1
|
Dyck O, Almutlaq J, Lingerfelt D, Swett JL, Oxley MP, Huang B, Lupini AR, Englund D, Jesse S. Direct imaging of electron density with a scanning transmission electron microscope. Nat Commun 2023; 14:7550. [PMID: 37985658 PMCID: PMC10662251 DOI: 10.1038/s41467-023-42256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/27/2023] [Indexed: 11/22/2023] Open
Abstract
Recent studies of secondary electron (SE) emission in scanning transmission electron microscopes suggest that material's properties such as electrical conductivity, connectivity, and work function can be probed with atomic scale resolution using a technique known as secondary electron e-beam-induced current (SEEBIC). Here, we apply the SEEBIC imaging technique to a stacked 2D heterostructure device to reveal the spatially resolved electron density of an encapsulated WSe2 layer. We find that the double Se lattice site shows higher emission than the W site, which is at odds with first-principles modelling of valence ionization of an isolated WSe2 cluster. These results illustrate that atomic level SEEBIC contrast within a single material is possible and that an enhanced understanding of atomic scale SE emission is required to account for the observed contrast. In turn, this suggests that, in the future, subtle information about interlayer bonding and the effect on electron orbitals could be directly revealed with this technique.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| | | | - David Lingerfelt
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jacob L Swett
- Biodesign Institute, Arizona State University, Tempe, 87287, AZ, USA
| | - Mark P Oxley
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Bevin Huang
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dirk Englund
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| |
Collapse
|
2
|
Kammerer JA, Feist F, Ryklin D, Sarkar A, Barner-Kowollik C, Schröder RR. Direct Visualization of Homogeneous Chemical Distribution in Functional Polyradical Microspheres. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211074. [PMID: 36639825 DOI: 10.1002/adma.202211074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
It is demonstrated that the postfunctionalization of solid polymeric microspheres can generate fully and throughout functionalized materials, contrary to the expectation that core-shell structures are generated. The full functionalization is illustrated on the example of photochemically generated microspheres, which are subsequently transformed into polyradical systems. Given the all-organic nature of the functionalized microspheres, characterization methods with high analytical sensitivity and spatial resolution are pioneered by directly visualizing the inner chemical distribution of the postfunctionalized microspheres based on characteristic electron energy loss signals in transmission electron microscopy (TEM). Specifically, ultrasonic ultramicrotomy is combined successfully with electron energy loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) during TEM. These findings open a key avenue for analyzing all-organic low-contrast soft-matter material structures, while the specifically investigated system concomitantly holds promise as an all-radical solid-state functional material.
Collapse
Affiliation(s)
- Jochen A Kammerer
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Cryo Electron Microscopy, BioQuant, Heidelberg University and University Hospital, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
| | - Florian Feist
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Daniel Ryklin
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Cryo Electron Microscopy, BioQuant, Heidelberg University and University Hospital, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Abhishek Sarkar
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- KIT-TUD Joint Research Laboratory Nanomaterials-Technische Universität Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Rasmus R Schröder
- 3DMM2O, Cluster of Excellence (EXC-2082/1-390761711) and Cryo Electron Microscopy, BioQuant, Heidelberg University and University Hospital, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Lingerfelt DB, Yoshimura A, Jakowski J, Ganesh P, Sumpter BG. Extracting Inelastic Scattering Cross Sections for Finite and Aperiodic Materials from Electronic Dynamics Simulations. J Chem Theory Comput 2022; 18:7093-7107. [PMID: 36375179 DOI: 10.1021/acs.jctc.2c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Explicit time-dependent electronic structure theory methods are increasingly prevalent in the areas of condensed matter physics and quantum chemistry, with the broad-band optical absorptivity of molecular and small condensed-phase systems nowadays routinely studied with such approaches. In this paper, it is demonstrated that electronic dynamics simulations can similarly be employed to study cross sections for the scattering-induced electronic excitations probed in nonresonant inelastic X-ray scattering and momentum-resolved electron energy loss spectroscopies. A method is put forth for evaluating the electronic dynamic structure factor, which involves the application of a momentum boost-type perturbation and transformation of the resulting reciprocal space density fluctuations into the frequency domain. Good agreement is first demonstrated between the dynamic structure factor extracted from these electronic dynamics simulations and the corresponding transition matrix elements from linear response theory. The method is then applied to some extended (quasi)one-dimensional systems, for which the wave vector becomes a good quantum number in the thermodynamic limit. Finally, the dispersion of many-body excitations in a series of hydrogen-terminated graphene flakes (and twisted bilayers thereof) is investigated to highlight the utility of the presented approach for capturing morphology-dependent effects in the inelastic scattering cross sections of nanostructured and/or noncrystalline materials.
Collapse
Affiliation(s)
- David B Lingerfelt
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Anthony Yoshimura
- Lawrence Livermore National Laboratory, Livermore, California94550, United States
| | - Jacek Jakowski
- Computing and Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Panchapakesan Ganesh
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
4
|
Bras W, Myles DAA, Felici R. When x-rays alter the course of your experiments. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:423002. [PMID: 34298526 DOI: 10.1088/1361-648x/ac1767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The continuing increase in the brilliance of synchrotron radiation beamlines allows for many new and exciting experiments that were impossible before the present generation of synchrotron radiation sources came on line. However, the exposure to such intense beams also tests the limits of what samples can endure. Whilst the effects of radiation induced damage in a static experiment often can easily be recognized by changes in the diffraction or spectroscopy curves, the influence of radiation on chemical or physical processes, where one expects curves to change, is less often recognized and can be misinterpreted as a 'real' result instead of as a 'radiation influenced result'. This is especially a concern in time-resolved materials science experiments using techniques as powder diffraction, small angle scattering and x-ray absorption spectroscopy. Here, the effects of radiation (5-50 keV) on some time-resolved processes in different types of materials and in different physical states are discussed. We show that such effects are not limited to soft matter and biology but rather can be found across the whole spectrum of materials research, over a large range of radiation doses and is not limited to very high brilliance beamlines.
