1
|
Phung DK, Pilotto S, Matelska D, Blombach F, Pinotsis N, Hovan L, Gervasio FL, Werner F. Archaeal NusA2 is the ancestor of ribosomal protein eS7 in eukaryotes. Structure 2025; 33:149-159.e6. [PMID: 39504966 DOI: 10.1016/j.str.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
N-utilization substance A (NusA) is a regulatory factor with pleiotropic functions in gene expression in bacteria. Archaea encode two conserved small proteins, NusA1 and NusA2, with domains orthologous to the two RNA binding K Homology (KH) domains of NusA. Here, we report the crystal structures of NusA2 from Sulfolobus acidocaldarius and Saccharolobus solfataricus obtained at 3.1 Å and 1.68 Å, respectively. NusA2 comprises an N-terminal zinc finger followed by two KH-like domains lacking the GXXG signature. Despite the loss of the GXXG motif, NusA2 binds single-stranded RNA. Mutations in the zinc finger domain compromise the structural integrity of NusA2 at high temperatures and molecular dynamics simulations indicate that zinc binding provides an energy barrier preventing the domain from reaching unfolded states. A structure-guided phylogenetic analysis of the KH-like domains supports the notion that the NusA2 clade is ancestral to the ribosomal protein eS7 in eukaryotes, implying a potential role of NusA2 in translation.
Collapse
Affiliation(s)
- Duy Khanh Phung
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Simona Pilotto
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Dorota Matelska
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Fabian Blombach
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK
| | - Nikos Pinotsis
- Institute for Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, UK
| | - Ladislav Hovan
- Pharmaceutical Sciences, University of Geneva, 1206 Genève, Switzerland
| | - Francesco Luigi Gervasio
- Pharmaceutical Sciences, University of Geneva, 1206 Genève, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland; Department of Chemistry, University College London, London WC1E 6BT, UK
| | - Finn Werner
- RNAP Laboratory, Institute for Structural and Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Stegani B, Scalone E, Toplek FB, Löhr T, Gianni S, Vendruscolo M, Capelli R, Camilloni C. Estimation of Ligand Binding Free Energy Using Multi-eGO. J Chem Inf Model 2024. [PMID: 39737687 DOI: 10.1021/acs.jcim.4c01545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
The computational study of ligand binding to a target protein provides mechanistic insight into the molecular determinants of this process and can improve the success rate of in silico drug design. All-atom molecular dynamics (MD) simulations can be used to evaluate the binding free energy, typically by thermodynamic integration, and to probe binding mechanisms, including the description of protein conformational dynamics. The advantages of MD come at a high computational cost, which limits its use. Such cost could be reduced by using coarse-grained models, but their use is generally associated with an undesirable loss of resolution and accuracy. To address the trade-off between speed and accuracy of MD simulations, we describe the use of the recently introduced multi-eGO atomic model for the estimation of binding free energies. We illustrate this approach in the case of the binding of benzene to lysozyme by both thermodynamic integration and metadynamics, showing multiple binding/unbinding pathways of benzene. We then provide equally accurate results for the binding free energy of dasatinib and PP1 to Src kinase by thermodynamic integration. Finally, we show how we can describe the binding of the small molecule 10074-G5 to Aβ42 by single molecule simulations and by explicit titration of the ligand as a function of concentration. These results demonstrate that multi-eGO has the potential to significantly reduce the cost of accurate binding free energy calculations and can be used to develop and benchmark in silico ligand binding techniques.
Collapse
Affiliation(s)
- Bruno Stegani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome 00185, Italy
| | - Emanuele Scalone
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Fran Bačić Toplek
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Thomas Löhr
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome 00185, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Riccardo Capelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
3
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. Biophys J 2024; 123:4082-4096. [PMID: 39539017 PMCID: PMC11628823 DOI: 10.1016/j.bpj.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared with published findings. We simulated short (<20 residues) and long (>80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multiphosphorylated IDRs. Our results support and expand on previous observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri
| | - Martin J Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri; Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
4
|
Peeples CA, Liu R, Shen J. Force Field Limitations of All-Atom Continuous Constant pH Molecular Dynamics. J Phys Chem B 2024; 128:11616-11624. [PMID: 39531617 DOI: 10.1021/acs.jpcb.4c05971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
All-atom constant pH molecular dynamics simulations offer a powerful tool for understanding pH-mediated and proton-coupled biological processes. As the protonation equilibria of protein side chains are shifted by electrostatic interactions and desolvation energies, pKa values calculated from the constant pH simulations may be sensitive to the underlying protein force field and water model. Here we investigated the force field dependence of the all-atom particle mesh Ewald (PME) continuous constant pH (PME-CpHMD) simulations of a mini-protein BBL. The replica-exchange titration simulations based on the Amber ff19sb and ff14sb force fields with the respective water models showed significantly overestimated pKa downshifts for a buried histidine (His166) and for two glutamic acids (Glu141 and Glu161) that are involved in salt-bridge interactions. These errors (due to undersolvation of neutral histidines and overstabilization of salt bridges) are consistent with the previously reported pKa's based on the CHARMM c22/CMAP force field, albeit in larger magnitudes. The pKa calculations also demonstrated that ff19sb with OPC water is significantly more accurate than ff14sb with TIP3P water, and the salt-bridge related pKa downshifts can be partially alleviated by the atom-pair specific Lennard-Jones corrections (NBFIX). Together, these data suggest that the accuracies of the protonation equilibria of proteins from constant pH simulations can significantly benefit from improvements of force fields.
Collapse
Affiliation(s)
- Craig A Peeples
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
5
|
Gong X, Zhang Y, Chen J. Likely Overstabilization of Charge-Charge Interactions in CHARMM36m(w): A Case for a99SB-disp Water. J Phys Chem B 2024; 128:11554-11564. [PMID: 39536029 DOI: 10.1021/acs.jpcb.4c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent years have witnessed drastic improvements in general-purpose explicit solvent protein force fields, partially driven by the need to study intrinsically disordered proteins (IDPs), and yet the state-of-the-art force fields such as CHARMM36m (c36m) and a99SB-disp still provide different performances in simulating disordered protein states, where c36m has a bias toward overcompaction for large IDPs. Here, we examine the performance of c36m and a99SB-disp in describing the stabilities of a set of 46 amino acid backbone and side chain pairs in various configurations. The free energy results show that c36m systematically predicts stronger interactions compared to a99SB-disp by an average of 0.2 kcal/mol for nonpolar pairs, 0.6 kcal/mol for polar pairs, and 0.8 kcal/mol for salt bridges. The most severe overstabilization in c36m is observed for charged pairs involving the Arg and Glu side chains by up to 2.9 kcal/mol. Importantly, the systematic overstabilization of c36m is only marginally alleviated by c36mw, an ad hoc patch to c36m that increases the dispersion interactions between TIP3P hydrogens and protein atoms. Guided by free energy decomposition, we evaluated if revising the charges alone could alleviate the severe overstabilization of salt bridges of c36m(w) vs a99SB-disp. The results suggested that the direct modification of protein-water interactions is also necessary. Toward this end, we proposed a tentative modification to c36m, referred to as c36mrb-disp, which combines modified Arg side chain charges, retuned backbone hydrogen bonding strength, and the a99SB-disp water model. The modified force field successfully reproduces the secondary structures of several intrinsically disordered peptides and proteins including (AAQAA)3, GB1p, and p53 transactivation domain, while maintaining the stability of a set of folded proteins. This work provides a set of useful systems for benchmarking and optimizing protein force fields and highlights the importance of balancing protein-protein and protein-water electrostatic interactions for accurately describing both folded and disordered proteins.
Collapse
Affiliation(s)
- Xiping Gong
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Yumeng Zhang
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Mirarchi A, Giorgino T, De Fabritiis G. mdCATH: A Large-Scale MD Dataset for Data-Driven Computational Biophysics. Sci Data 2024; 11:1299. [PMID: 39609442 PMCID: PMC11604666 DOI: 10.1038/s41597-024-04140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
Recent advancements in protein structure determination are revolutionizing our understanding of proteins. Still, a significant gap remains in the availability of comprehensive datasets that focus on the dynamics of proteins, which are crucial for understanding protein function, folding, and interactions. To address this critical gap, we introduce mdCATH, a dataset generated through an extensive set of all-atom molecular dynamics simulations of a diverse and representative collection of protein domains. This dataset comprises all-atom systems for 5,398 domains, modeled with a state-of-the-art classical force field, and simulated in five replicates each at five temperatures from 320 K to 450 K. The mdCATH dataset records coordinates and forces every 1 ns, for over 62 ms of accumulated simulation time, effectively capturing the dynamics of the various classes of domains and providing a unique resource for proteome-wide statistical analyses of protein unfolding thermodynamics and kinetics. We outline the dataset structure and showcase its potential through four easily reproducible case studies, highlighting its capabilities in advancing protein science.
Collapse
Affiliation(s)
- Antonio Mirarchi
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Toni Giorgino
- Biophysics Institute, National Research Council (CNR-IBF), Via Celoria 26, Milan, 20133, Italy.
| | - Gianni De Fabritiis
- Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Carrer Dr. Aiguader 88, Barcelona, 08003, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, Barcelona, 08010, Spain.
- Acellera Labs, Doctor Trueta 183, Barcelona, 08005, Spain.
| |
Collapse
|
7
|
Borthakur K, Sisk TR, Panei FP, Bonomi M, Robustelli P. Determining accurate conformational ensembles of intrinsically disordered proteins at atomic resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.04.616700. [PMID: 39651234 PMCID: PMC11623552 DOI: 10.1101/2024.10.04.616700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Determining accurate atomic resolution conformational ensembles of intrinsically disordered proteins (IDPs) is extremely challenging. Molecular dynamics (MD) simulations provide atomistic conformational ensembles of IDPs, but their accuracy is highly dependent on the quality of physical models, or force fields, used. Here, we demonstrate how to determine accurate atomic resolution conformational ensembles of IDPs by integrating all-atom MD simulations with experimental data from nuclear magnetic resonance (NMR) spectroscopy and small-angle x-ray scattering (SAXS) with a simple, robust and fully automated maximum entropy reweighting procedure. We demonstrate that when this approach is applied with sufficient experimental data, IDP ensembles derived from different MD force fields converge to highly similar conformational distributions. The maximum entropy reweighting procedure presented here facilitates the integration of MD simulations with extensive experimental datasets and enables the calculation of accurate, force-field independent atomic resolution conformational ensembles of IDPs.
