1
|
Xu H, Wang B, Liao L, Wang Y, Zhu Q, Ren H. High-Throughput Predictions of Accurate Enthalpies of Formation for Larger Molecules Utilizing the Bond Difference Correction Method. J Phys Chem Lett 2024; 15:998-1005. [PMID: 38252697 DOI: 10.1021/acs.jpclett.3c03390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The prediction of standard enthalpies of formation (EOFs) for larger molecules involves a trade-off between accuracy and cost, often resulting in non-negligible errors. The connectivity-based hierarchy (CBH) and simple bond additivity correction (BAC) are two promising means for evaluating EOFs, although they cannot achieve strict chemical accuracy. Calculated errors in the CBH are confirmed from accumulated systematic errors associated with bond differences in chemical environments. On the basis of a new set of bond descriptors, our developed bond difference correction (BDC) method effectively solves incremental errors with molecular size and inability applications for aromatic molecules. To balance the accuracy between non-aromatic and aromatic molecules, a more accurate BAC-based method with unpaired electrons and p hybrid orbitals (BAC-EP) is developed. With the incorporation of the two methods above, strict chemical accuracy by the largest deviation is achieved at low costs. These universal, ultrafast, and high-throughput methods greatly contribute to self-consistent thermodynamic parameters in combustion mechanisms.
Collapse
Affiliation(s)
- Huajie Xu
- Research Institute of Frontier Science, Southwest Jiao Tong University, Chengdu, Sichuan 610065, People's Republic of China
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Bo Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Lingxian Liao
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Yang Wang
- Research Institute of Frontier Science, Southwest Jiao Tong University, Chengdu, Sichuan 610065, People's Republic of China
| | - Quan Zhu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Haisheng Ren
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| |
Collapse
|
2
|
Charvati E, Sun H. Potential Energy Surfaces Sampled in Cremer-Pople Coordinates and Represented by Common Force Field Functionals for Small Cyclic Molecules. J Phys Chem A 2023; 127:2646-2663. [PMID: 36893434 DOI: 10.1021/acs.jpca.3c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The complex conformations of the cyclic moieties impact the physical and chemical properties of molecules. In this work, we chose 22 molecules of four-, five-, and six-membered rings and performed a thorough conformational sampling using Cremer-Pople coordinates. With consideration of symmetries, we obtained a total of 1504 conformational structures for four-membered, 5576 for five-membered, and 13509 for six-membered rings. All well-known and many less well-known conformers for each molecule were identified. We represented the potential energy surfaces (PESs) by fitting the data to common analytical force field (FF) functional forms. We found that the general features of PESs can be described by the essential FF functional forms; however, the accuracy of representation can be improved remarkably by including the torsion-bond and torsion-angle coupling terms. The best fit yields R-squared (R2) values close to 1.0 and mean absolute errors in energy less than 0.3 kcal/mol.
Collapse
Affiliation(s)
- Evangelia Charvati
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Ureel Y, Vermeire FH, Sabbe MK, Van Geem KM. Ab Initio Group Additive Values for Thermodynamic Carbenium Ion Property Prediction. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yannick Ureel
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052Gent, Belgium
| | - Florence H. Vermeire
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052Gent, Belgium
| | - Maarten K. Sabbe
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052Gent, Belgium
| | - Kevin M. Van Geem
- Laboratory for Chemical Technology, Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark 125, 9052Gent, Belgium
| |
Collapse
|
4
|
Dorofeeva OV, Andreychev VV. Benchmark Thermochemistry of Polycyclic Aromatic Hydrocarbons. J Phys Chem A 2022; 126:8315-8325. [DOI: 10.1021/acs.jpca.2c04956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olga V. Dorofeeva
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow119991, Russia
| | - Valeriy V. Andreychev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow119991, Russia
| |
Collapse
|
5
|
