1
|
Guan X, Tang QY, Ren W, Chen M, Wang W, Wolynes PG, Li W. Predicting protein conformational motions using energetic frustration analysis and AlphaFold2. Proc Natl Acad Sci U S A 2024; 121:e2410662121. [PMID: 39163334 PMCID: PMC11363347 DOI: 10.1073/pnas.2410662121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
Collapse
Affiliation(s)
- Xingyue Guan
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, China
| | - Qian-Yuan Tang
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region999077, China
| | - Weitong Ren
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, China
| | | | - Wei Wang
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing210093, China
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
| | - Wenfei Li
- Department of Physics, National Laboratory of Solid State Microstructure, Nanjing University, Nanjing210093, China
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, China
| |
Collapse
|
2
|
Basciu A, Athar M, Kurt H, Neville C, Malloci G, Muredda FC, Bosin A, Ruggerone P, Bonvin AMJJ, Vargiu AV. Predicting binding events in very flexible, allosteric, multi-domain proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597018. [PMID: 38895346 PMCID: PMC11185556 DOI: 10.1101/2024.06.02.597018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Knowledge of the structures formed by proteins and small ligands is of fundamental importance for understanding molecular principles of chemotherapy and for designing new and more effective drugs. Due to the still high costs and to the several limitations of experimental techniques, it is most often desirable to predict these ligand-protein complexes in silico, particularly when screening for new putative drugs from databases of millions of compounds. While virtual screening based on molecular docking is widely used for this purpose, it generally fails in mimicking binding events associated with large conformational changes in the protein, particularly when the latter involve multiple domains. In this work, we describe a new methodology aimed at generating bound-like conformations of very flexible and allosteric proteins bearing multiple binding sites. Validation was performed on the enzyme adenylate kinase (ADK), a paradigmatic example of proteins that undergo very large conformational changes upon ligand binding. By only exploiting the unbound structure and the putative binding sites of the protein, we generated a significant fraction of bound-like structures, which employed in ensemble-docking calculations allowed to find native-like poses of substrates, inhibitors, and catalytically incompetent binders. Our protocol provides a general framework for the generation of bound-like conformations of flexible proteins that are suitable to host different ligands, demonstrating high sensitivity to the fine chemical details that regulate protein's activity. We foresee applications in virtual screening for difficult targets, prediction of the impact of amino acid mutations on structure and dynamics, and protein engineering.
Collapse
Affiliation(s)
- Andrea Basciu
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Mohd Athar
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Han Kurt
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Christine Neville
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA 19122, USA
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Giuliano Malloci
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Fabrizio C. Muredda
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Andrea Bosin
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Paolo Ruggerone
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| | - Alexandre M. J. J. Bonvin
- Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Attilio V. Vargiu
- Physics Department, University of Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy
| |
Collapse
|
3
|
Liu X, Xing J, Fu H, Shao X, Cai W. Analyzing Molecular Dynamics Trajectories Thermodynamically through Artificial Intelligence. J Chem Theory Comput 2024; 20:665-676. [PMID: 38193858 DOI: 10.1021/acs.jctc.3c00975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Molecular dynamics simulations produce trajectories that correspond to vast amounts of structure when exploring biochemical processes. Extracting valuable information, e.g., important intermediate states and collective variables (CVs) that describe the major movement modes, from molecular trajectories to understand the underlying mechanisms of biological processes presents a significant challenge. To achieve this goal, we introduce a deep learning approach, coined DIKI (deep identification of key intermediates), to determine low-dimensional CVs distinguishing key intermediate conformations without a-priori assumptions. DIKI dynamically plans the distribution of latent space and groups together similar conformations within the same cluster. Moreover, by incorporating two user-defined parameters, namely, coarse focus knob and fine focus knob, to help identify conformations with low free energy and differentiate the subtle distinctions among these conformations, resolution-tunable clustering was achieved. Furthermore, the integration of DIKI with a path-finding algorithm contributes to the identification of crucial intermediates along the lowest free-energy pathway. We postulate that DIKI is a robust and flexible tool that can find widespread applications in the analysis of complex biochemical processes.
Collapse
Affiliation(s)
- Xuyang Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jingya Xing
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Yang ZJ, Shao Q, Jiang Y, Jurich C, Ran X, Juarez RJ, Yan B, Stull SL, Gollu A, Ding N. Mutexa: A Computational Ecosystem for Intelligent Protein Engineering. J Chem Theory Comput 2023; 19:7459-7477. [PMID: 37828731 PMCID: PMC10653112 DOI: 10.1021/acs.jctc.3c00602] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Indexed: 10/14/2023]
Abstract
Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.