Collapse
|
8
|
Firouzbakht A, De A, Gruebele M. Context-dependent effect of polyethylene glycol on the structure and dynamics of hirudin. Biophys J 2024:S0006-3495(24)02239-2. [PMID: 39600093 DOI: 10.1016/j.bpj.2024.11.3311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Hirudin is a bioactive small protein that binds thrombin to interrupt the blood clotting cascade. It contains an ordered and a disordered (IDR) region. Conjugating with polyethylene glycol (PEGylation) is an important modification of biopharmaceuticals to improve their lifetime and retention. Here, we studied by molecular dynamics (MD) simulation how hirudin P18 and its PEGylated variant differ in their structural flexibility depending on binding to thrombin and charge screening by NaCl. We also compare with glycated hirP18 and the hirV1 variant to assess effects of different polar attachments and sequence variability. First, we synthesized unlabeled and PEG-labeled hirP18 followed by an activity assay to ascertain that the peptide-PEG conjugate retains anticoagulant activity. Next, we carried 16 different microsecond MD simulations of the different proteins, bound and unbound, for 2 sequences and different salt conditions. Simulations were analyzed in terms of scaling exponents to study the effect of ionic strength on hirudin size and solvent-exposed surface area. We conclude that charge patterning of the sequence and the presence of arginine are 2 important features for how PEG interacts with the protein folded and intrinsically disordered regions. Specifically, PEG can screen end-to-end electrostatic interactions by "hiding" a positively charged region of hirudin, whereas hirV1 is less sticky than hirP18 due to different PEG-hirudin hydrophobic interactions and the presence of an arginine in hirP18. Conjugation with either PEG or a glycan significantly reduces solvent-exposed area of hirudin, but PEG interacts more efficiently with surface residues than does glycan due to its narrower chain that can fit in surface grooves, and alternation of polar (oxygen) and nonpolar (CH2-CH2) groups that interact favorably with charged and hydrophobic surface patches.
Collapse
Affiliation(s)
- Arash Firouzbakht
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Anomitra De
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Martin Gruebele
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois; Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois; Carle-Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
9
|
de Bruyn E, Dorn AE, Rossetti G, Fernandez C, Outeiro TF, Schulz JB, Carloni P. Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution. J Chem Inf Model 2024; 64:8215-8226. [PMID: 39462994 PMCID: PMC11558680 DOI: 10.1021/acs.jcim.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson's disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains β-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Faculty
of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Giulia Rossetti
- Jülich
Supercomputing Centre (JSC), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Claudio Fernandez
- Max Planck
Laboratory for Structural Biology, Chemistry and Molecular Biophysics
of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute
for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Department
of NMR-based Structural Biology, Max Planck
Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tiago F. Outeiro
- Department
of Experimental Neurodegeneration, Center for Biostructural Imaging
of Neurodegeneration, University Medical
Center Göttingen, 37075 Göttingen, Germany
- Max
Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational
and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne NE1 7RU, United
Kingdom
| | - Jörg B. Schulz
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Department
of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA
Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo Carloni
- Department
of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Computational
Biomedicine (IAS-5/INM-9), Forschungszentrum
Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
10
|
Pettitt AJ, Shukla VK, Figueiredo AM, Newton LS, McCarthy S, Tabor AB, Heller GT, Lorenz CD, Hansen DF. An integrative characterization of proline cis and trans conformers in a disordered peptide. Biophys J 2024; 123:3798-3811. [PMID: 39340152 PMCID: PMC11560310 DOI: 10.1016/j.bpj.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) often contain proline residues that undergo cis/trans isomerization. While molecular dynamics (MD) simulations have the potential to fully characterize the proline cis and trans subensembles, they are limited by the slow timescales of isomerization and force field inaccuracies. NMR spectroscopy can report on ensemble-averaged observables for both the cis-proline and trans-proline states, but a full atomistic characterization of these conformers is challenging. Given the importance of proline cis/trans isomerization for influencing the conformational sampling of disordered proteins, we employed a combination of all-atom MD simulations with enhanced sampling (metadynamics), NMR, and small-angle x-ray scattering (SAXS) to characterize the two subensembles of the ORF6 C-terminal region (ORF6CTR) from SARS-CoV-2 corresponding to the proline-57 (P57) cis and trans states. We performed MD simulations in three distinct force fields: AMBER03ws, AMBER99SB-disp, and CHARMM36m, which are all optimized for disordered proteins. Each simulation was run for an accumulated time of 180-220 μs until convergence was reached, as assessed by blocking analysis. A good agreement between the cis-P57 populations predicted from metadynamic simulations in AMBER03ws was observed with populations obtained from experimental NMR data. Moreover, we observed good agreement between the radius of gyration predicted from the metadynamic simulations in AMBER03ws and that measured using SAXS. Our findings suggest that both the cis-P57 and trans-P57 conformations of ORF6CTR are extremely dynamic and that interdisciplinary approaches combining both multiscale computations and experiments offer avenues to explore highly dynamic states that cannot be reliably characterized by either approach in isolation.
Collapse
Affiliation(s)
- Alice J Pettitt
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | | | - Lydia S Newton
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom
| | - Stephen McCarthy
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, London, United Kingdom
| | - Alethea B Tabor
- Department of Chemistry, Faculty of Mathematical and Physical Sciences, London, United Kingdom
| | - Gabriella T Heller
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom
| | - Christian D Lorenz
- Department of Engineering, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, United Kingdom.
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
11
|
Li N, Gong N, Duan B, Zhang Y, Jian Y, Xu Y, Liu J, Wang X, Zhang X, Du M, Zhou F, Zhao J, Guan X, Peng X, Wang S, Zhang H, Li X. Reduction of circulating IgE and allergens by a pH-sensitive antibody with enhanced FcγRIIb binding. Mol Ther 2024; 32:3729-3742. [PMID: 39228125 PMCID: PMC11489548 DOI: 10.1016/j.ymthe.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/29/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024] Open
Abstract
Allergen-crosslinked IgE triggers allergy by interacting with its receptor on basophils and mast cells. The anti-IgE monoclonal antibody omalizumab can alleviate allergy by competing with the receptor for IgE binding. However, along with neutralization, omalizumab also inhibits IgE degradation, which is clinically associated with high-dose and total IgE accumulation problems. In this study, we have developed an IgE-eliminating antibody on the basis of omalizumab, which has pH-dependent Fabs and an Fc with high affinity for FcγRIIb. In mice, the antibody rapidly eliminated total serum IgE to baseline levels and caused lower free IgE levels than omalizumab. At low dosages, the antibody also exhibited favorable IgE elimination effects. In addition, the antibody can degrade the corresponding allergen with the removal of IgE, addressing the allergy from its source. Introduction of the M252Y/S254T/T256E (YTE) mutation into this antibody prolongs its serum half-life without reducing potency. Thus, this engineered antibody holds a promising therapeutic option for allergy patients. Mechanistic insights are also included in this study.
Collapse
Affiliation(s)
- Na Li
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China
| | - Nanxin Gong
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, P.R. China
| | - Baoxin Duan
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yongyan Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Yi Jian
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China
| | - Yanqin Xu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China
| | - Jinming Liu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Xiaoqian Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Xiaoqi Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China
| | - Mingjuan Du
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Feilong Zhou
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China
| | - Jiliang Zhao
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China
| | - Xiangchen Guan
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China
| | - Xiangda Peng
- Shanghai Zelixir Biotech, Shanghai 200030, P.R. China
| | - Sheng Wang
- Shanghai Zelixir Biotech, Shanghai 200030, P.R. China
| | - Hongkai Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, P.R. China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, P.R. China.
| | - Xin Li
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, P.R. China.
| |
Collapse
|
12
|
Pedersen KB, Borges-Araújo L, Stange AD, Souza PCT, Marrink SJ, Schiøtt B. OLIVES: A Go̅-like Model for Stabilizing Protein Structure via Hydrogen Bonding Native Contacts in the Martini 3 Coarse-Grained Force Field. J Chem Theory Comput 2024. [PMID: 39235392 DOI: 10.1021/acs.jctc.4c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Coarse-grained molecular dynamics simulations enable the modeling of increasingly complex systems at millisecond timescales. The transferable coarse-grained force field Martini 3 has shown great promise in modeling a wide range of biochemical processes, yet folded proteins in Martini 3 are not stable without the application of external bias potentials, such as elastic networks or Go̅-like models. We herein develop an algorithm, called OLIVES, which identifies native contacts with hydrogen bond capabilities in coarse-grained proteins and use it to implement a novel Go̅-like model for Martini 3. We show that the protein structure instability originates in part from the lack of hydrogen bond energy in the coarse-grained force field representation. By using realistic hydrogen bond energies obtained from literature ab initio calculations, it is demonstrated that protein stability can be recovered by the reintroduction of a coarse-grained hydrogen bond network and that OLIVES removes the need for secondary structure restraints. OLIVES is validated against known protein complexes and at the same time addresses the open question of whether there is a need for protein quaternary structure bias in Martini 3 simulations. It is shown that OLIVES can reduce the number of bias terms, hereby speeding up Martini 3 simulations of proteins by up to ≈30% on a GPU architecture compared to the established Go̅MARTINI Go̅-like model.