Xu Z, Xu H, Liu L, Jiang R, Ren H, Li X. High-precision standard enthalpy of formation for polycyclic aromatic hydrocarbons predicting from general connectivity based hierarchy with discrete correction of atomization energy. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Bakowies D. ATOMIC-2 Protocol for Thermochemistry. J Chem Theory Comput 2022; 18:4142-4163. [PMID: 35658473 DOI: 10.1021/acs.jctc.1c01272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATOMIC is a midlevel thermochemistry protocol that uses Pople's concept of bond separation reactions (BSRs) as a theoretical framework to reduce computational demands in the evaluation of atomization energies and enthalpies of formation. Various composite models are available that approximate bond separation energies at the complete-basis-set limit of all-electron CCSD(T), each balancing computational cost with achievable accuracy. Evaluated energies are then combined with very high-level, precomputed atomization energies of all auxiliary molecules appearing in the BSR to obtain the atomization energy of the molecule under study. ATOMIC-2 is a new version of the protocol that retains the overall concept and all previously defined composite models but improves on ATOMIC-1 in various other ways: Geometry optimization and zero-point-energy evaluation are performed at the density functional level (PBE0-D3/6-311G(d)), which shows significant computational savings and better accuracy than the previously employed RI-MP2/cc-pVTZ. The BSR framework is improved, using more accurate complete-basis-set (CBS) extrapolations toward the Full CI limit for the atomization energies of all auxiliary molecules. Finally, and most importantly, an error and uncertainty model termed ATOMIC-2um is added that estimates average bias and uncertainty for each of the atomization energy contributions that arise from the simplified treatment of some contributions to bond separation energies (CCSD(T)) and the neglect of others (such as higher order, scalar relativistic, or diagonal Born-Oppenheimer corrections) or from residual error in the energies of auxiliary molecules. Large and diverse benchmarks including up to 1179 molecules are used to evaluate necessary reference data and to correlate the observed error for each of the contributions with appropriate proxies that are available without additional quantum-chemical calculations for a particular molecule and represent its size and type. The implementation of ATOMIC-2 considers neutral, closed-shell molecules containing H, C, N, O, and F atoms; compared to ATOMIC-1, the framework has been extended to cover a few challenging but rare bond topologies. In comparison to highly accurate reference data for 184 molecules taken from the ATcT database (V. 1.122r), regular ATOMIC-2 shows noticeable underbinding, but the bias-corrected protocol ATOMIC-2um is found to be more accurate than either ATOMIC-1 or standard Gaussian-4 theory, and the uncertainty model is consistent with statistics of actually observed errors. Problems arising from ambiguous or challenging Lewis-valence structures defining BSRs are discussed, and computational efficiency is demonstrated. Computer code is made available to perform ATOMIC-2um analyses.
Collapse
Affiliation(s)
- Dirk Bakowies
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Klingelbergstraße 80, CH 4056 Basel, Switzerland
| |
Collapse
|
7
|
Preitschopf T, Hirsch F, Lemmens AK, Rijs AM, Fischer I. The gas-phase infrared spectra of the 2-methylallyl radical and its high-temperature reaction products. Phys Chem Chem Phys 2022; 24:7682-7690. [PMID: 35302151 DOI: 10.1039/d2cp00400c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The resonance-stabilized 2-methylallyl radical, 2-MA, is considered as a possible intermediate in the formation of polycyclic aromatic hydrocarbons (PAHs) in combustion processes. In this work, we report on its contribution to molecular growth in a high-temperature microreactor and provide mass-selective IR/UV ion dip spectra of the radical, as well as the various jet-cooled reaction products, employing free electron laser radiation in the mid-infrared region. Small (aromatic) hydrocarbons such as fulvene, benzene, styrene, or para-xylene, as well as polycyclic molecules, like (methylated) naphthalene, were identified with the aid of ab initio DFT computations. Several reaction products differ by one or more methyl groups, suggesting that molecular growth is dominated by (de)methylation in the reactor.
