1
|
Einsele R, Mitrić R. Nonadiabatic Exciton Dynamics and Energy Gradients in the Framework of FMO-LC-TDDFTB. J Chem Theory Comput 2024. [PMID: 39051619 DOI: 10.1021/acs.jctc.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
We introduce a novel methodology for simulating the excited-state dynamics of extensive molecular aggregates in the framework of the long-range corrected time-dependent density-functional tight-binding fragment molecular orbital method (FMO-LC-TDDFTB) combined with the mean-field Ehrenfest method. The electronic structure of the system is described in a quasi-diabatic basis composed of locally excited and charge-transfer states of all fragments. In order to carry out nonadiabatic molecular dynamics simulations, we derive and implement the excited-state gradients of the locally excited and charge-transfer states. Subsequently, the accuracy of the analytical excited-state gradients is evaluated. The applicability to the simulation of exciton transport in organic semiconductors is illustrated on a large cluster of anthracene molecules. Additionally, nonadiabatic molecular dynamics simulations of a model system of benzothieno-benzothiophene molecules highlight the method's utility in studying charge-transfer dynamics in organic materials. Our new methodology will facilitate the investigation of excitonic transfer in extensive biological systems, nanomaterials, and other complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität, Würzburg 97074, Germany
| |
Collapse
|
2
|
Fedorov DG. Partition analysis of dipole moments in solution applied to functional groups in polypeptide motifs. Phys Chem Chem Phys 2024; 26:18614-18628. [PMID: 38919134 DOI: 10.1039/d4cp01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A partition analysis based on segments is developed for density functional theory defining solute dipole moments of functional groups, and the corresponding induced solvent dipoles representing solvent screening. The accuracy of dipoles from the fragment molecular orbital method is evaluated in comparison to unfragmented values. The analysis is applied to evaluate dipole moments of side chains, amino and carbonyl groups in common polypeptide motifs, α-helixes, β-turns, and random coils in solution. The membrane domain of the ATP synthase (1B9U) is analyzed, revealing the effect of the bend splitting of the α-helix into two pieces.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| |
Collapse
|
3
|
Liu Z, Keum JK, Li T, Chen J, Hong K, Wang Y, Sumpter BG, Advincula R, Kumar R. Anti-polyelectrolyte and polyelectrolyte effects on conformations of polyzwitterionic chains in dilute aqueous solutions. PNAS NEXUS 2023; 2:pgad204. [PMID: 37424896 PMCID: PMC10323900 DOI: 10.1093/pnasnexus/pgad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023]
Abstract
Polyzwitterions (PZs) are considered as model synthetic analogs of intrinsically disordered proteins. Based on this analogy, PZs in dilute aqueous solutions are expected to attain either globular (i.e. molten, compact) or random coil conformations. Addition of salt is expected to open these conformations. To the best of our knowledge, these hypotheses about conformations of PZs have never been verified. In this study, we test these hypotheses by studying effects of added salt [potassium bromide (KBr)] on gyration and hydrodynamic radii of poly(sulfobetaine methacrylate) in dilute aqueous solutions using dynamic light scattering and small-angle X-ray scattering, respectively. Effects of zwitteration are revealed by direct comparisons of the PZs with the polymers of the same backbone but containing (1) no explicit charges on side groups such as poly(2-dimethylaminoethyl methacrylate)s and (2) explicit cationic side groups with tertiary amino bromide pendants. Zeta-potential measurements, transmission electron microscopy, and ab initio molecular dynamics simulations reveal that the PZs acquire net positive charge in near salt-free conditions due to protonation but retain coiled conformations. Added KBr leads to nonmonotonic changes exhibiting an increase followed by a decrease in radius of gyration (and hydrodynamic radius), which are called antipolyelectrolyte and polyelectrolyte effects, respectively. Charge regulation and screening of charge-charge interactions are discussed in relation to the antipolyelectrolyte and polyelectrolyte effects, respectively, which highlight the importance of salt in affecting net charge and conformations of PZs.