Collapse
Affiliation(s)
- Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Amanda D Stange
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Senanayaka D, Zeng D, Alishiri S, Martin WJ, Moore KI, Patel R, Luka Z, Hirschi A, Reiter NJ. Autoregulatory mechanism of enzyme activity by the nuclear localization signal of lysine-specific demethylase 1. J Biol Chem 2024; 300:107607. [PMID: 39084460 PMCID: PMC11388019 DOI: 10.1016/j.jbc.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
The N-terminal region of the human lysine-specific demethylase 1 (LSD1) has no predicted structural elements, contains a nuclear localization signal (NLS), undergoes multiple posttranslational modifications (PTMs), and acts as a protein-protein interaction hub. This intrinsically disordered region (IDR) extends from core LSD1 structure, resides atop the catalytic active site, and is known to be dispensable for catalysis. Here, we show differential nucleosome binding between the full-length and an N terminus deleted LSD1 and identify that a conserved NLS and PTM containing element of the N terminus contains an alpha helical structure, and that this conserved element impacts demethylation. Enzyme assays reveal that LSD1's own electropositive NLS amino acids 107 to 120 inhibit demethylation activity on a model histone 3 lysine 4 dimethyl (H3K4me2) peptide (Kiapp ∼ 3.3 μM) and histone 3 lysine 4 dimethyl nucleosome substrates (IC50 ∼ 30.4 μM), likely mimicking the histone H3 tail. Further, when the identical, inhibitory NLS region contains phosphomimetic modifications, inhibition is partially relieved. Based upon these results and biophysical data, a regulatory mechanism for the LSD1-catalyzed demethylation reaction is proposed whereby NLS-mediated autoinhibition can occur through electrostatic interactions, and be partially relieved through phosphorylation that occurs proximal to the NLS. Taken together, the results highlight a dynamic and synergistic role for PTMs, intrinsically disordered regions, and structured regions near LSD1 active site and introduces the notion that phosphorylated mediated NLS regions can function to fine-tune chromatin modifying enzyme activity.
Collapse
Affiliation(s)
- Dulmi Senanayaka
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Sahar Alishiri
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - William J Martin
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Khadijah I Moore
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Roshni Patel
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alexander Hirschi
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Nicholas J Reiter
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
14
|
Wang Z, Zhou F, Wang Z, Hu Q, Li YQ, Wang S, Wei Y, Zheng L, Li W, Peng X. Fully Flexible Molecular Alignment Enables Accurate Ligand Structure Modeling. J Chem Inf Model 2024; 64:6205-6215. [PMID: 39074901 DOI: 10.1021/acs.jcim.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Accurate protein-ligand binding poses are the prerequisites of structure-based binding affinity prediction and provide the structural basis for in-depth lead optimization in small molecule drug design. However, it is challenging to provide reasonable predictions of binding poses for different molecules due to the complexity and diversity of the chemical space of small molecules. Similarity-based molecular alignment techniques can effectively narrow the search range, as structurally similar molecules are likely to have similar binding modes, with higher similarity usually correlated to higher success rates. However, molecular similarity is not consistently high because molecules often require changes to achieve specific purposes, leading to reduced alignment precision. To address this issue, we propose a new alignment method─Z-align. This method uses topological structural information as a criterion for evaluating similarity, reducing the reliance on molecular fingerprint similarity. Our method has achieved success rates significantly higher than those of other methods at moderate levels of similarity. Additionally, our approach can comprehensively and flexibly optimize bond lengths and angles of molecules, maintaining a high accuracy even when dealing with larger molecules. Consequently, our proposed solution helps in achieving more accurate binding poses in protein-ligand docking problems, facilitating the development of small molecule drugs. Z-align is freely available as a web server at https://cloud.zelixir.com/zalign/home.
Collapse
Affiliation(s)
- Zhihao Wang
- School of Physics, Shandong University, Jinan, 250100, China
| | - Fan Zhou
- Shanghai Zelixir Biotech, Shanghai, 200030, China
| | - Zechen Wang
- School of Physics, Shandong University, Jinan, 250100, China
| | - Qiuyue Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong-Qiang Li
- School of Physics, Shandong University, Jinan, 250100, China
| | - Sheng Wang
- Shanghai Zelixir Biotech, Shanghai, 200030, China
| | - Yanjie Wei
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liangzhen Zheng
- Shanghai Zelixir Biotech, Shanghai, 200030, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weifeng Li
- School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangda Peng
- Shanghai Zelixir Biotech, Shanghai, 200030, China
| |
Collapse
|
15
|
Wasim A, Menon S, Mondal J. Modulation of α-synuclein aggregation amid diverse environmental perturbation. eLife 2024; 13:RP95180. [PMID: 39087984 PMCID: PMC11293868 DOI: 10.7554/elife.95180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Intrinsically disordered protein α-synuclein (αS) is implicated in Parkinson's disease due to its aberrant aggregation propensity. In a bid to identify the traits of its aggregation, here we computationally simulate the multi-chain association process of αS in aqueous as well as under diverse environmental perturbations. In particular, the aggregation of αS in aqueous and varied environmental condition led to marked concentration differences within protein aggregates, resembling liquid-liquid phase separation (LLPS). Both saline and crowded settings enhanced the LLPS propensity. However, the surface tension of αS droplet responds differently to crowders (entropy-driven) and salt (enthalpy-driven). Conformational analysis reveals that the IDP chains would adopt extended conformations within aggregates and would maintain mutually perpendicular orientations to minimize inter-chain electrostatic repulsions. The droplet stability is found to stem from a diminished intra-chain interactions in the C-terminal regions of αS, fostering inter-chain residue-residue interactions. Intriguingly, a graph theory analysis identifies small-world-like networks within droplets across environmental conditions, suggesting the prevalence of a consensus interaction patterns among the chains. Together these findings suggest a delicate balance between molecular grammar and environment-dependent nuanced aggregation behavior of αS.
Collapse
Affiliation(s)
- Abdul Wasim
- Tata Institute of Fundamental ResearchHyderabadIndia
| | - Sneha Menon
- Tata Institute of Fundamental ResearchHyderabadIndia
| | | |
Collapse
|
16
|
Forget S, Juillé M, Duboué-Dijon E, Stirnemann G. Simulation-Guided Conformational Space Exploration to Assess Reactive Conformations of a Ribozyme. J Chem Theory Comput 2024; 20:6263-6277. [PMID: 38958594 DOI: 10.1021/acs.jctc.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-splicing ribozymes are small ribonucleic acid (RNA) enzymes that catalyze their own cleavage through a transphosphoesterification reaction. While this process is involved in some specific steps of viral RNA replication and splicing, it is also of importance in the context of the (putative) first autocatalytic RNA-based systems that could have preceded the emergence of modern life. The uncatalyzed phosphoester bond formation is thermodynamically very unfavorable, and many experimental studies have focused on understanding the molecular features of catalysis in these ribozymes. However, chemical reaction paths are short-lived and not easily characterized by experimental approaches, so molecular simulation approaches appear as an ideal tool to unveil the molecular details of the reaction. Here, we focus on the model hairpin ribozyme. We show that identifying a relevant initial conformation for reactivity studies, which is frequently overlooked in mixed quantum-classical studies that predominantly concentrate on the chemical reaction itself, can be highly challenging. These challenges stem from limitations in both available experimental structures (which are chemically altered to prevent self-cleavage) and the accuracy of force fields, together with the necessity for comprehensive sampling. We show that molecular dynamics simulations, combined with extensive conformational phase space exploration with Hamiltonian replica-exchange simulations, enable us to characterize the relevant conformational basins of the minimal hairpin ribozyme in the ligated state prior to self-cleavage. We find that what is usually considered a canonical reactive conformation with active site geometries and hydrogen-bond patterns that are optimal for the addition-elimination reaction with general acid/general base catalysis is metastable and only marginally populated. The thermodynamically stable conformation appears to be consistent with the expectations of a mechanism that does not require the direct participation of ribozyme residues in the reaction. While these observations may suffer from forcefield inaccuracies, all investigated forcefields lead to the same conclusions upon proper sampling, contrasting with previous investigations on shorter timescales suggesting that at least one reparametrization of the Amber99 forcefield allowed to stabilize aligned active site conformations. Our study demonstrates that identifying the most pertinent reactant state conformation holds equal importance alongside the accurate determination of the thermodynamics and kinetics of the chemical steps of the reaction.
Collapse
Affiliation(s)
- Sélène Forget
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Marie Juillé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
17
|
Aho N, Groenhof G, Buslaev P. Do All Paths Lead to Rome? How Reliable is Umbrella Sampling Along a Single Path? J Chem Theory Comput 2024. [PMID: 39039621 DOI: 10.1021/acs.jctc.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Molecular dynamics (MD) simulations are widely applied to estimate absolute binding free energies of protein-ligand and protein-protein complexes. A routinely used method for binding free energy calculations with MD is umbrella sampling (US), which calculates the potential of mean force (PMF) along a single reaction coordinate. Surprisingly, in spite of its widespread use, few validation studies have focused on the convergence of the free energy computed along a single path for specific cases, not addressing the reproducibility of such calculations in general. In this work, we therefore investigate the reproducibility and convergence of US along a standard distance-based reaction coordinate for various protein-protein and protein-ligand complexes, following commonly used guidelines for the setup. We show that repeating the complete US workflow can lead to differences of 2-20 kcal/mol in computed binding free energies. We attribute those discrepancies to small differences in the binding pathways. While these differences are unavoidable in the established US protocol, the popularity of the latter could hint at a lack of awareness of such reproducibility problems. To test if the convergence of PMF profiles can be improved if multiple pathways are sampled simultaneously, we performed additional simulations with an adaptive-biasing method, here the accelerated weight histogram (AWH) approach. Indeed, the PMFs obtained from AHW simulations are consistent and reproducible for the systems tested. To the best of our knowledge, our work is the first to attempt a systematic assessment of the pitfalls in one the most widely used protocols for computing binding affinities. We anticipate therefore that our results will provide an incentive for a critical reassessment of the validity of PMFs computed with US, and make a strong case to further benchmark the performance of adaptive-biasing methods for computing binding affinities.
