J Chem Theory Comput 2021; 17:4512-4523. [PMID: 34077229 PMCID: PMC8280734 DOI: 10.1021/acs.jctc.1c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) hold great promise as innovative tools in nanomedicine. However, one of the main challenges is how to optimize their association with the cell membrane, which is critical for their effective delivery. Recent findings show high cellular uptake rates for NPs coated with the polycationic cell-penetrating peptide gH625-644 (gH), although the underlying internalization mechanism is poorly understood. Here, we use extended coarse-grained simulations and free energy calculations to study systems that simultaneously include metal NPs, peptides, lipids, and sterols. In particular, we investigate the first encounter between multicomponent model membranes and 2.5 nm metal NPs coated with gH (gHNPs), based on the evidence from scanning transmission electron microscopy. By comparing multiple membrane and (membranotropic) NP models, we found that gHNP internalization occurs by forming an intermediate state characterized by specific stabilizing interactions formed by peptide-coated nanoparticles with multicomponent model membranes. This association mechanism is mainly characterized by interactions of gH with the extracellular solvent and the polar membrane surface. At the same time, the NP core interacts with the transmembrane (cholesterol-rich) fatty phase.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, l-84084 Salerno, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
14
|
Morillas-Becerril L, Franco-Ulloa S, Fortunati I, Marotta R, Sun X, Zanoni G, De Vivo M, Mancin F. Specific and nondisruptive interaction of guanidium-functionalized gold nanoparticles with neutral phospholipid bilayers. Commun Chem 2021; 4:93. [PMID: 36697571 PMCID: PMC9814519 DOI: 10.1038/s42004-021-00526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/05/2021] [Indexed: 01/28/2023] Open
Abstract
Understanding and controlling the interaction between nanoparticles and biological entities is fundamental to the development of nanomedicine applications. In particular, the possibility to realize nanoparticles capable of directly targeting neutral lipid membranes would be advantageous to numerous applications aiming at delivering nanoparticles and their cargos into cells and biological vesicles. Here, we use experimental and computational methodologies to analyze the interaction between liposomes and gold nanoparticles (AuNPs) featuring cationic headgroups in their protecting monolayer. We find that in contrast to nanoparticles decorated with other positively charged headgroups, guanidinium-coated AuNPs can bind to neutral phosphatidylcholine liposomes, inducing nondisruptive membrane permeabilization. Atomistic molecular simulations reveal that this ability is due to the multivalent H-bonding interaction between the phosphate residues of the liposome's phospholipids and the guanidinium groups. Our results demonstrate that the peculiar properties of arginine magic, an effect responsible for the membranotropic properties of some naturally occurring peptides, are also displayed by guanidinium-bearing functionalized AuNPs.
Collapse
Affiliation(s)
- Lucía Morillas-Becerril
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| | - Sebastian Franco-Ulloa
- grid.25786.3e0000 0004 1764 2907Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy ,Present Address: Expert Analytics. Møllergata 8, Oslo, Norway
| | - Ilaria Fortunati
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| | - Roberto Marotta
- grid.25786.3e0000 0004 1764 2907Electron Microscopy Facility (EMF), Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Xiaohuan Sun
- grid.268415.cSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu People’s Republic of China
| | - Giordano Zanoni
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| | - Marco De Vivo
- grid.25786.3e0000 0004 1764 2907Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, Genoa, Italy
| | - Fabrizio Mancin
- grid.5608.b0000 0004 1757 3470Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, Padova, Italy
| |
Collapse
|
15
|
Riccardi L, Decherchi S, Rocchia W, Zanoni G, Cavalli A, Mancin F, De Vivo M. Molecular Recognition by Gold Nanoparticle-Based Receptors as Defined through Surface Morphology and Pockets Fingerprint. J Phys Chem Lett 2021; 12:5616-5622. [PMID: 34110174 PMCID: PMC8280747 DOI: 10.1021/acs.jpclett.1c01365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Ligand shell-protected gold nanoparticles can form nanoreceptors that recognize and bind to specific molecules in solution, with numerous potential innovative applications in science and industry. At this stage, the challenge is to rationally design such nanoreceptors to optimize their performance and boost their further development. Toward this aim, we have developed a new computational tool, Nanotron. This allows the analysis of molecular dynamics simulations of ligand shell-protected nanoparticles to define their exact surface morphology and pocket fingerprints of binding cavities in the coating monolayer. Importantly, from dissecting the well-characterized pairing formed by the guest salicylate molecule and specific host nanoreceptors, our work reveals that guest binding at such nanoreceptors occurs via preformed deep pockets in the host. Upon the interaction with the guest, such pockets undergo an induced-fit-like structural optimization for best host-guest fitting. Our findings and methodological advancement will accelerate the rational design of new-generation nanoreceptors.