Collapse
Affiliation(s)
- Tobias Preitschopf
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Florian Hirsch
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander K Lemmens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Anouk M Rijs
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED Nijmegen, The Netherlands.
| | - Ingo Fischer
- Institute of Physical and Theoretical Chemistry, University of Wuerzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
8
|
Pernot P. The long road to calibrated prediction uncertainty in computational chemistry. J Chem Phys 2022; 156:114109. [DOI: 10.1063/5.0084302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Uncertainty quantification (UQ) in computational chemistry (CC) is still in its infancy. Very few CC methods are designed to provide a confidence level on their predictions, and most users still rely improperly on the mean absolute error as an accuracy metric. The development of reliable UQ methods is essential, notably for CC to be used confidently in industrial processes. A review of the CC-UQ literature shows that there is no common standard procedure to report or validate prediction uncertainty. I consider here analysis tools using concepts (calibration and sharpness) developed in meteorology and machine learning for the validation of probabilistic forecasters. These tools are adapted to CC-UQ and applied to datasets of prediction uncertainties provided by composite methods, Bayesian ensembles methods, and machine learning and a posteriori statistical methods.
Collapse
Affiliation(s)
- Pascal Pernot
- Institut de Chimie Physique, UMR8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
9
|
Minenkova I, Otlyotov AA, Cavallo L, Minenkov Y. Gas-phase thermochemistry of polycyclic aromatic hydrocarbons: an approach integrating the quantum chemistry composite scheme and reaction generator. Phys Chem Chem Phys 2022; 24:3163-3181. [PMID: 35040851 DOI: 10.1039/d1cp03702a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a protocol aimed at predicting the accurate gas-phase enthalpies of formation of polycyclic aromatic hydrocarbons (PAHs). Automatic generation of a dataset of equilibrated chemical reactions preserving the number of carbon atoms in each hybridization state on each side of equations is at the core of our scheme. The performed tests suggest the recommended enthalpy of formation to be derived via a two-step scheme. First, we consider the reactions with a minimal sum of the total number of particles involved, N, and the absolute difference between the total number of products and reactants, |ΔN|. Second, among these reactions, we identify the one with the smallest absolute reaction enthalpy change, . This approach has been applied to predict the gas-phase enthalpies of formation of 113 PAHs via the Feller-Peterson-Dixon approach. Our calculated values provide the mean absolute deviations of 1.7, 1.9, 4.2, 8.1, and 18.5 kJ mol-1 with respect to the literature group-based error corrected (GBEC) G3MP2B3, ATOMIC (HC), group equivalent M06-2X, GBEC B3LYP, and G4MP2 values. Our predicted values give the mean signed and mean absolute errors of -7.5 and 12.9 kJ mol-1 with respect to the experimental enthalpies of formation. The combination of our predicted and the experimental values provide the solid-state enthalpies of formation, , which are not available for a few species. Approaching these values as well as , producing large discrepancies from the experimental side, would be indispensable for testing and further tuning of computational chemistry approaches.
Collapse
Affiliation(s)
- Irina Minenkova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninskii pr. 31, Moscow 119071, Russian Federation
| | - Arseniy A Otlyotov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russian Federation.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal-23955-6900, Saudi Arabia.
| | - Yury Minenkov
- N. N. Semenov Federal Research Center for Chemical Physics RAS, Kosygina Street 4, 119991 Moscow, Russian Federation. .,Joint Institute for High Temperatures, Russian Academy of Sciences, 13-2 Izhorskaya Street, Moscow 125412, Russian Federation
| |
Collapse
|
10
|
Affiliation(s)
- Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
11
|
Dorofeeva OV, Druzhinina AI. Enthalpy formation of fluorene: a challenging problem for theory or experiment? Phys Chem Chem Phys 2021; 23:18777-18783. [PMID: 34612416 DOI: 10.1039/d1cp02023d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The large discrepancy between the experimental enthalpy of formation of fluorene and theoretical value calculated by the G3(MP2) method was revealed more than ten years ago. Three years later, a new experimental study of this compound was undertaken to ascertain whether there is any significant error in the thermochemical data. However, after this research, the agreement between theory and experiment was improved only slightly. In this work we decided to calculate the enthalpy of formation of fluorene using the high-level DLPNO-CCSD(T1)/CBS method which shows better results compared to Gn theories. To examine the accuracy of the available experimental data, the calculations were performed not only for fluorene but also for eleven fluorene derivatives. The discrepancy of about 9 kJ mol-1 between the experimental and theoretical enthalpies of formation of fluorene was confirmed by the present calculations, whereas good agreement was observed for the fluorene derivatives. It is highly unlikely that this discrepancy may disappear when using a higher-level theory. The possible reason for such inconsistency might be the experimental difficulty associated with the glass transition discovered in the stable crystalline state of fluorene. In this case, new experiments using the latest methods, such as differential scanning calorimetry combined with X-ray powder diffraction, are needed to gain deeper insight into the solid phase transformations of fluorene.