Collapse
Affiliation(s)
- Noora Aho
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
- Theoretical Physics and Center for Biophysics, Saarland University, 66123 Saarbrücken, Germany
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
18
|
Faran M, Ray D, Nag S, Raucci U, Parrinello M, Bisker G. A Stochastic Landscape Approach for Protein Folding State Classification. J Chem Theory Comput 2024; 20:5428-5438. [PMID: 38924770 PMCID: PMC11238538 DOI: 10.1021/acs.jctc.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Protein folding is a critical process that determines the functional state of proteins. Proper folding is essential for proteins to acquire their functional three-dimensional structures and execute their biological role, whereas misfolded proteins can lead to various diseases, including neurodegenerative disorders like Alzheimer's and Parkinson's. Therefore, a deeper understanding of protein folding is vital for understanding disease mechanisms and developing therapeutic strategies. This study introduces the Stochastic Landscape Classification (SLC), an innovative, automated, nonlearning algorithm that quantitatively analyzes protein folding dynamics. Focusing on collective variables (CVs) - low-dimensional representations of complex dynamical systems like molecular dynamics (MD) of macromolecules - the SLC approach segments the CVs into distinct macrostates, revealing the protein folding pathway explored by MD simulations. The segmentation is achieved by analyzing changes in CV trends and clustering these segments using a standard density-based spatial clustering of applications with noise (DBSCAN) scheme. Applied to the MD-based CV trajectories of Chignolin and Trp-Cage proteins, the SLC demonstrates apposite accuracy, validated by comparing standard classification metrics against ground-truth data. These metrics affirm the efficacy of the SLC in capturing intricate protein dynamics and offer a method to evaluate and select the most informative CVs. The practical application of this technique lies in its ability to provide a detailed, quantitative description of protein folding processes, with significant implications for understanding and manipulating protein behavior in industrial and pharmaceutical contexts.
Collapse
Affiliation(s)
- Michael Faran
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dhiman Ray
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Shubhadeep Nag
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Umberto Raucci
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Michele Parrinello
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Light-Matter Interaction, Tel
Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Sifuna D, Omwoma S, Lagat S, Okello F, Nelson FA, Pembere A. Theory guided engineering of zeolite adsorbents for acaricide residue adsorption from the environment. J Mol Model 2024; 30:208. [PMID: 38877313 DOI: 10.1007/s00894-024-06004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
CONTEXT Zeolites have attracted attention for their potential in adsorbing environmental contaminants. However, contaminants, such as acaricides used extensively in livestock production to control ticks and mites, have received limited exploration regarding their adsorption onto zeolite surfaces. This study aimed to identify the most appropriate zeolite frameworks for the adsorption of acaricide residues, deduce the mechanism underlying the adsorption process, and evaluate the impact of surface modification on the adsorption capabilities of zeolites. METHODS Grand Canonical Monte Carlo (GCMC) was used to screen the entire zeolite database to analyze their adsorption properties, where the cloverite zeolite framework (CLO) exhibits the highest adsorption capacity (percentage weight, 54%). Machine learning was employed to rank structural feature importance on adsorption. Density and helium void fraction appeared to be the most important structural features. Thus, engineering these features is of utmost significance in harvesting the desired acaricides. The second step involved engineering the structural and electronic properties of the shortlisted zeolite frameworks via cation substitution with suitable atoms. DFT calculations involving natural bond orbital (NBO) analysis and quantum theory of atoms in molecules (QTAIM) have been done to understand the influence of cation substitution on the electronic structure.
Collapse
Affiliation(s)
- Douglas Sifuna
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Solomon Omwoma
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Silas Lagat
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Felix Okello
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya
| | - Favour A Nelson
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Anthony Pembere
- Department of Physical Sciences, Jaramogi Oginga Odinga University of Science and Technology, Bondo (Main) Campus, P.O. Box 210-40601, Bondo, Kenya.
| |
Collapse
|
20
|
Usher ET, Fossat MJ, Holehouse AS. Phosphorylation of disordered proteins tunes local and global intramolecular interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598315. [PMID: 38915510 PMCID: PMC11195077 DOI: 10.1101/2024.06.10.598315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Protein post-translational modifications, such as phosphorylation, are important regulatory signals for diverse cellular functions. In particular, intrinsically disordered protein regions (IDRs) are subject to phosphorylation as a means to modulate their interactions and functions. Toward understanding the relationship between phosphorylation in IDRs and specific functional outcomes, we must consider how phosphorylation affects the IDR conformational ensemble. Various experimental techniques are suited to interrogate the features of IDR ensembles; molecular simulations can provide complementary insights and even illuminate ensemble features that may be experimentally inaccessible. Therefore, we sought to expand the tools available to study phosphorylated IDRs by all-atom Monte Carlo simulations. To this end, we implemented parameters for phosphoserine (pSer) and phosphothreonine (pThr) into the OPLS version of the continuum solvent model, ABSINTH, and assessed their performance in all-atom simulations compared to published findings. We simulated short (< 20 residues) and long (> 80 residues) phospho-IDRs that, collectively, survey both local and global phosphorylation-induced changes to the ensemble. Our simulations of four well-studied phospho-IDRs show near-quantitative agreement with published findings for these systems via metrics including changes to radius of gyration, transient helicity, and persistence length. We also leveraged the inherent advantage of sequence control in molecular simulations to explore the conformational effects of diverse combinations of phospho-sites in two multi-phosphorylated IDRs. Our results support and expand on prior observations that connect phosphorylation to changes in the IDR conformational ensemble. Herein, we describe phosphorylation as a means to alter sequence chemistry, net charge and charge patterning, and intramolecular interactions, which can collectively modulate the local and global IDR ensemble features.
Collapse
Affiliation(s)
- Emery T. Usher
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| | - Martin J. Fossat
- Department of Biological Physics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg im Breisgau, Germany
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
- Center for Biomolecular Condensates (CBC), Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
21
|
Wang D, Frechette LB, Best RB. On the role of native contact cooperativity in protein folding. Proc Natl Acad Sci U S A 2024; 121:e2319249121. [PMID: 38776371 PMCID: PMC11145220 DOI: 10.1073/pnas.2319249121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/11/2024] [Indexed: 05/25/2024] Open
Abstract
The consistency of energy landscape theory predictions with available experimental data, as well as direct evidence from molecular simulations, have shown that protein folding mechanisms are largely determined by the contacts present in the native structure. As expected, native contacts are generally energetically favorable. However, there are usually at least as many energetically favorable nonnative pairs owing to the greater number of possible nonnative interactions. This apparent frustration must therefore be reduced by the greater cooperativity of native interactions. In this work, we analyze the statistics of contacts in the unbiased all-atom folding trajectories obtained by Shaw and coworkers, focusing on the unfolded state. By computing mutual cooperativities between contacts formed in the unfolded state, we show that native contacts form the most cooperative pairs, while cooperativities among nonnative or between native and nonnative contacts are typically much less favorable or even anticooperative. Furthermore, we show that the largest network of cooperative interactions observed in the unfolded state consists mainly of native contacts, suggesting that this set of mutually reinforcing interactions has evolved to stabilize the native state.
Collapse
Affiliation(s)
- David Wang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Layne B. Frechette
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA02453
| | - Robert B. Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892-0520
| |
Collapse
|
22
|
Wang D, Li Y, Yang H, Shen X, Shi X, Li C, Zhang Y, Liu X, Jiang B, Zhu X, Zhang H, Li X, Bai H, Yang Q, Gao W, Bai F, Ji Y, Chen Q, Ben J. Disruption of TIGAR-TAK1 alleviates immunopathology in a murine model of sepsis. Nat Commun 2024; 15:4340. [PMID: 38773142 PMCID: PMC11109194 DOI: 10.1038/s41467-024-48708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/11/2024] [Indexed: 05/23/2024] Open
Abstract
Macrophage-orchestrated inflammation contributes to multiple diseases including sepsis. However, the underlying mechanisms remain to be defined clearly. Here, we show that macrophage TP53-induced glycolysis and apoptosis regulator (TIGAR) is up-regulated in murine sepsis models. When myeloid Tigar is ablated, sepsis induced by either lipopolysaccharide treatment or cecal ligation puncture in male mice is attenuated via inflammation inhibition. Mechanistic characterizations indicate that TIGAR directly binds to transforming growth factor β-activated kinase (TAK1) and promotes tumor necrosis factor receptor-associated factor 6-mediated ubiquitination and auto-phosphorylation of TAK1, in which residues 152-161 of TIGAR constitute crucial motif independent of its phosphatase activity. Interference with the binding of TIGAR to TAK1 by 5Z-7-oxozeaenol exhibits therapeutic effects in male murine model of sepsis. These findings demonstrate a non-canonical function of macrophage TIGAR in promoting inflammation, and confer a potential therapeutic target for sepsis by disruption of TIGAR-TAK1 interaction.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Yanxia Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Hao Yang
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaoqi Shen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaolin Shi
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yongjing Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Liu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Gao
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Fang Bai
- School of Life Science and Technology, and Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yong Ji
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Nanjing, China.
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China.
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
23
|
Borsatto A, Gianquinto E, Rizzi V, Gervasio FL. SWISH-X, an Expanded Approach to Detect Cryptic Pockets in Proteins and at Protein-Protein Interfaces. J Chem Theory Comput 2024; 20:3335-3348. [PMID: 38563746 PMCID: PMC11044271 DOI: 10.1021/acs.jctc.3c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Protein-protein interactions mediate most molecular processes in the cell, offering a significant opportunity to expand the set of known druggable targets. Unfortunately, targeting these interactions can be challenging due to their typically flat and featureless interaction surfaces, which often change as the complex forms. Such surface changes may reveal hidden (cryptic) druggable pockets. Here, we analyze a set of well-characterized protein-protein interactions harboring cryptic pockets and investigate the predictive power of current computational methods. Based on our observations, we developed a new computational strategy, SWISH-X (SWISH Expanded), which combines the established cryptic pocket identification capabilities of SWISH with the rapid temperature range exploration of OPES MultiThermal. SWISH-X is able to reliably identify cryptic pockets at protein-protein interfaces while retaining its predictive power for revealing cryptic pockets in isolated proteins, such as TEM-1 β-lactamase.