Collapse
Affiliation(s)
- Zhongyue J. Yang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
- Department
of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Data
Science Institute, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Qianzhen Shao
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Yaoyukun Jiang
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Christopher Jurich
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Xinchun Ran
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Reecan J. Juarez
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Chemical
and Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37235, United States
| | - Bailu Yan
- Department
of Biostatistics, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Sebastian L. Stull
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Anvita Gollu
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ning Ding
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Lichtinger SM, Biggin PC. Tackling Hysteresis in Conformational Sampling: How to Be Forgetful with MEMENTO. J Chem Theory Comput 2023; 19:3705-3720. [PMID: 37285481 PMCID: PMC10308841 DOI: 10.1021/acs.jctc.3c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 06/09/2023]
Abstract
The structure of proteins has long been recognized to hold the key to understanding and engineering their function, and rapid advances in structural biology and protein structure prediction are now supplying researchers with an ever-increasing wealth of structural information. Most of the time, however, structures can only be determined in free energy minima, one at a time. While conformational flexibility may thus be inferred from static end-state structures, their interconversion mechanisms─a central ambition of structural biology─are often beyond the scope of direct experimentation. Given the dynamical nature of the processes in question, many studies have attempted to explore conformational transitions using molecular dynamics (MD). However, ensuring proper convergence and reversibility in the predicted transitions is extremely challenging. In particular, a commonly used technique to map out a path from a starting to a target conformation called steered MD (SMD) can suffer from starting-state dependence (hysteresis) when combined with techniques such as umbrella sampling (US) to compute the free energy profile of a transition. Here, we study this problem in detail on conformational changes of increasing complexity. We also present a new, history-independent approach that we term "MEMENTO" (Morphing End states by Modelling Ensembles with iNdependent TOpologies) to generate paths that alleviate hysteresis in the construction of conformational free energy profiles. MEMENTO utilizes template-based structure modelling to restore physically reasonable protein conformations based on coordinate interpolation (morphing) as an ensemble of plausible intermediates, from which a smooth path is picked. We compare SMD and MEMENTO on well-characterized test cases (the toy peptide deca-alanine and the enzyme adenylate kinase) before discussing its use in more complicated systems (the kinase P38α and the bacterial leucine transporter LeuT). Our work shows that for all but the simplest systems SMD paths should not in general be used to seed umbrella sampling or related techniques, unless the paths are validated by consistent results from biased runs in opposite directions. MEMENTO, on the other hand, performs well as a flexible tool to generate intermediate structures for umbrella sampling. We also demonstrate that extended end-state sampling combined with MEMENTO can aid the discovery of collective variables on a case-by-case basis.
Collapse
Affiliation(s)
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K.
| |
Collapse
|
6
|
Zhu Q, Jia Q, Liu Z, Ge Y, Gu X, Cui Z, Fan M, Ma J. Molecular partition coefficient from machine learning with polarization and entropy embedded atom-centered symmetry functions. Phys Chem Chem Phys 2022; 24:23082-23088. [PMID: 36134471 DOI: 10.1039/d2cp02648a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient prediction of the partition coefficient (log P) between polar and non-polar phases could shorten the cycle of drug and materials design. In this work, a descriptor, named 〈q - ACSFs〉conf, is proposed to take the explicit polarization effects in the polar phase and the conformation ensemble of energetic and entropic significance in the non-polar phase into consideration. The polarization effects are involved by embedding the partial charge directly derived from force fields or quantum chemistry calculations into the atom-centered symmetry functions (ACSFs), together with the entropy effects, which are averaged according to the Boltzmann distribution of different conformations taken from the similarity matrix. The model was trained with high-dimensional neural networks (HDNNs) on a public dataset PhysProp (with 41 039 samples). Satisfactory log P prediction performance was achieved on three other datasets, namely, Martel (707 molecules), Star & Non-Star (266) and Huuskonen (1870). The present 〈q - ACSFs〉conf model was also applicable to n-carboxylic acids with the number of carbons ranging from 2 to 14 and 54 kinds of organic solvent. It is easy to apply the present method to arbitrary sized systems and give a transferable atom-based partition coefficient.
Collapse
Affiliation(s)
- Qiang Zhu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Qingqing Jia
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Ziteng Liu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yang Ge
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Gu
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Ziyi Cui
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Mengting Fan
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education Institute of Theoretical and Computational Chemistry School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
7
|
Li Y, Gong H. Identifying a Feasible Transition Pathway between Two Conformational States for a Protein. J Chem Theory Comput 2022; 18:4529-4543. [PMID: 35723447 DOI: 10.1021/acs.jctc.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proteins usually need to transit between different conformational states to fulfill their biological functions. In the mechanistic study of such transition processes by molecular dynamics simulations, identification of the minimum free energy path (MFEP) can substantially reduce the sampling space, thus enabling rigorous thermodynamic evaluation of the process. Conventionally, the MFEP is derived by iterative local optimization from an initial path, which is typically generated by simple brute force techniques like the targeted molecular dynamics (tMD). Therefore, the quality of the initial path determines the successfulness of MFEP estimation. In this work, we propose a method to improve derivation of the initial path. Through iterative relaxation-biasing simulations in a bidirectional manner, this method can construct a feasible transition pathway connecting two known states for a protein. Evaluation on small, fast-folding proteins against long equilibrium trajectories supports the good sampling efficiency of our method. When applied to larger proteins including the catalytic domain of human c-Src kinase as well as the converter domain of myosin VI, the paths generated by our method deviate significantly from those computed with the generic tMD approach. More importantly, free energy profiles and intermediate states obtained from our paths exhibit remarkable improvements over those from tMD paths with respect to both physical rationality and consistency with a priori knowledge.