Collapse
Affiliation(s)
- Olga V Dorofeeva
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow, 119991, Russia.
| | | |
Collapse
|
12
|
Bakowies D, von Lilienfeld OA. Density Functional Geometries and Zero-Point Energies in Ab Initio Thermochemical Treatments of Compounds with First-Row Atoms (H, C, N, O, F). J Chem Theory Comput 2021; 17:4872-4890. [PMID: 34260240 PMCID: PMC8437339 DOI: 10.1021/acs.jctc.1c00474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 12/02/2022]
Abstract
Density functionals are often used in ab initio thermochemistry to provide optimized geometries for single-point evaluations at a high level and to supply estimates of anharmonic zero-point energies (ZPEs). Their use is motivated by relatively high accuracy at a modest computational expense, but a thorough assessment of geometry-related error seems to be lacking. We have benchmarked 53 density functionals, focusing on approximations of the first four rungs and on relatively small basis sets for computational efficiency. Optimized geometries of 279 neutral first-row molecules (H, C, N, O, F) are judged by energy penalties relative to the best available geometries, using the composite model ATOMIC/B5 as energy probe. Only hybrid functionals provide good accuracy with root-mean-square errors around 0.1 kcal/mol and maximum errors below 1.0 kcal/mol, but not all of them do. Conspicuously, first-generation hybrids with few or no empirical parameters tend to perform better than highly parameterized ones. A number of them show good accuracy already with small basis sets (6-31G(d), 6-311G(d)). As is standard practice, anharmonic ZPEs are estimated from scaled harmonic values. Statistics of the latter show less performance variation among functionals than observed for geometry-related error, but they also indicate that ZPE error will generally dominate. We have selected PBE0-D3/6-311G(d) for the next version of the ATOMIC protocol (ATOMIC-2) and studied it in more detail. Empirical expressions have been calibrated to estimate bias corrections and 95% uncertainty intervals for both geometry-related error and scaled ZPEs.
Collapse
Affiliation(s)
- Dirk Bakowies
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, Klingelbergstr. 80, CH 4056 Basel, Switzerland
| | - O. Anatole von Lilienfeld
- Faculty
of Physics, University of Vienna, Kolingasse 14-16, A 1090 Vienna, Austria
- Institute
of Physical Chemistry and National Center for Computational Design
and Discovery of Novel Materials (MARVEL), Department of Chemistry, University of Basel, Klingelbergstr. 80, CH 4056 Basel, Switzerland
| |
Collapse
|
13
|
Mai TVT, Huynh LK. Detailed kinetics of hydrogen abstraction from trans-decalin by OH radicals: the role of hindered internal rotation treatment. Phys Chem Chem Phys 2020; 22:25740-25746. [PMID: 33146635 DOI: 10.1039/d0cp04314a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the detailed kinetic mechanism of the trans-decalin + OH reaction is firstly investigated for a wide range of conditions (i.e., T = 200-2000 K & P = 0.76-76 000 Torr) using the M06-2X/aug-cc-pVTZ level and stochastic Rice-Ramsperger-Kassel-Marcus based master equation (RRKM-ME) rate model, which includes corrections of the hindered internal rotor (HIR) and tunneling effects. Our predicted global rate constant excellently matches with the scarce experimental measurement (R. Atkinson, et al. Int. J. Chem. Kinet., 1983, 15, 37-50). The H-abstraction channel from Cα of trans-decalin is found to be dominant at low temperatures. A U-shaped temperature-dependent behavior and slightly positive pressure-dependence at low temperatures (e.g., T ≤ 400 K & P = 760 Torr) of the total rate constants are also observed. Detailed analysis reveals that the HIR treatment is essential to capture the kinetic behavior while the tunneling correction only plays a minor role.