Collapse
Affiliation(s)
- Alberto Borsatto
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- Swiss
Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Eleonora Gianquinto
- Department
of Drug Science and Technology, University
of Turin, 10125 Turin, Italy
| | - Valerio Rizzi
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- Swiss
Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Francesco Luigi Gervasio
- School
of Pharmaceutical Sciences, University of
Geneva, 1205 Geneva, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
- Swiss
Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department
of Chemistry, University College London, WC1 H0AJ London, United Kingdom
- Institute
of Structural and Molecular Biology, University
College London, WC1E7JE London, United Kingdom
| |
Collapse
|
24
|
Greener JG. Differentiable simulation to develop molecular dynamics force fields for disordered proteins. Chem Sci 2024; 15:4897-4909. [PMID: 38550690 PMCID: PMC10966991 DOI: 10.1039/d3sc05230c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 11/11/2024] Open
Abstract
Implicit solvent force fields are computationally efficient but can be unsuitable for running molecular dynamics on disordered proteins. Here I improve the a99SB-disp force field and the GBNeck2 implicit solvent model to better describe disordered proteins. Differentiable molecular simulations with 5 ns trajectories are used to jointly optimise 108 parameters to better match explicit solvent trajectories. Simulations with the improved force field better reproduce the radius of gyration and secondary structure content seen in experiments, whilst showing slightly degraded performance on folded proteins and protein complexes. The force field, called GB99dms, reproduces the results of a small molecule binding study and improves agreement with experiment for the aggregation of amyloid peptides. GB99dms, which can be used in OpenMM, is available at https://github.com/greener-group/GB99dms. This work is the first to show that gradients can be obtained directly from nanosecond-length differentiable simulations of biomolecules and highlights the effectiveness of this approach to training whole force fields to match desired properties.
Collapse
Affiliation(s)
- Joe G Greener
- Medical Research Council Laboratory of Molecular Biology Cambridge CB2 0QH UK
| |
Collapse
|
25
|
Hsueh SCC, Nijland M, Aina A, Plotkin SS. Cyclization Scaffolding for Improved Vaccine Immunogen Stability: Application to Tau Protein in Alzheimer's Disease. J Chem Inf Model 2024; 64:2035-2044. [PMID: 38427576 DOI: 10.1021/acs.jcim.3c01556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Effective scaffolding of immunogens is crucial for generating conformationally selective antibodies through active immunization, particularly in the treatment of protein misfolding diseases such as Alzheimer's and Parkinson's disease. Previous computational work has revealed that a disorder-prone region of the tau protein, when in a stacked form, is predicted to structurally resemble a small, soluble protofibril, having conformational properties similar to those of experimental in vitro tau oligomers. Such an oligomeric structural mimic has the potential to serve as a vaccine immunogen design for Alzheimer's disease. In this study, we developed a cyclization scaffolding method in Rosetta, in which multiple cyclic peptides are stacked into a protofibril. Cyclization results in significant stabilization of protofibril-like structures by constraining the conformational space. Applying this method to the disorder-prone region of the tau fibril, we evaluated the metastability of the cyclized tau immunogen using molecular dynamics simulations, and we identified sequences of two cyclic constructs having high metastability in the protofibril. We then assessed their thermodynamic stability by computing the free energy required to separate a distal chain from the rest of the stacked structure. Our computational results, based on molecular dynamics simulations and free energy calculations, demonstrate that two cyclized constructs, cyclo-(VKSEKLDFKDRVQSKIFyN) and cyclo-(VKSEKLDFKDRVQSKIYvG) (lowercase letters indicate d-form amino acids), possess significantly increased thermodynamic stability in the protofibril over an uncyclized linear construct VKSEKLDFKDRVQSKI. The cyclization scaffolding approach proposed here holds promise as a means to effectively design immunogens for protein misfolding diseases, particularly those involving liposome-conjugated peptide constructs.
Collapse
Affiliation(s)
- Shawn C C Hsueh
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark Nijland
- Laboratory of Physical Chemistry, Wageningen University, Wageningen 6708 WG, The Netherlands
| | - Adekunle Aina
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Genome Science and Technology Program, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Holehouse AS, Kragelund BB. The molecular basis for cellular function of intrinsically disordered protein regions. Nat Rev Mol Cell Biol 2024; 25:187-211. [PMID: 37957331 PMCID: PMC11459374 DOI: 10.1038/s41580-023-00673-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 96.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Intrinsically disordered protein regions exist in a collection of dynamic interconverting conformations that lack a stable 3D structure. These regions are structurally heterogeneous, ubiquitous and found across all kingdoms of life. Despite the absence of a defined 3D structure, disordered regions are essential for cellular processes ranging from transcriptional control and cell signalling to subcellular organization. Through their conformational malleability and adaptability, disordered regions extend the repertoire of macromolecular interactions and are readily tunable by their structural and chemical context, making them ideal responders to regulatory cues. Recent work has led to major advances in understanding the link between protein sequence and conformational behaviour in disordered regions, yet the link between sequence and molecular function is less well defined. Here we consider the biochemical and biophysical foundations that underlie how and why disordered regions can engage in productive cellular functions, provide examples of emerging concepts and discuss how protein disorder contributes to intracellular information processing and regulation of cellular function.
Collapse
Affiliation(s)
- Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO, USA.
- Center for Biomolecular Condensates, Washington University in St Louis, St Louis, MO, USA.
| | - Birthe B Kragelund
- REPIN, Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Sisk TR, Robustelli P. Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model. Proc Natl Acad Sci U S A 2024; 121:e2313360121. [PMID: 38294935 PMCID: PMC10861926 DOI: 10.1073/pnas.2313360121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 02/02/2024] Open
Abstract
A central challenge in the study of intrinsically disordered proteins is the characterization of the mechanisms by which they bind their physiological interaction partners. Here, we utilize a deep learning-based Markov state modeling approach to characterize the folding-upon-binding pathways observed in a long timescale molecular dynamics simulation of a disordered region of the measles virus nucleoprotein NTAIL reversibly binding the X domain of the measles virus phosphoprotein complex. We find that folding-upon-binding predominantly occurs via two distinct encounter complexes that are differentiated by the binding orientation, helical content, and conformational heterogeneity of NTAIL. We observe that folding-upon-binding predominantly proceeds through a multi-step induced fit mechanism with several intermediates and do not find evidence for the existence of canonical conformational selection pathways. We observe four kinetically separated native-like bound states that interconvert on timescales of eighty to five hundred nanoseconds. These bound states share a core set of native intermolecular contacts and stable NTAIL helices and are differentiated by a sequential formation of native and non-native contacts and additional helical turns. Our analyses provide an atomic resolution structural description of intermediate states in a folding-upon-binding pathway and elucidate the nature of the kinetic barriers between metastable states in a dynamic and heterogenous, or "fuzzy", protein complex.
Collapse
Affiliation(s)
- Thomas R. Sisk
- Department of Chemistry, Dartmouth College, Hanover, NH03755
| | - Paul Robustelli
- Department of Chemistry, Dartmouth College, Hanover, NH03755
| |
Collapse
|
28
|
Galano‐Frutos JJ, Sancho J. Energy, water, and protein folding: A molecular dynamics-based quantitative inventory of molecular interactions and forces that make proteins stable. Protein Sci 2024; 33:e4905. [PMID: 38284492 PMCID: PMC10804899 DOI: 10.1002/pro.4905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Protein folding energetics can be determined experimentally on a case-by-case basis but it is not understood in sufficient detail to provide deep control in protein design. The fundamentals of protein stability have been outlined by calorimetry, protein engineering, and biophysical modeling, but these approaches still face great difficulty in elucidating the specific contributions of the intervening molecules and physical interactions. Recently, we have shown that the enthalpy and heat capacity changes associated to the protein folding reaction can be calculated within experimental error using molecular dynamics simulations of native protein structures and their corresponding unfolded ensembles. Analyzing in depth molecular dynamics simulations of four model proteins (CI2, barnase, SNase, and apoflavodoxin), we dissect here the energy contributions to ΔH (a key component of protein stability) made by the molecular players (polypeptide and solvent molecules) and physical interactions (electrostatic, van der Waals, and bonded) involved. Although the proteins analyzed differ in length, isoelectric point and fold class, their folding energetics is governed by the same quantitative pattern. Relative to the unfolded ensemble, the native conformations are enthalpically stabilized by comparable contributions from protein-protein and solvent-solvent interactions, and almost equally destabilized by interactions between protein and solvent molecules. The native protein surface seems to interact better with water than the unfolded one, but this is outweighed by the unfolded surface being larger. From the perspective of physical interactions, the native conformations are stabilized by van de Waals and Coulomb interactions and destabilized by conformational strain arising from bonded interactions. Also common to the four proteins, the sign of the heat capacity change is set by interactions between protein and solvent molecules or, from the alternative perspective, by Coulomb interactions.
Collapse
Affiliation(s)
- Juan José Galano‐Frutos
- Biocomputation and Complex Systems Physics Institute (BIFI)‐Joint Unit GBsC‐CSICUniversity of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de CienciasUniversity of ZaragozaZaragozaSpain
| | - Javier Sancho
- Biocomputation and Complex Systems Physics Institute (BIFI)‐Joint Unit GBsC‐CSICUniversity of ZaragozaZaragozaSpain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de CienciasUniversity of ZaragozaZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
| |
Collapse
|
29
|
Patel KN, Chavda D, Manna M. Molecular Docking of Intrinsically Disordered Proteins: Challenges and Strategies. Methods Mol Biol 2024; 2780:165-201. [PMID: 38987470 DOI: 10.1007/978-1-0716-3985-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a novel class of proteins that have established a significant importance and attention within a very short period of time. These proteins are essentially characterized by their inherent structural disorder, encoded mainly by their amino acid sequences. The profound abundance of IDPs and intrinsically disordered regions (IDRs) in the biological world delineates their deep-rooted functionality. IDPs and IDRs convey such extensive functionality through their unique dynamic nature, which enables them to carry out huge number of multifaceted biomolecular interactions and make them "interaction hub" of the cellular systems. Additionally, with such widespread functions, their misfunctioning is also intimately associated with multiple diseases. Thus, understanding the dynamic heterogeneity of various IDPs along with their interactions with respective binding partners is an important field with immense potentials in biomolecular research. In this context, molecular docking-based computational approaches have proven to be remarkable in case of ordered proteins. Molecular docking methods essentially model the biomolecular interactions in both structural and energetic terms and use this information to characterize the putative interactions between the two participant molecules. However, direct applications of the conventional docking methods to study IDPs are largely limited by their structural heterogeneity and demands for unique IDP-centric strategies. Thus, in this chapter, we have presented an overview of current methodologies for successful docking operations involving IDPs and IDRs. These specialized methods majorly include the ensemble-based and fragment-based approaches with their own benefits and limitations. More recently, artificial intelligence and machine learning-assisted approaches are also used to significantly reduce the complexity and computational burden associated with various docking applications. Thus, this chapter aims to provide a comprehensive summary of major challenges and recent advancements of molecular docking approaches in the IDP field for their better utilization and greater applicability.Asp (D).