Collapse
Affiliation(s)
- Wim Bras
- Chemical Sciences Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge TN 37831, United States of America
| | - Dean A A Myles
- Neutron Scattering Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge TN 37831, United States of America
| | - Roberto Felici
- CNR-SPIN, Area della ricerca di Tor Vergata, via del Fosso del Cavaliere 100, 00133 Roma, Italy
| |
Collapse
|
5
|
Guido CA, Rotunno E, Zanfrognini M, Corni S, Grillo V. Exploring the Spatial Features of Electronic Transitions in Molecular and Biomolecular Systems by Swift Electrons. J Chem Theory Comput 2021; 17:2364-2373. [PMID: 33646769 PMCID: PMC8047794 DOI: 10.1021/acs.jctc.1c00045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
We
devise a new kind of experiment that extends the technology
of electron energy loss spectroscopy to probe (supra-)molecular systems: by using
an electron beam in a configuration that avoids
molecular damage and a very recently introduced electron optics setup
for the analysis of the outcoming electrons, one can obtain information
on the spatial features of the investigated excitations. Physical
insight into the proposed experiment is provided by means of a simple
but rigorous model to obtain the transition rate and selection rule.
Numerical simulations of DNA G-quadruplexes and other biomolecular
systems, based on time dependent density functional theory calculations,
point out that the conceived new technique can probe the multipolar
components and even the chirality of molecular transitions, superseding
the usual optical spectroscopies for those cases that are problematic,
such as dipole-forbidden transitions, at a very high spatial resolution.
Collapse
Affiliation(s)
- Ciro A Guido
- Dipartimento di Scienze Chimiche, Università di Padova, via F. Marzolo 1, 35131 Padova, Italy
| | - Enzo Rotunno
- CNR-NANO, Institute of Nanoscience, via Campi 213/A, Modena, Italy
| | | | - Stefano Corni
- Dipartimento di Scienze Chimiche, Università di Padova, via F. Marzolo 1, 35131 Padova, Italy.,CNR-NANO, Institute of Nanoscience, via Campi 213/A, Modena, Italy
| | - Vincenzo Grillo
- CNR-NANO, Institute of Nanoscience, via Campi 213/A, Modena, Italy
| |
Collapse
|
6
|
Yu T, Lingerfelt D, Jakowski J, Jabed MA, Ganesh P, Sumpter BG. Electron-Beam-Induced Molecular Plasmon Excitation and Energy Transfer in Silver Molecular Nanowires. J Phys Chem A 2021; 125:74-87. [PMID: 33389995 DOI: 10.1021/acs.jpca.0c08314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate (1) electron-beam-induced plasmon absorption spectra of Ag molecular nanowire dimers and (2) electron-beam-induced energy transfer between two nanowires. We employ linear-response time-dependent density functional theory (TDDFT) and real-time TDDFT methods to simulate the electron-beam-induced plasmonic excitations, dynamics, and corresponding electron energy loss spectrum for small models of a single molecular nanowire with four Ag atoms and for two Ag nanowires. An array of different relative orientations of nanowires and of different initial excitation conditions resulting from applying an electron beam at different positions with respect to the Ag nanowires is investigated. The results demonstrate (1) an electron beam can induce plasmonic excitations from the molecular Ag nanowire ground state to the excited states that are both optically allowed and forbidden, (2) a tunability for selective excitations that can be controlled by the position of a focused electron beam, and (3) kinetic and dynamic behaviors of time-dependent electron-beam-induced energy transfer between two Ag molecular nanowires depend on the position of the beam source and nanowire separation distance, providing insights into the spatial dependences of plasmonic couplings in nanowire arrays.
Collapse
Affiliation(s)
- Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - David Lingerfelt
- Center of Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jacek Jakowski
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Mohammed A Jabed
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Panchapakesan Ganesh
- Center of Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Bobby G Sumpter
- Center of Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
7
|
Lingerfelt DB, Yu T, Yoshimura A, Ganesh P, Jakowski J, Sumpter BG. Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes. NANO LETTERS 2021; 21:236-242. [PMID: 33337886 DOI: 10.1021/acs.nanolett.0c03587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single atom impurities in graphene, substitutional silicon defects in particular, have been observed to diffuse under electron beam irradiation. However, the relative importance of elastic and inelastic scattering in facilitating their mobility remains unclear. Here, we employ excited-state electronic structure calculations to explore potential inelastic effects, and find an electronically nonadiabatic excited-state silicon diffusion pathway involving "softened" Si-C bonding that presents an ∼2 eV lower diffusion barrier than the ground-state pathway. Beam-induced transition rates to this state indicate that the excited-state pathway is accessible through irradiation of the defect site. However, even in the limit of fully elastic scattering, upward nonadiabatic transitions are also possible along the diffusion coordinate, increasing the diffusion barrier and further demonstrating the potential for electronic nonadiabaticity to influence beam-induced atomic transformations in materials. We also propose some experimentally testable signatures of such excited-state pathways.
Collapse
Affiliation(s)
- David B Lingerfelt
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tao Yu
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Anthony Yoshimura
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Panchapakesan Ganesh
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacek Jakowski
- Computational Sciences and Engineering Division Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Bobby G Sumpter
- Nanomaterials Theory Institute, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|