Collapse
Affiliation(s)
| | | | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jihua Chen
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rigoberto Advincula
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | |
Collapse
|
4
|
Vuong VQ, Cevallos C, Hourahine B, Aradi B, Jakowski J, Irle S, Camacho C. Accelerating the density-functional tight-binding method using graphical processing units. J Chem Phys 2023; 158:084802. [PMID: 36859078 DOI: 10.1063/5.0130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acceleration of the density-functional tight-binding (DFTB) method on single and multiple graphical processing units (GPUs) was accomplished using the MAGMA linear algebra library. Two major computational bottlenecks of DFTB ground-state calculations were addressed in our implementation: the Hamiltonian matrix diagonalization and the density matrix construction. The code was implemented and benchmarked on two different computer systems: (1) the SUMMIT IBM Power9 supercomputer at the Oak Ridge National Laboratory Leadership Computing Facility with 1-6 NVIDIA Volta V100 GPUs per computer node and (2) an in-house Intel Xeon computer with 1-2 NVIDIA Tesla P100 GPUs. The performance and parallel scalability were measured for three molecular models of 1-, 2-, and 3-dimensional chemical systems, represented by carbon nanotubes, covalent organic frameworks, and water clusters.
Collapse
Affiliation(s)
- Van-Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Caterina Cevallos
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Ben Hourahine
- SUPA, Department of Physics, The John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen, Germany
| | - Jacek Jakowski
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Cristopher Camacho
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
5
|
Negre CFA, Wall ME, Niklasson AMN. Graph-based quantum response theory and shadow Born-Oppenheimer molecular dynamics. J Chem Phys 2023; 158:074108. [PMID: 36813723 DOI: 10.1063/5.0137119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Graph-based linear scaling electronic structure theory for quantum-mechanical molecular dynamics simulations [A. M. N. Niklasson et al., J. Chem. Phys. 144, 234101 (2016)] is adapted to the most recent shadow potential formulations of extended Lagrangian Born-Oppenheimer molecular dynamics, including fractional molecular-orbital occupation numbers [A. M. N. Niklasson, J. Chem. Phys. 152, 104103 (2020) and A. M. N. Niklasson, Eur. Phys. J. B 94, 164 (2021)], which enables stable simulations of sensitive complex chemical systems with unsteady charge solutions. The proposed formulation includes a preconditioned Krylov subspace approximation for the integration of the extended electronic degrees of freedom, which requires quantum response calculations for electronic states with fractional occupation numbers. For the response calculations, we introduce a graph-based canonical quantum perturbation theory that can be performed with the same natural parallelism and linear scaling complexity as the graph-based electronic structure calculations for the unperturbed ground state. The proposed techniques are particularly well-suited for semi-empirical electronic structure theory, and the methods are demonstrated using self-consistent charge density-functional tight-binding theory both for the acceleration of self-consistent field calculations and for quantum-mechanical molecular dynamics simulations. Graph-based techniques combined with the semi-empirical theory enable stable simulations of large, complex chemical systems, including tens-of-thousands of atoms.
Collapse
Affiliation(s)
- Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Michael E Wall
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Anders M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
6
|
Einsele R, Hoche J, Mitrić R. Long-range corrected fragment molecular orbital density functional tight-binding method for excited states in large molecular systems. J Chem Phys 2023; 158:044121. [PMID: 36725509 DOI: 10.1063/5.0136844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Herein, we present a new method to efficiently calculate electronically excited states in large molecular assemblies, consisting of hundreds of molecules. For this purpose, we combine the long-range corrected tight-binding density functional fragment molecular orbital method (FMO-LC-DFTB) with an excitonic Hamiltonian, which is constructed in the basis of locally excited and charge-transfer configuration state functions calculated for embedded monomers and dimers and accounts explicitly for the electronic coupling between all types of excitons. We first evaluate both the accuracy and efficiency of our fragmentation approach for molecular dimers and aggregates by comparing it with the full LC-TD-DFTB method. The comparison of the calculated spectra of an anthracene cluster shows a very good agreement between our method and the LC-TD-DFTB reference. The effective computational scaling of our method has been explored for anthracene clusters and for perylene bisimide aggregates. We demonstrate the applicability of our method by the calculation of the excited state properties of pentacene crystal models consisting of up to 319 molecules. Furthermore, the participation ratio of the monomer fragments to the excited states is analyzed by the calculation of natural transition orbital participation numbers, which are verified by the hole and particle density for a chosen pentacene cluster. The use of our FMO-LC-TDDFTB method will allow for future studies of excitonic dynamics and charge transport to be performed on complex molecular systems consisting of thousands of atoms.