Collapse
Affiliation(s)
- Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
30
|
Galano-Frutos JJ, Nerín-Fonz F, Sancho J. Calculation of Protein Folding Thermodynamics Using Molecular Dynamics Simulations. J Chem Inf Model 2023; 63:7791-7806. [PMID: 37955428 PMCID: PMC10751793 DOI: 10.1021/acs.jcim.3c01107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
Despite advances in artificial intelligence methods, protein folding remains in many ways an enigma to be solved. Accurate computation of protein folding energetics could help drive fields such as protein and drug design and genetic interpretation. However, the challenge of calculating the state functions governing protein folding from first-principles remains unaddressed. We present here a simple approach that allows us to accurately calculate the energetics of protein folding. It is based on computing the energy of the folded and unfolded states at different temperatures using molecular dynamics simulations. From this, two essential quantities (ΔH and ΔCp) are obtained and used to calculate the conformational stability of the protein (ΔG). With this approach, we have successfully calculated the energetics of two- and three-state proteins, representatives of the major structural classes, as well as small stability differences (ΔΔG) due to changes in solution conditions or variations in an amino acid residue.
Collapse
Affiliation(s)
- Juan J. Galano-Frutos
- Department
of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Biocomputation
and Complex Systems Physics Institute (BIFI), Joint Unit GBs-CSIC, University of Zaragoza, 50018 Zaragoza, Spain
| | - Francho Nerín-Fonz
- Department
of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
| | - Javier Sancho
- Department
of Biochemistry, Molecular and Cell Biology, Faculty of Science, University of Zaragoza, 50009 Zaragoza, Spain
- Biocomputation
and Complex Systems Physics Institute (BIFI), Joint Unit GBs-CSIC, University of Zaragoza, 50018 Zaragoza, Spain
- Aragon
Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
31
|
Linse JB, Hub JS. Scrutinizing the protein hydration shell from molecular dynamics simulations against consensus small-angle scattering data. Commun Chem 2023; 6:272. [PMID: 38086909 PMCID: PMC10716392 DOI: 10.1038/s42004-023-01067-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/20/2023] [Indexed: 06/09/2024] Open
Abstract
Biological macromolecules in solution are surrounded by a hydration shell, whose structure differs from the structure of bulk solvent. While the importance of the hydration shell for numerous biological functions is widely acknowledged, it remains unknown how the hydration shell is regulated by macromolecular shape and surface composition, mainly because a quantitative probe of the hydration shell structure has been missing. We show that small-angle scattering in solution using X-rays (SAXS) or neutrons (SANS) provide a protein-specific probe of the protein hydration shell that enables quantitative comparison with molecular simulations. Using explicit-solvent SAXS/SANS predictions, we derived the effect of the hydration shell on the radii of gyration Rg of five proteins using 18 combinations of protein force field and water model. By comparing computed Rg values from SAXS relative to SANS in D2O with consensus SAXS/SANS data from a recent worldwide community effort, we found that several but not all force fields yield a hydration shell contrast in remarkable agreement with experiments. The hydration shell contrast captured by Rg values depends strongly on protein charge and geometric shape, thus providing a protein-specific footprint of protein-water interactions and a novel observable for scrutinizing atomistic hydration shell models against experimental data.
Collapse
Affiliation(s)
- Johanna-Barbara Linse
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, 66123, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, 66123, Germany.
| |
Collapse
|
32
|
Balasubramanian S, Maharana S, Srivastava A. "Boundary residues" between the folded RNA recognition motif and disordered RGG domains are critical for FUS-RNA binding. J Biol Chem 2023; 299:105392. [PMID: 37890778 PMCID: PMC10687056 DOI: 10.1016/j.jbc.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.
Collapse
Affiliation(s)
| | - Shovamayee Maharana
- Department of Molecular and Cell Biology, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
33
|
Samuel Russell PP, Alaeen S, Pogorelov TV. In-Cell Dynamics: The Next Focus of All-Atom Simulations. J Phys Chem B 2023; 127:9863-9872. [PMID: 37793083 PMCID: PMC10874638 DOI: 10.1021/acs.jpcb.3c05166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The cell is a crowded space where large biomolecules and metabolites are in continuous motion. Great strides have been made in in vitro studies of protein dynamics, folding, and protein-protein interactions, and much new data are emerging of how they differ in the cell. In this Perspective, we highlight the current progress in atomistic modeling of in-cell environments, both bacteria and mammals, with emphasis on classical all-atom molecular dynamics simulations. These simulations have been recently used to capture and characterize functional and non-functional protein-protein interactions, protein folding dynamics of small proteins with varied topologies, and dynamics of metabolites. We further discuss the challenges and efforts for updating modern force fields critical to the progress of cellular environment simulations. We also briefly summarize developments in relevant state-of-the-art experimental techniques. As computational and experimental methodologies continue to progress and produce more directly comparable data, we are poised to capture the complex atomistic picture of the cell.
Collapse
Affiliation(s)
- Premila P Samuel Russell
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sepehr Alaeen
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Taras V Pogorelov
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- School of Chemical Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Herrera-Rodríguez AM, Dasanna AK, Daday C, Cruz-Chú ER, Aponte-Santamaría C, Schwarz US, Gräter F. The role of flow in the self-assembly of dragline spider silk proteins. Biophys J 2023; 122:4241-4253. [PMID: 37803828 PMCID: PMC10645567 DOI: 10.1016/j.bpj.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/14/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023] Open
Abstract
Hydrodynamic flow in the spider duct induces conformational changes in dragline spider silk proteins (spidroins) and drives their assembly, but the underlying physical mechanisms are still elusive. Here we address this challenging multiscale problem with a complementary strategy of atomistic and coarse-grained molecular dynamics simulations with uniform flow. The conformational changes at the molecular level were analyzed for single-tethered spider silk peptides. Uniform flow leads to coiled-to-stretch transitions and pushes alanine residues into β sheet and poly-proline II conformations. Coarse-grained simulations of the assembly process of multiple semi-flexible block copolymers using multi-particle collision dynamics reveal that the spidroins aggregate faster but into low-order assemblies when they are less extended. At medium-to-large peptide extensions (50%-80%), assembly slows down and becomes reversible with frequent association and dissociation events, whereas spidroin alignment increases and alanine repeats form ordered regions. Our work highlights the role of flow in guiding silk self-assembly into tough fibers by enhancing alignment and kinetic reversibility, a mechanism likely relevant also for other proteins whose function depends on hydrodynamic flow.
Collapse
Affiliation(s)
| | - Anil Kumar Dasanna
- BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Csaba Daday
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Eduardo R Cruz-Chú
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Ulrich S Schwarz
- BioQuant, Heidelberg University, Heidelberg, Germany; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
35
|
Guillien M, Mouhand A, Sagar A, Fournet A, Allemand F, Pereira GAN, Thureau A, Bernadó P, Banères JL, Sibille N. Phosphorylation motif dictates GPCR C-terminal domain conformation and arrestin interaction. Structure 2023; 31:1394-1406.e7. [PMID: 37669668 DOI: 10.1016/j.str.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/07/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023]
Abstract
Arrestin-dependent G protein-coupled receptor (GPCR) signaling pathway is regulated by the phosphorylation state of GPCR's C-terminal domain, but the molecular bases of arrestin:receptor interaction are to be further illuminated. Here we investigated the impact of phosphorylation on the conformational features of the C-terminal region from three rhodopsin-like GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR), and the β2-adernergic receptor (β2AR). Using phosphomimetic variants, we identified pre-formed secondary structure elements, or short linear motifs (SLiMs), that undergo specific conformational transitions upon phosphorylation. Of importance, such conformational transitions appear to favor arrestin-2 binding. Hence, our results suggest a model in which the phosphorylation-dependent structuration of the GPCR C-terminal regions would modulate arrestin binding and therefore signaling outcomes in arrestin-dependent pathways.
Collapse
Affiliation(s)
- Myriam Guillien
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Assia Mouhand
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Amin Sagar
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Aurélie Fournet
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Frédéric Allemand
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Glaécia A N Pereira
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Aurélien Thureau
- HélioBio Section, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin BP 48, 91190 Gif-sur-Yvette, France
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR-5247, University Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), CNRS, University Montpellier, Inserm, Montpellier, France.
| |
Collapse
|
36
|
Russell PPS, Rickard MM, Boob M, Gruebele M, Pogorelov TV. In silico protein dynamics in the human cytoplasm: Partial folding, misfolding, fold switching, and non-native interactions. Protein Sci 2023; 32:e4790. [PMID: 37774143 PMCID: PMC10578126 DOI: 10.1002/pro.4790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
We examine the influence of cellular interactions in all-atom models of a section of the Homo sapiens cytoplasm on the early folding events of the three-helix bundle protein B (PB). While genetically engineered PB is known to fold in dilute water box simulations in three microseconds, the three initially unfolded PB copies in our two cytoplasm models using a similar force field did not reach the native state during 30-microsecond simulations. We did however capture the formation of all three helices in a compact native-like topology. Folding in vivo is delayed because intramolecular contact formation within PB is in direct competition with intermolecular contacts between PB and surrounding macromolecules. In extreme cases, intermolecular beta-sheets are formed. Interactions with other macromolecules are also observed to promote structure formation, for example when a PB helix in our simulations is shielded from solvent by macromolecular crowding. Sticking and crowding in our models initiate sampling of helix/sheet structural plasticity of PB. Relatedly, in past in vitro experiments, similar GA domains were shown to switch between two different folds. Finally, we also observed that stickiness between PB and the cellular environment can be modulated in our simulations through the reduction in protein hydrophobicity when we reversed PB back to the wild-type sequence. This study demonstrates that even fast-folding proteins can get stuck in non-native states in the cell, making them useful models for protein-chaperone interactions and early stages of aggregate formation relevant to cellular disease.