Collapse
Affiliation(s)
- Yao Li
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Haipeng Gong
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Wang Y, Zhao L, Zhou X, Zhang J, Jiang J, Dong H. Global Fold Switching of the RafH Protein: Diverse Structures with a Conserved Pathway. J Phys Chem B 2022; 126:2979-2989. [PMID: 35438983 DOI: 10.1021/acs.jpcb.1c10965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is generally believed that a protein's sequence uniquely determines its structure, the basis for a protein to perform biological functions. However, as a representative metamorphic protein, RfaH can be encoded by a single amino acid sequence into two distinct native state structures. Its C-terminal domain (CTD) either takes an all-α-helical configuration to pack tightly with its N-terminal domain (NTD), or the CTD disassociates from the NTD, transforms into an all-β-barrel fold, and further attaches to the ribosome, leaving the NTD exposed to bind RNA polymerases. Therefore, the RfaH protein couples transcription and translation processes. Although previous studies have provided a preliminary understanding of its function, the full course of the conformational change of RfaH-CTD at the atomic level is elusive. We used teDA2, a feature space-based enhanced sampling protocol, to explore the transformation of RfaH-CTD. We found that it undergoes a large-scale structural rearrangement, with characteristic spectra as the fingerprint, and a global unfolding transition with a tighter and energetically moderate molten globule-like nucleus formed in between. The formation of this nucleus limits the possible intermediate conformations, facilitates the formation of secondary and tertiary structures, and thus ensures the efficiency of transformation. The key features along the transition path disclosed from this work are likely associated with the evolution of RfaH, such that encoding a single sequence into multiple folds with distinct biological functions is energetically unhindered.
Collapse
Affiliation(s)
- Yiqiao Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Luyuan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xuejie Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.,Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Wu Y, Qian R, Yang Y, Sheng Y, Li W, Wang W. Activation Pathways and Free Energy Landscapes of the SARS-CoV-2 Spike Protein. ACS OMEGA 2021; 6:23432-23441. [PMID: 34514271 PMCID: PMC8424691 DOI: 10.1021/acsomega.1c03384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/24/2021] [Indexed: 05/09/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses a spike protein (S-protein) to recognize the receptor protein ACE2 of human cells and initiate infection, during which the conformational transition of the S-protein from inactive (down) state to active (up) state is one of the key molecular events determining the infectivity but the underlying mechanism remains poorly understood. In this work, we investigated the activation pathways and free energy landscape of the S-protein of SARS-CoV-2 and compared with those of the closely related counterpart SARS-CoV using molecular dynamics simulations. Our results revealed a large difference between the activation pathways of the two S-proteins. The transition from inactive to an active state for the S-protein of SARS-CoV-2 is more cooperative, involving simultaneous disruptions of several key interfacial hydrogen bonds, and the transition encounters a much higher free energy barrier. In addition, the conformational equilibrium of the SARS-CoV-2 S-protein is more biased to the inactive state compared to that of the SARS-CoV S-protein, suggesting the transient feature of the active state before binding to the receptor protein of the host cell. The key interactions contributing to the difference of the activation pathways and free energy landscapes were discussed. The results provide insights into the molecular mechanism involved in the initial stage of the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yichao Wu
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Ruixin Qian
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yan Yang
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Yuebiao Sheng
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wenfei Li
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Department of Physics, National
Laboratory of Solid State Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Hua XF, Du XZ, Zhang ZY. Ligand binding and release investigated by contact-guided iterative multiple independent molecular dynamics simulations. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xin-fan Hua
- National Science Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xin-zheng Du
- National Science Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-yong Zhang
- National Science Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Ding C, Wang S, Zhang Z. Integrating an Enhanced Sampling Method and Small-Angle X-Ray Scattering to Study Intrinsically Disordered Proteins. Front Mol Biosci 2021; 8:621128. [PMID: 34150843 PMCID: PMC8213455 DOI: 10.3389/fmolb.2021.621128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have been paid more and more attention over the past decades because they are involved in a multitude of crucial biological functions. Despite their functional importance, IDPs are generally difficult to investigate because they are very flexible and lack stable structures. Computer simulation may serve as a useful tool in studying IDPs. With the development of computer software and hardware, computational methods, such as molecular dynamics (MD) simulations, are popularly used. However, there is a sampling problem in MD simulations. In this work, this issue is investigated using an IDP called unique long region 11 (UL11), which is the conserved outer tegument component from herpes simplex virus 1. After choosing a proper force field and water model that is suitable for simulating IDPs, integrative modeling by combining an enhanced sampling method and experimental data like small-angle X-ray scattering (SAXS) is utilized to efficiently sample the conformations of UL11. The simulation results are in good agreement with experimental data. This work may provide a general protocol to study structural ensembles of IDPs.
Collapse
Affiliation(s)
- Chengtao Ding
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, National Science Center for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Zhiyong Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, National Science Center for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|