Collapse
Affiliation(s)
- Richard Einsele
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Joscha Hoche
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Fedorov DG. Parametrized quantum-mechanical approaches combined with the fragment molecular orbital method. J Chem Phys 2022; 157:231001. [PMID: 36550057 DOI: 10.1063/5.0131256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Fast parameterized methods such as density-functional tight-binding (DFTB) facilitate realistic calculations of large molecular systems, which can be accelerated by the fragment molecular orbital (FMO) method. Fragmentation facilitates interaction analyses between functional parts of molecular systems. In addition to DFTB, other parameterized methods combined with FMO are also described. Applications of FMO methods to biochemical and inorganic systems are reviewed.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
8
|
Feng S, Luo Y, Jiang J, Wang S. Examining the Long-Range Effect in Very Long Graphene Nanoribbons: A First-Principles Study. J Phys Chem Lett 2022; 13:11223-11229. [PMID: 36445836 DOI: 10.1021/acs.jpclett.2c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The role of long-range effect on the modulation of the electronic structure of graphene nanoribbons has been little studied due to the limitations of existing theoretical and computational methods. By splitting a molecule top-down and calculating and jointing the Fock matrix of fragments, we developed a computational method suitable for large-size molecules with random doping and arbitrary geometry. Utilizing this method, we achieved the study of the effects of dopants and curvature on graphene nanoribbons (GNRs). It reveals that both dopants and curvature can change the charge distribution of GNRs, while the influence of dopants is more significant and can extend up to 1-3 nm. The electronic excitation properties of GNRs are also largely modified by the doping state or nonuniform curvature. Our findings provide not only a feasible approach for studying the electronic structure of large-size molecules but also the possibility to improve the properties of graphene-based materials by dopants and local curvature.
Collapse
Affiliation(s)
- Shuo Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
9
|
Fedorov DG. Polarization energies in the fragment molecular orbital method. J Comput Chem 2022; 43:1094-1103. [PMID: 35446441 DOI: 10.1002/jcc.26869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022]
Abstract
Using isolated and polarized states of fragments, a method for computing the polarization energies in density functional theory (DFT) and density-functional tight-binding (DFTB) is developed in the framework of the fragment molecular orbital method. For DFTB, the method is extended into the use of periodic boundary conditions (PBC), for which a new component, a periodic self-polarization energy, is derived. The couplings of the polarization to other components in the pair interaction energy analysis (PIEDA) are derived for DFT and DFTB, and compared to Hartree-Fock and second-order Møller-Plesset perturbation theory (MP2). The effect of the self-consistent (DFT) and perturbative (MP2) treatment of the electron correlation on the polarization is discussed. The difference in the polarization in the bulk (PBC) and micro (cluster) solvation is elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
10
|
Li Y, Wang D, Fu F, Xia Q, Li W, Li S. Structures and properties of ionic crystals and condensed phase ionic liquids predicted with the generalized energy-based fragmentation method. J Comput Chem 2022; 43:704-716. [PMID: 35213748 DOI: 10.1002/jcc.26828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
The generalized energy-based fragmentation (GEBF) approach is extended to facilitate ab initio investigations of structures, lattice energies, vibrational spectra and 1 H NMR chemical shifts of ionic crystals and condensed-phase ionic liquids (ILs) with the periodic boundary conditions (PBC). For selected periodic systems, our results demonstrate that the so-called PBC-GEBF approach can provide satisfactory descriptions on ground-state energies, structures, and vibrational spectra of ionic crystals and IL crystals. The PBC-GEBF approach is then applied to three realistic condensed phase systems. For three ionic crystals (LiCl, NaCl, and KCl), we apply the PBC-GEBF approach with MP2 theory as well as some popular DFT methods to investigate their crystal structures and lattice energies. Our calculations indicate that the crystal structures obtained with PBC-GEBF-MP2/6-311 + G** are very close to the corresponding X-ray structures, while PBC-GEBF-ωB97X-D/6-311 + G** provides satisfactory prediction for crystal structures and lattice energies. For two polymorphs of [n-C4 mim][Cl] crystals, we find that the PBC-GEBF approach at the M06-2X/6-311 + G** level can give a satisfactory descriptions on structures and Raman spectra of these two crystals. Furthermore, for [C2 mim][BF4 ] ILs, we demonstrate that their 1 H NMR chemical shifts can be estimated from averaging over 5 typical snapshots (extracted from MD simulations) with the PBC-GEBF approach at the B97-2/pcSseg-2 level. The calculated results account for the observed experimental data quite well. Therefore, we expect that the PBC-GEBF approach, combined with various quantum chemistry methods, will become an effective tool in predicting structures and properties of ionic crystals and condensed-phase ILs.