Collapse
Affiliation(s)
| | - Meredith M. Rickard
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Mayank Boob
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Martin Gruebele
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- Department of PhysicsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Taras V. Pogorelov
- Department of ChemistryUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Center for Biophysics and Quantitative BiologyUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
- National Center for Supercomputing ApplicationsUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
- School of Chemical SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
37
|
Roeters SJ, Strunge K, Pedersen KB, Golbek TW, Bregnhøj M, Zhang Y, Wang Y, Dong M, Nielsen J, Otzen DE, Schiøtt B, Weidner T. Elevated concentrations cause upright alpha-synuclein conformation at lipid interfaces. Nat Commun 2023; 14:5731. [PMID: 37723164 PMCID: PMC10507035 DOI: 10.1038/s41467-023-39843-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/23/2023] [Indexed: 09/20/2023] Open
Abstract
The amyloid aggregation of α-synuclein (αS), related to Parkinson's disease, can be catalyzed by lipid membranes. Despite the importance of lipid surfaces, the 3D-structure and orientation of lipid-bound αS is still not known in detail. Here, we report interface-specific vibrational sum-frequency generation (VSFG) experiments that reveal how monomeric αS binds to an anionic lipid interface over a large range of αS-lipid ratios. To interpret the experimental data, we present a frame-selection method ("ViscaSelect") in which out-of-equilibrium molecular dynamics simulations are used to generate structural hypotheses that are compared to experimental amide-I spectra via excitonic spectral calculations. At low and physiological αS concentrations, we derive flat-lying helical structures as previously reported. However, at elevated and potentially disease-related concentrations, a transition to interface-protruding αS structures occurs. Such an upright conformation promotes lateral interactions between αS monomers and may explain how lipid membranes catalyze the formation of αS amyloids at elevated protein concentrations.
Collapse
Affiliation(s)
- Steven J Roeters
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
- Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Kasper B Pedersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Thaddeus W Golbek
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
| | - Yuge Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Yin Wang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus C, Denmark.
| |
Collapse
|
38
|
Rizzi V, Aureli S, Ansari N, Gervasio FL. OneOPES, a Combined Enhanced Sampling Method to Rule Them All. J Chem Theory Comput 2023; 19:5731-5742. [PMID: 37603295 PMCID: PMC10500989 DOI: 10.1021/acs.jctc.3c00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 08/22/2023]
Abstract
Enhanced sampling techniques have revolutionized molecular dynamics (MD) simulations, enabling the study of rare events and the calculation of free energy differences in complex systems. One of the main families of enhanced sampling techniques uses physical degrees of freedom called collective variables (CVs) to accelerate a system's dynamics and recover the original system's statistics. However, encoding all the relevant degrees of freedom in a limited number of CVs is challenging, particularly in large biophysical systems. Another category of techniques, such as parallel tempering, simulates multiple replicas of the system in parallel, without requiring CVs. However, these methods may explore less relevant high-energy portions of the phase space and become computationally expensive for large systems. To overcome the limitations of both approaches, we propose a replica exchange method called OneOPES that combines the power of multireplica simulations and CV-based enhanced sampling. This method efficiently accelerates the phase space sampling without the need for ideal CVs, extensive parameters fine tuning nor the use of a large number of replicas, as demonstrated by its successful applications to protein-ligand binding and protein folding benchmark systems. Our approach shows promise as a new direction in the development of enhanced sampling techniques for molecular dynamics simulations, providing an efficient and robust framework for the study of complex and unexplored problems.
Collapse
Affiliation(s)
- Valerio Rizzi
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland
- Swiss
Institute of Bioinformatics, University
of Geneva, 1206 Genève, Switzerland
| | - Simone Aureli
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland
- Swiss
Institute of Bioinformatics, University
of Geneva, 1206 Genève, Switzerland
| | - Narjes Ansari
- Atomistic
Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Francesco Luigi Gervasio
- School
of Pharmaceutical Sciences, University of
Geneva, Rue Michel Servet 1, 1206 Genève, Switzerland
- Institute
of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1206 Genève, Switzerland
- Swiss
Institute of Bioinformatics, University
of Geneva, 1206 Genève, Switzerland
- Department
of Chemistry, University College London, WC1E 6BT London, U.K.
| |
Collapse
|
39
|
Maiti S, Heyden M. Model-Dependent Solvation of the K-18 Domain of the Intrinsically Disordered Protein Tau. J Phys Chem B 2023; 127:7220-7230. [PMID: 37556237 DOI: 10.1021/acs.jpcb.3c01726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A known imbalance between intra-protein and protein-water interactions in many empirical force fields results in collapsed conformational ensembles of intrinsically disordered proteins in explicit solvent simulations that disagree with experiments. Multiple strategies have been introduced in the literature to modify protein-water interactions, which improve agreement between experiments and simulations. In this work, we combine simulations with standard and modified force fields with a spatially resolved analysis of solvation free energy contributions and compare the consequences of each strategy. We find that enhanced Lennard-Jones (LJ) interactions between protein atoms and water oxygens primarily improve the solvation of nonpolar functional groups of the protein. In contrast, modified electrostatics in the water model or strengthened LJ interactions between the protein and water hydrogens mainly affect the hydration of polar functional groups. Modified electrostatics further impact the average orientation of water molecules in the hydration shell. As a result, protein-water interactions with the first hydration layers are strengthened, while interactions with water molecules in higher hydration shells are weakened. Hence, distinct strategies to balance intra-protein and protein-water interactions in simulations have qualitatively different effects on protein solvation. These differences are not necessarily captured by comparisons to experiments that report on global parameters describing protein conformational ensembles, e.g., the radius of gyration, but will influence the tendency of a protein to form aggregates or phase-separated droplets.
Collapse
Affiliation(s)
- Sthitadhi Maiti
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
40
|
Lalmansingh JM, Keeley AT, Ruff KM, Pappu RV, Holehouse AS. SOURSOP: A Python Package for the Analysis of Simulations of Intrinsically Disordered Proteins. J Chem Theory Comput 2023; 19:5609-5620. [PMID: 37463458 PMCID: PMC11188088 DOI: 10.1021/acs.jctc.3c00190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Conformational heterogeneity is a defining hallmark of intrinsically disordered proteins and protein regions (IDRs). The functions of IDRs and the emergent cellular phenotypes they control are associated with sequence-specific conformational ensembles. Simulations of conformational ensembles that are based on atomistic and coarse-grained models are routinely used to uncover the sequence-specific interactions that may contribute to IDR functions. These simulations are performed either independently or in conjunction with data from experiments. Functionally relevant features of IDRs can span a range of length scales. Extracting these features requires analysis routines that quantify a range of properties. Here, we describe a new analysis suite simulation analysis of unfolded regions of proteins (SOURSOP), an object-oriented and open-source toolkit designed for the analysis of simulated conformational ensembles of IDRs. SOURSOP implements several analysis routines motivated by principles in polymer physics, offering a unique collection of simple-to-use functions to characterize IDR ensembles. As an extendable framework, SOURSOP supports the development and implementation of new analysis routines that can be easily packaged and shared.
Collapse
Affiliation(s)
- Jared M. Lalmansingh
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alex T. Keeley
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana-Champaign, IL 61801, USA
| | - Kiersten M. Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alex S. Holehouse
- Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
41
|
Saar KL, Qian D, Good LL, Morgunov AS, Collepardo-Guevara R, Best RB, Knowles TPJ. Theoretical and Data-Driven Approaches for Biomolecular Condensates. Chem Rev 2023; 123:8988-9009. [PMID: 37171907 PMCID: PMC10375482 DOI: 10.1021/acs.chemrev.2c00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 05/14/2023]
Abstract
Biomolecular condensation processes are increasingly recognized as a fundamental mechanism that living cells use to organize biomolecules in time and space. These processes can lead to the formation of membraneless organelles that enable cells to perform distinct biochemical processes in controlled local environments, thereby supplying them with an additional degree of spatial control relative to that achieved by membrane-bound organelles. This fundamental importance of biomolecular condensation has motivated a quest to discover and understand the molecular mechanisms and determinants that drive and control this process. Within this molecular viewpoint, computational methods can provide a unique angle to studying biomolecular condensation processes by contributing the resolution and scale that are challenging to reach with experimental techniques alone. In this Review, we focus on three types of dry-lab approaches: theoretical methods, physics-driven simulations and data-driven machine learning methods. We review recent progress in using these tools for probing biomolecular condensation across all three fields and outline the key advantages and limitations of each of the approaches. We further discuss some of the key outstanding challenges that we foresee the community addressing next in order to develop a more complete picture of the molecular driving forces behind biomolecular condensation processes and their biological roles in health and disease.
Collapse
Affiliation(s)
- Kadi L. Saar
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Transition
Bio Ltd., Cambridge, United Kingdom
| | - Daoyuan Qian
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Lydia L. Good
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Alexey S. Morgunov
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Robert B. Best
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Tuomas P. J. Knowles
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, United Kingdom
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
42
|
Sisk T, Robustelli P. Folding-upon-binding pathways of an intrinsically disordered protein from a deep Markov state model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550103. [PMID: 37546728 PMCID: PMC10401938 DOI: 10.1101/2023.07.21.550103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
A central challenge in the study of intrinsically disordered proteins is the characterization of the mechanisms by which they bind their physiological interaction partners. Here, we utilize a deep learning based Markov state modeling approach to characterize the folding-upon-binding pathways observed in a long-time scale molecular dynamics simulation of a disordered region of the measles virus nucleoprotein NTAIL reversibly binding the X domain of the measles virus phosphoprotein complex. We find that folding-upon-binding predominantly occurs via two distinct encounter complexes that are differentiated by the binding orientation, helical content, and conformational heterogeneity of NTAIL. We do not, however, find evidence for the existence of canonical conformational selection or induced fit binding pathways. We observe four kinetically separated native-like bound states that interconvert on time scales of eighty to five hundred nanoseconds. These bound states share a core set of native intermolecular contacts and stable NTAIL helices and are differentiated by a sequential formation of native and non-native contacts and additional helical turns. Our analyses provide an atomic resolution structural description of intermediate states in a folding-upon-binding pathway and elucidate the nature of the kinetic barriers between metastable states in a dynamic and heterogenous, or "fuzzy", protein complex.