Collapse
Affiliation(s)
- Laura Riccardi
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Decherchi
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Walter Rocchia
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
- CONCEPT
Lab, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giordano Zanoni
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Cavalli
- Computational
and Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., Via XX Settembre 33/10, 1621 Genova, Italy
| | - Fabrizio Mancin
- Dipartimento
di Scienze Chimiche, Università di
Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modeling & Drug Discovery, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
16
|
Dutta S, Corni S, Brancolini G. Molecular Dynamics Simulations of a Catalytic Multivalent Peptide-Nanoparticle Complex. Int J Mol Sci 2021; 22:3624. [PMID: 33807225 PMCID: PMC8037132 DOI: 10.3390/ijms22073624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular modeling of a supramolecular catalytic system is conducted resulting from the assembling between a small peptide and the surface of cationic self-assembled monolayers on gold nanoparticles, through a multiscale iterative approach including atomistic force field development, flexible docking with Brownian Dynamics and µs-long Molecular Dynamics simulations. Self-assembly is a prerequisite for the catalysis, since the catalytic peptides do not display any activity in the absence of the gold nanocluster. Atomistic simulations reveal details of the association dynamics as regulated by defined conformational changes of the peptide due to peptide length and sequence. Our results show the importance of a rational design of the peptide to enhance the catalytic activity of peptide-nanoparticle conjugates and present a viable computational approach toward the design of enzyme mimics having a complex structure-function relationship, for technological and nanomedical applications.
Collapse
Affiliation(s)
- Sutapa Dutta
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy;
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, 35131 Padova, Italy;
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| | - Giorgia Brancolini
- Istituto Nanoscienze, CNR-NANO S3, via G. Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
17
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
18
|
Patel S, Srivastav AK, Gupta SK, Kumar U, Mahapatra SK, Gajjar PN, Banerjee I. Carbon nanotubes for rapid capturing of SARS-COV-2 virus: revealing a mechanistic aspect of binding based on computational studies. RSC Adv 2021; 11:5785-5800. [PMID: 35423109 PMCID: PMC8694767 DOI: 10.1039/d0ra08888a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
We investigate the binding interactions of synthesized multi-walled carbon nanotubes (MWCNTs) with SARS-CoV-2 virus. Two essential components of the SARS-CoV-2 structure i.e.6LU7 (main protease of SARS-CoV-2) and 6LZG (spike receptor-binding domain complexed with its receptor ACE2) were used for computational studies. MWCNTs of different morphologies (zigzag, armchair and chiral) were synthesized through a thermal chemical vapour deposition process as a function of pyrolysis temperature. A direct correlation between radius to volume ratio of the synthesized MWCNTs and the binding energies for all three (zigzag, armchair and chiral) conformations were observed in our computational studies. Our result suggests that MWCNTs interact with the active sites of the main protease along with the host angiotensin-converting enzyme2 (ACE2) receptors. Furthermore, it is also observed that MWCNTs have significant binding affinities towards SARS-CoV-2. However, the highest free binding energy of -87.09 kcal mol-1 with 6LZG were shown by the armchair MWCNTs with SARS-CoV-2 through the simulated molecular dynamic trajectories, which could alter the SARS-CoV-2 structure with higher accuracy. The radial distribution function also confirms the density variation as a function of distance from a reference particle of MWCNTs for the study of interparticle interactions of the MWCNT and SARS-CoV-2. Due to these interesting attributes, such MWCNTs could find potential application in personal protective equipment (PPE) and diagnostic kits.