Collapse
Affiliation(s)
- Tam V-T Mai
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|
14
|
Chan B, Collins E, Raghavachari K. Applications of isodesmic‐type reactions for computational thermochemistry. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bun Chan
- Graduate School of Engineering Nagasaki University Nagasaki Japan
| | - Eric Collins
- Department of Chemistry Indiana University Bloomington Indiana USA
| | | |
Collapse
|
15
|
Chan B. Fullerene Thermochemical Stability: Accurate Heats of Formation for Small Fullerenes, the Importance of Structural Deformation on Reactivity, and the Special Stability of C 60. J Phys Chem A 2020; 124:6688-6698. [PMID: 32786665 DOI: 10.1021/acs.jpca.0c04732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have used quantum chemistry computations, in conjunction with isodesmic-type reactions, to obtain accurate heats of formation (HoFs) for the small fullerenes C20 (2358.2 ± 8.0 kJ mol-1), C24 (2566.2 ± 7.6), and the lowest-energy isomers of C32 (2461.1 ± 15.4), C42 (2629.0 ± 20.5), and C54 (2686.2 ± 25.3). As part of this endeavor, we have also obtained accurate HoFs for several medium-sized molecules, namely 216.6 ± 1.4 for fulvene, 375.5 ± 1.5 for pentalene, 670.8 ± 2.9 for acepentalene, and 262.7 ± 2.5 for acenaphthylene. We combine the energies of the small fullerenes and previously obtained energies for larger fullerenes (from C60 to C6000) into a full picture of fullerene thermochemical stability. In general, the per-carbon energies can be reasonably approximated by the "R+D" model that we have previously developed [Chan et al. J. Chem. Theory Comput. 2019, 15, 1255-1264], which takes into account Resonance and structural Deformation factors. In a case study on C54, we find that most of the high-deformation-energy atoms correspond to the sites of the C-Cl bond in the experimentally captured C54Cl8. In another case study, we find that C60 has the lowest value for the maximum local-deformation energy when compared with similar-sized fullerenes, which is consistent with its "special stability". These results are indicative of structural deformation playing an important role in the reactivity of fullerenes.
Collapse
Affiliation(s)
- Bun Chan
- Graduate School of Engineering, Nagasaki University, Bunkyo 1-14, Nagasaki-shi, Nagasaki 852-8521, Japan
| |
Collapse
|
16
|
Pernot P, Savin A. Probabilistic performance estimators for computational chemistry methods: Systematic improvement probability and ranking probability matrix. I. Theory. J Chem Phys 2020; 152:164108. [PMID: 32357773 DOI: 10.1063/5.0006202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The comparison of benchmark error sets is an essential tool for the evaluation of theories in computational chemistry. The standard ranking of methods by their mean unsigned error is unsatisfactory for several reasons linked to the non-normality of the error distributions and the presence of underlying trends. Complementary statistics have recently been proposed to palliate such deficiencies, such as quantiles of the absolute error distribution or the mean prediction uncertainty. We introduce here a new score, the systematic improvement probability, based on the direct system-wise comparison of absolute errors. Independent of the chosen scoring rule, the uncertainty of the statistics due to the incompleteness of the benchmark datasets is also generally overlooked. However, this uncertainty is essential to appreciate the robustness of rankings. In the present article, we develop two indicators based on robust statistics to address this problem: Pinv, the inversion probability between two values of a statistic, and Pr, the ranking probability matrix. We demonstrate also the essential contribution of the correlations between error sets in these scores comparisons.
Collapse
Affiliation(s)
- Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and UPMC Université Paris 06, Sorbonne Universités, 75252 Paris, France
| |
Collapse
|
17
|
Bakowies D. Estimating Systematic Error and Uncertainty in Ab Initio Thermochemistry. I. Atomization Energies of Hydrocarbons in the ATOMIC(hc) Protocol. J Chem Theory Comput 2019; 15:5230-5251. [DOI: 10.1021/acs.jctc.9b00343] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dirk Bakowies
- Institute of Physical Chemistry, Department of Chemistry, University of Basel, Klingelbergstr. 80, CH 4056 Basel, Switzerland
| |
Collapse
|