Collapse
Affiliation(s)
- Thomas Sisk
- Dartmouth College, Department of Chemistry, Hanover, NH, 03755
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, 03755
| |
Collapse
|
43
|
Liebl K, Zacharias M. The development of nucleic acids force fields: From an unchallenged past to a competitive future. Biophys J 2023; 122:2841-2851. [PMID: 36540025 PMCID: PMC10398263 DOI: 10.1016/j.bpj.2022.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Molecular dynamics simulations have strongly matured as a method to study biomolecular processes. Their validity, however, is determined by the accuracy of the underlying force fields that describe the forces between all atoms. In this article, we review the development of nucleic acids force fields. We describe the early attempts in the 1990s and emphasize their strong influence on recent force fields. State-of-the-art force fields still use the same Lennard-Jones parameters derived 25 years ago in spite of the fact that these parameters were in general not fitted for nucleic acids. In addition, electrostatic parameters also are deprecated, which may explain some of the current force field deficiencies. We compare different force fields for various systems and discuss new tests of the recently developed Tumuc1 force field. The OL-force fields and Tumuc1 are arguably the best force fields to describe the DNA double helix. However, no force field is flawless. In particular, the description of sugar-puckering remains a problem for nucleic acids force fields. Future refinements are required, so we review methods for force field refinement and give an outlook to the future of force fields.
Collapse
Affiliation(s)
- Korbinian Liebl
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| | - Martin Zacharias
- Physics Department and Center of Protein Assemblies, Technical University of Munich, Munich, Germany
| |
Collapse
|
44
|
Bagka M, Choi H, Héritier M, Schwaemmle H, Pasquer QTL, Braun SMG, Scapozza L, Wu Y, Hoogendoorn S. Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1. Nat Commun 2023; 14:3893. [PMID: 37393376 PMCID: PMC10314895 DOI: 10.1038/s41467-023-39657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Target deconvolution of small molecule hits from phenotypic screens presents a major challenge. Many screens have been conducted to find inhibitors for the Hedgehog signaling pathway - a developmental pathway with many implications in health and disease - yielding many hits but only few identified cellular targets. We here present a strategy for target identification based on Proteolysis-Targeting Chimeras (PROTACs), combined with label-free quantitative proteomics. We develop a PROTAC based on Hedgehog Pathway Inhibitor-1 (HPI-1), a phenotypic screen hit with unknown cellular target. Using this Hedgehog Pathway PROTAC (HPP) we identify and validate BET bromodomains as the cellular targets of HPI-1. Furthermore, we find that HPP-9 is a long-acting Hedgehog pathway inhibitor through prolonged BET bromodomain degradation. Collectively, we provide a powerful PROTAC-based approach for target deconvolution, that answers the longstanding question of the cellular target of HPI-1 and yields a PROTAC that acts on the Hedgehog pathway.
Collapse
Affiliation(s)
- Meropi Bagka
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hyeonyi Choi
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Hanna Schwaemmle
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin T L Pasquer
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Simon M G Braun
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Yibo Wu
- Chemical Biology Mass Spectrometry Platform (CHEMBIOMS), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
45
|
Plett C, Katbashev A, Ehlert S, Grimme S, Bursch M. ONIOM meets xtb: efficient, accurate, and robust multi-layer simulations across the periodic table. Phys Chem Chem Phys 2023. [PMID: 37378957 DOI: 10.1039/d3cp02178e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The computational treatment of large molecular structures is of increasing interest in fields of modern chemistry. Accordingly, efficient quantum chemical approaches are needed to perform sophisticated investigations on such systems. This engaged the development of the well-established "Our own N-layered integrated molecular orbital and molecular mechanics" (ONIOM) multi-layer scheme [L. W. Chung et al., Chem. Rev., 2015, 115, 5678-5796]. In this work, we present the specific implementation of the ONIOM scheme into the xtb semi-empirical extended tight-binding program package and its application to challenging transition-metal complexes. The efficient and broadly applicable GFNn-xTB and -FF methods are applied in the ONIOM framework to elucidate reaction energies, geometry optimizations, and explicit solvation effects for metal-organic systems with up to several hundreds of atoms. It is shown that an ONIOM-based combination of density functional theory, semi-empirical, and force-field methods can be used to drastically reduce the computational costs and thus enable the investigation of huge systems at almost no significant loss in accuracy.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Abylay Katbashev
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Sebastian Ehlert
- Microsoft Research AI4Science, Evert van de Beekstraat 254, 1118 CZ Schiphol, The Netherlands
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstr. 4, 53115 Bonn, Germany.
| | - Markus Bursch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
46
|
Sarthak K, Winogradoff D, Ge Y, Myong S, Aksimentiev A. Benchmarking Molecular Dynamics Force Fields for All-Atom Simulations of Biological Condensates. J Chem Theory Comput 2023; 19:3721-3740. [PMID: 37134270 PMCID: PMC11169342 DOI: 10.1021/acs.jctc.3c00148] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Proteins containing intrinsically disordered regions are integral parts of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While the all-atom molecular dynamics method can, in principle, elucidate the conformational changes that arise from point mutations, the applications of this method to protein condensate systems is conditioned upon the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area, and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force fields that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community.
Collapse
Affiliation(s)
- Kumar Sarthak
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - David Winogradoff
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| | - Yingda Ge
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sua Myong
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
- Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61820, United States
| |
Collapse
|
47
|
Omar SI, Keasar C, Ben-Sasson AJ, Haber E. Protein Design Using Physics Informed Neural Networks. Biomolecules 2023; 13:biom13030457. [PMID: 36979392 PMCID: PMC10046838 DOI: 10.3390/biom13030457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The inverse protein folding problem, also known as protein sequence design, seeks to predict an amino acid sequence that folds into a specific structure and performs a specific function. Recent advancements in machine learning techniques have been successful in generating functional sequences, outperforming previous energy function-based methods. However, these machine learning methods are limited in their interoperability and robustness, especially when designing proteins that must function under non-ambient conditions, such as high temperature, extreme pH, or in various ionic solvents. To address this issue, we propose a new Physics-Informed Neural Networks (PINNs)-based protein sequence design approach. Our approach combines all-atom molecular dynamics simulations, a PINNs MD surrogate model, and a relaxation of binary programming to solve the protein design task while optimizing both energy and the structural stability of proteins. We demonstrate the effectiveness of our design framework in designing proteins that can function under non-ambient conditions.
Collapse
Affiliation(s)
| | - Chen Keasar
- Department of Computer Science, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Ariel J. Ben-Sasson
- Independent Researcher, Haifa 3436301, Israel
- Correspondence: (A.J.B.-S.); (E.H.)
| | - Eldad Haber
- Department of Earth Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Correspondence: (A.J.B.-S.); (E.H.)
| |
Collapse
|
48
|
Sarthak K, Winogradoff D, Ge Y, Myong S, Aksimentiev A. Benchmarking Molecular Dynamics Force Fields for All-Atom Simulations of Biological Condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527891. [PMID: 36798393 PMCID: PMC9934651 DOI: 10.1101/2023.02.09.527891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Proteins containing intrinsically disordered regions are integral components of the cellular signaling pathways and common components of biological condensates. Point mutations in the protein sequence, genetic at birth or acquired through aging, can alter the properties of the condensates, marking the onset of neurodegenerative diseases such as ALS and dementia. While all-atom molecular dynamics method can, in principle, elucidate the conformational changes responsible for the aging of the condensate, the applications of this method to protein condensate systems is conditioned by the availability of molecular force fields that can accurately describe both structured and disordered regions of such proteins. Using the special-purpose Anton 2 supercomputer, we benchmarked the efficacy of nine presently available molecular force fields in describing the structure and dynamics of a Fused in sarcoma (FUS) protein. Five-microsecond simulations of the full-length FUS protein characterized the effect of the force field on the global conformation of the protein, self-interactions among its side chains, solvent accessible surface area and the diffusion constant. Using the results of dynamic light scattering as a benchmark for the FUS radius of gyration, we identified several force field that produced FUS conformations within the experimental range. Next, we used these force fields to perform ten-microsecond simulations of two structured RNA binding domains of FUS bound to their respective RNA targets, finding the choice of the force field to affect stability of the RNA-FUS complex. Taken together, our data suggest that a combination of protein and RNA force fields sharing a common four-point water model provides an optimal description of proteins containing both disordered and structured regions and RNA-protein interactions. To make simulations of such systems available beyond the Anton 2 machines, we describe and validate implementation of the best performing force fields in a publicly available molecular dynamics program NAMD. Our NAMD implementation enables simulations of large (tens of millions of atoms) biological condensate systems and makes such simulations accessible to a broader scientific community. Graphical TOC Entry
Collapse
|
49
|
Mousavi SZ, Shadman HR, Habibi M, Didandeh M, Nikzad A, Golmohammadi M, Maleki R, Suwaileh WA, Khataee A, Zargar M, Razmjou A. Elucidating the Sorption Mechanisms of Environmental Pollutants Using Molecular Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Hamid Reza Shadman
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Meysam Habibi
- Department of Chemical Engineering, University of Tehran, Tehran, 6718773654, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Arash Nikzad
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, 3313193685, Iran
| | - Wafa Ali Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10 Turkey
| | - Masoumeh Zargar
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
50
|
Lalmansingh JM, Keeley AT, Ruff KM, Pappu RV, Holehouse AS. SOURSOP: A Python package for the analysis of simulations of intrinsically disordered proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528879. [PMID: 36824878 PMCID: PMC9949127 DOI: 10.1101/2023.02.16.528879] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Conformational heterogeneity is a defining hallmark of intrinsically disordered proteins and protein regions (IDRs). The functions of IDRs and the emergent cellular phenotypes they control are associated with sequence-specific conformational ensembles. Simulations of conformational ensembles that are based on atomistic and coarse-grained models are routinely used to uncover the sequence-specific interactions that may contribute to IDR functions. These simulations are performed either independently or in conjunction with data from experiments. Functionally relevant features of IDRs can span a range of length scales. Extracting these features requires analysis routines that quantify a range of properties. Here, we describe a new analysis suite SOURSOP, an object-oriented and open-source toolkit designed for the analysis of simulated conformational ensembles of IDRs. SOURSOP implements several analysis routines motivated by principles in polymer physics, offering a unique collection of simple-to-use functions to characterize IDR ensembles. As an extendable framework, SOURSOP supports the development and implementation of new analysis routines that can be easily packaged and shared.
Collapse
|