Collapse
Affiliation(s)
- Yunzhi Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China.,School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Fangjia Fu
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Qiying Xia
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Nishimoto Y, Fedorov DG. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. J Chem Phys 2021; 154:111102. [PMID: 33752370 DOI: 10.1063/5.0039520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The density-functional tight-binding (DFTB) formulation of the fragment molecular orbital method is combined with periodic boundary conditions. Long-range electrostatics and dispersion are evaluated with the Ewald summation technique. The first analytic derivatives of the energy with respect to atomic coordinates and lattice parameters are formulated. The accuracy of the method is established in comparison to numerical gradients and DFTB without fragmentation. The largest elementary cell in this work has 1631 atoms. The method is applied to elucidate the polarization, charge transfer, and interactions in the solution.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwakecho, Sakyoku, Kyoto 606-8502, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
12
|
Abstract
Computational methods for modeling biochemical processes implemented in GAMESS package are reviewed; in particular, quantum mechanics combined with molecular mechanics (QM/MM), semi-empirical, and fragmentation approaches. A detailed summary of capabilities is provided for the QM/MM implementation in QuanPol program and the fragment molecular orbital (FMO) method. Molecular modeling and visualization packages useful for biochemical simulations with GAMESS are described. GAMESS capabilities with corresponding references are tabulated for reader's convenience.
Collapse
|
13
|
Abstract
High-order charge transfer is incorporated into the fragment molecular orbital (FMO) method using a charge transfer state with fractional charges. This state is used for a partition analysis of properties based on segments that may be different from fragments in FMO. The partition analysis is also formulated for calculations without fragmentation. All development in this work is limited to density-functional tight-binding. The analysis is applied to a water cluster, crambin (PDB: 1CBN), and two complexes of Trp-cage (1L2Y) with ligands. The contributions of functional groups in ligands are obtained, providing useful information for drug discovery.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
14
|
Sun J, Feng S, Wang X, Zhang G, Luo Y, Jiang J. Regulation of Electronic Structure of Graphene Nanoribbon by Tuning Long-Range Dopant-Dopant Coupling at Distance of Tens of Nanometers. J Phys Chem Lett 2020; 11:6907-6913. [PMID: 32787204 DOI: 10.1021/acs.jpclett.0c01839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Long-range dopant-dopant coupling in graphene nanoribbon (GNR) has been under intensive study for a very long time. Using a newly developed dopant central insertion scheme (DCIS), we performed first-principles study on multiple H, O, OH, and FeN4 dopants in long (up to 1000 nm) GNRs and found that, although potential energy of the dopant decays exponentially as a function of distance to the dopant, GNR's electronic density of states (DOS) exhibits wave-like oscillation modulated by dopants separated at a distance up to 100 nm. Such an oscillation strongly infers the purely quantum mechanical resonance states constrained between double quantum wells. This has been unambiguously confirmed by our DCIS study together with a one-dimensional quantum well model study, leading to a proof-of-principle protocol prescribing on-demand GNR-DOS regulation. All these not only reveal the underlining mechanism and importance of long-range dopant-dopant coupling specifically reported in GNR, but also open a novel highway for rationally optimizing and designing two-dimensional materials.