Collapse
Affiliation(s)
- Shivkumar Patel
- School of Nano Sciences, Central University of Gujarat Gandhinagar 382030 India
| | | | - Sanjeev K Gupta
- Computational Materials and Nanoscience Group, Department of Physics, St. Xavier's College Ahmedabad 380009 India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat Gandhinagar 382030 India
| | - S K Mahapatra
- Department of Physics, Central University of Punjab Bathinda 151001 India
| | - P N Gajjar
- Department of Physics, University School of Sciences, Gujarat University Ahmedabad 380009 India
| | - I Banerjee
- School of Nano Sciences, Central University of Gujarat Gandhinagar 382030 India
| |
Collapse
|
19
|
Czescik J, Zamolo S, Darbre T, Rigo. R, Sissi C, Pecina A, Riccardi L, De Vivo M, Mancin F, Scrimin P. A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angew Chem Int Ed Engl 2021; 60:1423-1432. [PMID: 32985766 PMCID: PMC7839518 DOI: 10.1002/anie.202012513] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 12/18/2022]
Abstract
Similarly to enzymes, functionalized gold nanoparticles efficiently catalyze chemical reactions, hence the term nanozymes. Herein, we present our results showing how surface-passivated gold nanoparticles behave as synthetic nanonucleases, able to cleave pBR322 plasmid DNA with the highest efficiency reported so far for catalysts based on a single metal ion mechanism. Experimental and computational data indicate that we have been successful in creating a catalytic site precisely mimicking that suggested for natural metallonucleases relying on a single metal ion for their activity. It comprises one Zn(II) ion to which a phosphate diester of DNA is coordinated. Importantly, as in nucleic acids-processing enzymes, a positively charged arginine plays a key role by assisting with transition state stabilization and by reducing the pKa of the nucleophilic alcohol of a serine. Our results also show how designing a catalyst for a model substrate (bis-p-nitrophenylphosphate) may provide wrong indications as for its efficiency when it is tested against the real target (plasmid DNA).
Collapse
Affiliation(s)
- Joanna Czescik
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
- Current address: School of Life and Health SciencesAston UniversityB4 7ETBirminghamUK
| | - Susanna Zamolo
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3CH-3012BernSwitzerland
| | - Tamis Darbre
- Department of Chemistry and BiochemistryUniversity of BernFreiestrasse 3CH-3012BernSwitzerland
| | - Riccardo Rigo.
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia Marzolo 535131PadovaItaly
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological SciencesUniversity of Padovavia Marzolo 535131PadovaItaly
| | - Adam Pecina
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT)Via Morego 3016163GenovaItaly
| | - Fabrizio Mancin
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
| | - Paolo Scrimin
- Department of Chemical SciencesUniversity of Padovavia Marzolo, 135131PadovaItaly
| |
Collapse
|
20
|
Czescik J, Zamolo S, Darbre T, Rigo. R, Sissi C, Pecina A, Riccardi L, De Vivo M, Mancin F, Scrimin P. A Gold Nanoparticle Nanonuclease Relying on a Zn(II) Mononuclear Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Joanna Czescik
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
- Current address: School of Life and Health Sciences Aston University B4 7ET Birmingham UK
| | - Susanna Zamolo
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 CH-3012 Bern Switzerland
| | - Riccardo Rigo.
- Department of Pharmaceutical and Pharmacological Sciences University of Padova via Marzolo 5 35131 Padova Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences University of Padova via Marzolo 5 35131 Padova Italy
| | - Adam Pecina
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery Istituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
| | - Paolo Scrimin
- Department of Chemical Sciences University of Padova via Marzolo, 1 35131 Padova Italy
| |
Collapse
|
21
|
Franco-Ulloa S, Tatulli G, Bore SL, Moglianetti M, Pompa PP, Cascella M, De Vivo M. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun 2020; 11:5422. [PMID: 33110063 PMCID: PMC7591489 DOI: 10.1038/s41467-020-19164-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
The fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability. Citrate-stabilized metallic colloids are key materials towards chemosensing and catalysis applications. Here the authors introduce a new theoretical model to estimate how the stoichiometry of citrate molecules absorbed onto spherical metallic nanoparticles influences their aggregation phenomena.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Giuseppina Tatulli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033 Blindern, 0315, Oslo, Norway.