Collapse
Affiliation(s)
- Jiace Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuo Feng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guozhen Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
15
|
Fedorov DG. Three-Body Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem A 2020; 124:4956-4971. [DOI: 10.1021/acs.jpca.0c03085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
16
|
Barca GMJ, Bertoni C, Carrington L, Datta D, De Silva N, Deustua JE, Fedorov DG, Gour JR, Gunina AO, Guidez E, Harville T, Irle S, Ivanic J, Kowalski K, Leang SS, Li H, Li W, Lutz JJ, Magoulas I, Mato J, Mironov V, Nakata H, Pham BQ, Piecuch P, Poole D, Pruitt SR, Rendell AP, Roskop LB, Ruedenberg K, Sattasathuchana T, Schmidt MW, Shen J, Slipchenko L, Sosonkina M, Sundriyal V, Tiwari A, Galvez Vallejo JL, Westheimer B, Włoch M, Xu P, Zahariev F, Gordon MS. Recent developments in the general atomic and molecular electronic structure system. J Chem Phys 2020; 152:154102. [PMID: 32321259 DOI: 10.1063/5.0005188] [Citation(s) in RCA: 575] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory. The role of accelerators, especially graphical processing units, is discussed in the context of the new features of LibCChem, as it is the associated problem of power consumption as the power of computers increases dramatically. The process by which a complex program suite such as GAMESS is maintained and developed is considered. Future developments are briefly summarized.
Collapse
Affiliation(s)
- Giuseppe M J Barca
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Colleen Bertoni
- Argonne Leadership Computing Facility, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Laura Carrington
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Dipayan Datta
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Nuwan De Silva
- Department of Physical and Biological Sciences, Western New England University, Springfield, Massachusetts 01119, USA
| | - J Emiliano Deustua
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Jeffrey R Gour
- Microsoft, 15590 NE 31st St., Redmond, Washington 98052, USA
| | - Anastasia O Gunina
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Emilie Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Taylor Harville
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Stephan Irle
- Computational Science and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Joe Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Karol Kowalski
- Physical Sciences Division, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, USA
| | - Sarom S Leang
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Hui Li
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, USA
| | - Wei Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jesse J Lutz
- Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Ilias Magoulas
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Joani Mato
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Vladimir Mironov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation
| | - Hiroya Nakata
- Kyocera Corporation, Research Institute for Advanced Materials and Devices, 3-5-3 Hikaridai Seika-cho, Souraku-gun, Kyoto 619-0237, Japan
| | - Buu Q Pham
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - David Poole
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Spencer R Pruitt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Alistair P Rendell
- Research School of Computer Science, Australian National University, Canberra, ACT 2601, Australia
| | - Luke B Roskop
- Cray Inc., a Hewlett Packard Enterprise Company, 2131 Lindau Ln #1000, Bloomington, Minnesota 55425, USA
| | - Klaus Ruedenberg
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | | | - Michael W Schmidt
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Jun Shen
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Lyudmila Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Masha Sosonkina
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Vaibhav Sundriyal
- Department of Computational Modeling and Simulation Engineering, Old Dominion University, Norfolk, Virginia 23529, USA
| | - Ananta Tiwari
- EP Analytics, 12121 Scripps Summit Dr. Ste. 130, San Diego, California 92131, USA
| | - Jorge L Galvez Vallejo
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Bryce Westheimer
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Marta Włoch
- 530 Charlesina Dr., Rochester, Michigan 48306, USA
| | - Peng Xu
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Federico Zahariev
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
17
|
Hourahine B, Aradi B, Blum V, Bonafé F, Buccheri A, Camacho C, Cevallos C, Deshaye MY, Dumitrică T, Dominguez A, Ehlert S, Elstner M, van der Heide T, Hermann J, Irle S, Kranz JJ, Köhler C, Kowalczyk T, Kubař T, Lee IS, Lutsker V, Maurer RJ, Min SK, Mitchell I, Negre C, Niehaus TA, Niklasson AMN, Page AJ, Pecchia A, Penazzi G, Persson MP, Řezáč J, Sánchez CG, Sternberg M, Stöhr M, Stuckenberg F, Tkatchenko A, Yu VWZ, Frauenheim T. DFTB+, a software package for efficient approximate density functional theory based atomistic simulations. J Chem Phys 2020; 152:124101. [PMID: 32241125 DOI: 10.1063/1.5143190] [Citation(s) in RCA: 440] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DFTB+ is a versatile community developed open source software package offering fast and efficient methods for carrying out atomistic quantum mechanical simulations. By implementing various methods approximating density functional theory (DFT), such as the density functional based tight binding (DFTB) and the extended tight binding method, it enables simulations of large systems and long timescales with reasonable accuracy while being considerably faster for typical simulations than the respective ab initio methods. Based on the DFTB framework, it additionally offers approximated versions of various DFT extensions including hybrid functionals, time dependent formalism for treating excited systems, electron transport using non-equilibrium Green's functions, and many more. DFTB+ can be used as a user-friendly standalone application in addition to being embedded into other software packages as a library or acting as a calculation-server accessed by socket communication. We give an overview of the recently developed capabilities of the DFTB+ code, demonstrating with a few use case examples, discuss the strengths and weaknesses of the various features, and also discuss on-going developments and possible future perspectives.
Collapse
Affiliation(s)
- B Hourahine
- SUPA, Department of Physics, The University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - B Aradi
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - V Blum
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - F Bonafé
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - A Buccheri
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - C Camacho
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - C Cevallos
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - M Y Deshaye
- Department of Chemistry and Advanced Materials Science and Engineering Center, Western Washington University, Bellingham, Washington 98225, USA
| | - T Dumitrică
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - A Dominguez
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - S Ehlert
- University of Bonn, Bonn, Germany
| | - M Elstner
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - T van der Heide
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - J Hermann
- Freie Universität Berlin, Berlin, Germany
| | - S Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J J Kranz
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - C Köhler
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - T Kowalczyk
- Department of Chemistry and Advanced Materials Science and Engineering Center, Western Washington University, Bellingham, Washington 98225, USA
| | - T Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - I S Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - V Lutsker
- Institut I - Theoretische Physik, University of Regensburg, Regensburg, Germany
| | - R J Maurer
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - S K Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - I Mitchell
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, South Korea
| | - C Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - T A Niehaus
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - A M N Niklasson
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - A J Page
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, Australia
| | - A Pecchia
- CNR-ISMN, Via Salaria km 29.300, 00015 Monterotondo Stazione, Rome, Italy
| | - G Penazzi
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - M P Persson
- Dassault Systemes, Cambridge, United Kingdom
| | - J Řezáč
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | - C G Sánchez
- Instituto Interdisciplinario de Ciencias Básicas, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Exactas y Naturales, Mendoza, Argentina
| | - M Sternberg
- Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M Stöhr
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - F Stuckenberg
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| | - A Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - V W-Z Yu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - T Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen, Germany
| |
Collapse
|
18
|
Inamori M, Yoshikawa T, Ikabata Y, Nishimura Y, Nakai H. Spin‐flip approach within time‐dependent density functional tight‐binding method: Theory and applications. J Comput Chem 2020; 41:1538-1548. [DOI: 10.1002/jcc.26197] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Mayu Inamori
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yasuhiro Ikabata
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and EngineeringWaseda University Tokyo Japan
- Waseda Research Institute for Science and EngineeringWaseda University Tokyo Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)Kyoto University Kyoto Japan
| |
Collapse
|
19
|
Komoto N, Yoshikawa T, Nishimura Y, Nakai H. Large-Scale Molecular Dynamics Simulation for Ground and Excited States Based on Divide-and-Conquer Long-Range Corrected Density-Functional Tight-Binding Method. J Chem Theory Comput 2020; 16:2369-2378. [DOI: 10.1021/acs.jctc.9b01268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Nana Komoto
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Takeshi Yoshikawa
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
20
|
Spiegelman F, Tarrat N, Cuny J, Dontot L, Posenitskiy E, Martí C, Simon A, Rapacioli M. Density-functional tight-binding: basic concepts and applications to molecules and clusters. ADVANCES IN PHYSICS: X 2020; 5:1710252. [PMID: 33154977 PMCID: PMC7116320 DOI: 10.1080/23746149.2019.1710252] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023] Open
Abstract
The scope of this article is to present an overview of the Density Functional based Tight Binding (DFTB) method and its applications. The paper introduces the basics of DFTB and its standard formulation up to second order. It also addresses methodological developments such as third order expansion, inclusion of non-covalent interactions, schemes to solve the self-interaction error, implementation of long-range short-range separation, treatment of excited states via the time-dependent DFTB scheme, inclusion of DFTB in hybrid high-level/low level schemes (DFT/DFTB or DFTB/MM), fragment decomposition of large systems, large scale potential energy landscape exploration with molecular dynamics in ground or excited states, non-adiabatic dynamics. A number of applications are reviewed, focusing on -(i)- the variety of systems that have been studied such as small molecules, large molecules and biomolecules, bare orfunctionalized clusters, supported or embedded systems, and -(ii)- properties and processes, such as vibrational spectroscopy, collisions, fragmentation, thermodynamics or non-adiabatic dynamics. Finally outlines and perspectives are given.