| | - Marco De Vivo
- Molecular Modeling and Drug Discovery Lab, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
22
|
Franco-Ulloa S, Tatulli G, Bore SL, Moglianetti M, Pompa PP, Cascella M, De Vivo M. Dispersion state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat Commun 2020. [DOI: 10.2149/tmh1973.23.227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AbstractThe fundamental interactions underlying citrate-mediated chemical stability of metal nanoparticles, and their surface characteristics dictating particle dispersion/aggregation in aqueous solutions, are largely unclear. Here, we developed a theoretical model to estimate the stoichiometry of small, charged ligands (like citrate) chemisorbed onto spherical metallic nanoparticles and coupled it with atomistic molecular dynamics simulations to define the uncovered solvent-accessible surface area of the nanoparticle. Then, we integrated coarse-grained molecular dynamics simulations and two-body free energy calculations to define dispersion state phase diagrams for charged metal nanoparticles in a range of medium’s ionic strength, a known trigger for aggregation. Ultraviolet-visible spectroscopy experiments of citrate-capped nanocolloids validated our predictions and extended our results to nanoparticles up to 35 nm. Altogether, our results disclose a complex interplay between the particle size, its surface charge density, and the ionic strength of the medium, which ultimately clarifies how these variables impact colloidal stability.
Collapse
|
23
|
Pedraza-González L, Marín MDC, Jorge AN, Ruck TD, Yang X, Valentini A, Olivucci M, De Vico L. Web-ARM: A Web-Based Interface for the Automatic Construction of QM/MM Models of Rhodopsins. J Chem Inf Model 2020; 60:1481-1493. [PMID: 31909998 PMCID: PMC7101466 DOI: 10.1021/acs.jcim.9b00615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article introduces Web-ARM, a specialized tool, online available, designed to build quantum mechanical/molecular mechanical models of rhodopsins, a widely spread family of light-responsive proteins. Web-ARM allows the rapidly building of models of rhodopsins with a documented quality and the prediction of trends in UV-vis absorption maximum wavelengths, based on their excitation energies computed at the CASPT2//CASSCF/Amber level of theory. Web-ARM builds upon the recently reported, python-based a-ARM protocol [J. Chem. Theory Comput., 2019, 15, 3134-3152] and, as such, necessitates only a crystallographic structure or a comparative model in PDB format and a very basic knowledge of the studied rhodopsin system. The user-friendly web interface uses such input to generate congruous, gas-phase models of rhodopsins and, if requested, their mutants. We present two possible applications of Web-ARM, which showcase how the interface can be employed to assist both research and educational activities in fields at the interface between chemistry and biology. The first application shows how, through Web-ARM, research projects (e.g., rhodopsin and rhodopsin mutant screening) can be carried out in significantly less time with respect to using the required computational photochemistry tools via a command line. The second application documents the use of Web-ARM in a real-life educational/training activity, through a hands-on experience illustrating the concepts of rhodopsin color tuning.
Collapse
Affiliation(s)
- Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - María Del Carmen Marín
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| | - Alejandro N Jorge
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States of America
| | - Tyler D Ruck
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States of America
| | - Xuchun Yang
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States of America
| | - Alessio Valentini
- Theoretical Physical Chemistry, Research Unit MolSys, Université de Liège, Allée du 6 Août, 11, 4000 Liège, Belgium
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States of America
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Via A. Moro 2, I-53100 Siena, Italy
| |
Collapse
|
24
|
Hassan SA. Strong dependence of the nano-bio interactions on core morphology and layer composition of ultrasmall nanostructures. J Chem Phys 2019; 151:105102. [PMID: 31521088 PMCID: PMC6910586 DOI: 10.1063/1.5115192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/16/2019] [Indexed: 01/29/2023] Open
Abstract
The interactions between nanoparticles (NPs) and proteins, cells, and tissues, broadly known as nano-bio interactions, depend on the NP size and shape and on the characteristics of the NP coating layer, such as density, thickness, and chemical makeup. The dependence of nano-membrane interactions on the design parameters of ultrasmall nanostructures is studied by computer simulations. Considered here are spheres, plates, rings, rods, tubes, and helices made up of either bare magnetite or passivated gold, interacting with charged or zwitterionic membranes. The analysis reveals a strong dependence on shape, size, and layer composition of various quantities that characterize the nano-bio behavior, including binding modes and affinities. This sensitivity can be exploited to design nanostructures that bind preferentially to membranes or that stabilize or disrupt membrane structural integrity. The method used here is general and not limited to the ultrasmall regime, so it can be adopted to study other nano-bio interactions systematically. The implications for the distribution of NPs in cells and tissues (biodistribution) and for passive and active transmembrane transport are discussed, both important processes in biomedicine.
Collapse
Affiliation(s)
- Sergio A. Hassan
- Center for Molecular Modeling, OIR/CIT, National Institutes of Health, U.S. DHHS, Bethesda, Maryland 20892-0001, USA
| |
Collapse
|