Collapse
Affiliation(s)
- Fernand Spiegelman
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Nathalie Tarrat
- CEMES, Université de Toulouse (UPS), CNRS, UPR8011, Toulouse, Toulouse, France
| | - Jérôme Cuny
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Leo Dontot
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Evgeny Posenitskiy
- Laboratoire Collisions Agrégats et Réactivité LCAR/IRSAMC, UMR5589, Université de Toulouse (UPS) and CNRS, Toulouse, France
| | - Carles Martí
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
- Laboratoire de Chimie, UMR5182, Ecole Normale Supérieure de Lyon, Université de Lyon and CNRS, Lyon, France
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS)and CNRS, Toulouse, France
| |
Collapse
|
21
|
Geometry Optimization, Transition State Search, and Reaction Path Mapping Accomplished with the Fragment Molecular Orbital Method. Methods Mol Biol 2020. [PMID: 32016888 DOI: 10.1007/978-1-0716-0282-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Recent development of the fragment molecular orbital (FMO) method related to energy gradients, geometry optimization, transition state search, and chemical reaction mapping is summarized. The frozen domain formulation of FMO is introduced in detail, and the structure of related GAMESS input files for FMO is described.
Collapse
|
22
|
Pham BQ, Gordon MS. Development of the FMO/RI-MP2 Fully Analytic Gradient Using a Hybrid-Distributed/Shared Memory Programming Model. J Chem Theory Comput 2020; 16:1039-1054. [PMID: 31899632 DOI: 10.1021/acs.jctc.9b01082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The fully analytic gradient of the second-order Møller-Plesset perturbation theory (MP2) with the resolution-of-the-identity (RI) approximation in the fragment molecular orbital (FMO) framework is derived and implemented using a hybrid multilevel parallel programming model, a combination of the general distributed data interface (GDDI) and the OpenMP API. The FMO/MP2 analytic gradient contains three parts, i.e., the internal fragment component, the electrostatic potential (ESP) component, and the response terms. The RI approximation is applied to the internal fragment MP2 gradient term, whose MP2 densities and monomer MP2 Lagrangians are shared with the ESP and the response terms. The FMO/RI-MP2 analytic gradient implementation is validated against the numerical gradient (with errors ∼10-6-10-5 Hartree/Bohr) and the energy conservation in molecular dynamics (MD) simulations using NVE ensembles. The RI approximation introduces an error of ∼10-5 Hartree/Bohr with a speedup of 4.0-8.0× compared with the currently available GDDI FMO/MP2 gradient. The node linear scaling of the fragmentation framework due to multilevel parallelism is well-preserved and is demonstrated in single-point gradient calculations of large water clusters (e.g., 1120 and 2165 molecules) using 300-800 KNL compute nodes with a parallel efficiency of more than 90%.
Collapse
Affiliation(s)
- Buu Q Pham
- Department of Chemistry and Ames Laboratory , Iowa State University , Ames , Iowa 50011 , United States
| | - Mark S Gordon
- Department of Chemistry and Ames Laboratory , Iowa State University , Ames , Iowa 50011 , United States
| |
Collapse
|
23
|
Morao I, Heifetz A, Fedorov DG. Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods. Methods Mol Biol 2020; 2114:143-148. [PMID: 32016891 DOI: 10.1007/978-1-0716-0282-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The accurate evaluation of receptor-ligand interactions is an essential part of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been combined with the density-functional tight-binding (DFTB) method to compute energy calculations of biological systems in seconds. FMO-DFTB outperformed GBVI/WSA in identifying a set of 10 binders versus a background of 500 decoys applied to human k-opioid receptor. The significant increase in the speed and the high accuracy achieved with FMO-DFTB calculations allows FMO to be applied in areas of drug discovery that were not previously accessible to traditional QM methodologies. For the first time, it is now possible to perform FMO calculations in a high-throughput manner.
Collapse
Affiliation(s)
- Inaki Morao
- Evotec (UK) Ltd., Abingdon, Oxfordshire, UK.
| | | | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
24
|
Abstract
Basic concepts in the analysis of binding using the fragment molecular orbital method are discussed at length: polarization, desolvation, and interaction. The components in the pair interaction energy decomposition analysis are introduced, and the analysis is illustrated for a water dimer and a protein-ligand complex.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.
| |
Collapse
|
25
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Xu L, Coote ML. Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors. J Chem Theory Comput 2019; 15:6958-6967. [DOI: 10.1021/acs.jctc.9b00888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Longkun Xu
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
27
|
Kaliakin DS, Fedorov DG, Alexeev Y, Varganov SA. Locating Minimum Energy Crossings of Different Spin States Using the Fragment Molecular Orbital Method. J Chem Theory Comput 2019; 15:6074-6084. [DOI: 10.1021/acs.jctc.9b00641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Danil S. Kaliakin
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| | - Dmitri G. Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Yuri Alexeev
- Computational Science Division and Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Sergey A. Varganov
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia Street, Reno, Nevada 89557-0216, United States
| |
Collapse
|
28
|
Fedorov DG. Solvent Screening in Zwitterions Analyzed with the Fragment Molecular Orbital Method. J Chem Theory Comput 2019; 15:5404-5416. [PMID: 31461277 DOI: 10.1021/acs.jctc.9b00715] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Based on induced solvent charges, a new model of solvent screening is developed in the framework of the fragment molecular orbital combined with the polarizable continuum model. The developed model is applied to analyze interactions in a prototypical zwitterionic system, sodium chloride in water, and it is shown that the large underestimation of the interaction in the original solvent screening based on local charges is successfully corrected. The model is also applied to a complex of the Trp-cage (PDB: 1L2Y ) miniprotein with an anionic ligand, and the physical factors determined protein-ligand binding in solution are unraveled.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 2, Umezono 1-1-1 , Tsukuba 305-8568 , Japan
| |
Collapse
|
29
|
Nishimoto Y. Time-Dependent Long-Range-Corrected Density-Functional Tight-Binding Method Combined with the Polarizable Continuum Model. J Phys Chem A 2019; 123:5649-5659. [PMID: 31150233 DOI: 10.1021/acs.jpca.9b03713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, excited-state free energies and geometries were efficiently evaluated using a linear-response time-dependent long-range-corrected density-functional tight-binding method integrated with the polarizable continuum model (TD-LC-DFTB2/PCM). Although the LC-DFTB method required the evaluation of the exchange-type term, which was moderately computationally expensive, a single evaluation of the excited-state gradient for a system consisting of more than 1000 atoms in a vacuum was completed within 30 min using one CPU core. Benchmark calculations were conducted for 3-hydroxyflavone, which exhibits dual emission: the absorption and enol-form emission wavelengths calculated by TD-LC-DFTB2/PCM agreed well with those predicted based on the density functional theory using a long-range corrected functional; however, there was a large error in the predicted keto-form emission wavelength. Further benchmark calculations for more than 20 molecules indicated that the conventional TD-DFTB method underestimated the absorption and 0-0 transition energies compared with those which were measured experimentally, whereas the TD-LC-DFTB2 method systematically overestimated these metrics. Nevertheless, the agreement of the results of the TD-LC-DFTB2 method with those obtained by the CAM-B3LYP method demonstrates the potential of the TD-LC-DFTB2/PCM method. Moreover, changing the range separation parameter to 0.15 minimized this deviation.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Fukui Institute for Fundamental Chemistry , Kyoto University , 34-4 Takano Nishihiraki-cho , Sakyo-ku, Kyoto 606-8103 , Japan
| |
Collapse
|