1
|
Akinboade MW, Egbemhenghe AU, Abdulkareem TO, Ibrahim IA, Omotara BS, Aderemi OE, Egejuru WA, Ajala CF, Meejay Kanu I, Oluwafemi OO, Aderemi CO, Ddamulira C, Afuape AR, Adekola AT, Ojeyemi T, Otuomagie OI. Identification of promising small-molecule inhibitors targeting STK17B for cancer therapeutics: molecular docking and molecular dynamics investigations. J Biomol Struct Dyn 2025; 43:2389-2396. [PMID: 38147404 DOI: 10.1080/07391102.2023.2296605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/02/2023] [Indexed: 12/28/2023]
Abstract
Cancer is a complex disease characterized by the uncontrolled growth of abnormal cells, leading to the formation of tumours. STK17B, a member of the DAPK family, has been implicated in various cancers and is considered a potential therapeutic target. However, no drug in the market has been approved for the treatment of STK17 B-associated cancer disease. This research aimed to identify direct inhibitors of STK17B using computational techniques. Ligand-based virtual screening and molecular docking were performed, resulting in the selection of three lead compounds (CID_135698391, CID_135453100, CID_136599608) with superior binding affinities compared to the reference compound dovitinib. While molecular docking simulation revealed specific interactions between the lead compounds and key amino acid residues at the binding pocket of STK17B, molecular dynamics simulations demonstrated that CID_135453100 and CID_136599608 exhibit stable conformations and comparable flexibility to dovitinib. However, CID_135698391 did not perform well using this metric as it displayed poor stability. Overall, small-molecule compounds CID_135453100 and CID_136599608 showed promising binding interactions and stability, suggesting their potential as direct inhibitors of STK17B. These findings could contribute to the exploration of novel therapeutic options targeting STK17B in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Bamidele Samson Omotara
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | - Olajide Enoch Aderemi
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | | | | | - Ihunanya Meejay Kanu
- Department of Epidemiology and Biotatistics, Jackson State University, Jackson, MS, USA
| | | | | | | | | | | | - Toluwalase Ojeyemi
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
2
|
Zhou PJ, Huang T, Ma GL, Zhao ZY, Jiang ZL, Zang Y, Xiong J, Li J, Hu JF. Structurally diverse terpenoids and their DRAK2 inhibitory activities: A follow-up study on the vulnerable conifer Pseudotsuga forrestii. J Mol Struct 2024; 1305:137754. [DOI: 10.1016/j.molstruc.2024.137754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Taujale R, Gravel N, Zhou Z, Yeung W, Kochut K, Kannan N. Informatic challenges and advances in illuminating the druggable proteome. Drug Discov Today 2024; 29:103894. [PMID: 38266979 DOI: 10.1016/j.drudis.2024.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
The understudied members of the druggable proteomes offer promising prospects for drug discovery efforts. While large-scale initiatives have generated valuable functional information on understudied members of the druggable gene families, translating this information into actionable knowledge for drug discovery requires specialized informatics tools and resources. Here, we review the unique informatics challenges and advances in annotating understudied members of the druggable proteome. We demonstrate the application of statistical evolutionary inference tools, knowledge graph mining approaches, and protein language models in illuminating understudied protein kinases, pseudokinases, and ion channels.
Collapse
Affiliation(s)
- Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | | | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Krystof Kochut
- School of Computing, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA; Institute of Bioinformatics, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Tsuchiya Y, Yonezawa T, Yamamori Y, Inoura H, Osawa M, Ikeda K, Tomii K. PoSSuM v.3: A Major Expansion of the PoSSuM Database for Finding Similar Binding Sites of Proteins. J Chem Inf Model 2023; 63:7578-7587. [PMID: 38016694 PMCID: PMC10716853 DOI: 10.1021/acs.jcim.3c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/30/2023]
Abstract
Information on structures of protein-ligand complexes, including comparisons of known and putative protein-ligand-binding pockets, is valuable for protein annotation and drug discovery and development. To facilitate biomedical and pharmaceutical research, we developed PoSSuM (https://possum.cbrc.pj.aist.go.jp/PoSSuM/), a database for identifying similar binding pockets in proteins. The current PoSSuM database includes 191 million similar pairs among almost 10 million identified pockets. PoSSuM drug search (PoSSuMds) is a resource for investigating ligand and receptor diversity among a set of pockets that can bind to an approved drug compound. The enhanced PoSSuMds covers pockets associated with both approved drugs and drug candidates in clinical trials from the latest release of ChEMBL. Additionally, we developed two new databases: PoSSuMAg for investigating antibody-antigen interactions and PoSSuMAF to simplify exploring putative pockets in AlphaFold human protein models.
Collapse
Affiliation(s)
- Yuko Tsuchiya
- Artificial
Intelligence Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Tomoki Yonezawa
- Division
of Physics for Life Functions, Keio University
Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yu Yamamori
- Artificial
Intelligence Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hiroko Inoura
- Artificial
Intelligence Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masanori Osawa
- Division
of Physics for Life Functions, Keio University
Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Kazuyoshi Ikeda
- Division
of Physics for Life Functions, Keio University
Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
- Medicinal
Chemistry Applied AI Unit, HPC- and AI-driven Drug Development Platform
Division, RIKEN Center for Computational
Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kentaro Tomii
- Artificial
Intelligence Research Center, National Institute
of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
| |
Collapse
|
5
|
Anderson B, Rosston P, Ong HW, Hossain MA, Davis-Gilbert ZW, Drewry DH. How many kinases are druggable? A review of our current understanding. Biochem J 2023; 480:1331-1363. [PMID: 37642371 PMCID: PMC10586788 DOI: 10.1042/bcj20220217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
There are over 500 human kinases ranging from very well-studied to almost completely ignored. Kinases are tractable and implicated in many diseases, making them ideal targets for medicinal chemistry campaigns, but is it possible to discover a drug for each individual kinase? For every human kinase, we gathered data on their citation count, availability of chemical probes, approved and investigational drugs, PDB structures, and biochemical and cellular assays. Analysis of these factors highlights which kinase groups have a wealth of information available, and which groups still have room for progress. The data suggest a disproportionate focus on the more well characterized kinases while much of the kinome remains comparatively understudied. It is noteworthy that tool compounds for understudied kinases have already been developed, and there is still untapped potential for further development in this chemical space. Finally, this review discusses many of the different strategies employed to generate selectivity between kinases. Given the large volume of information available and the progress made over the past 20 years when it comes to drugging kinases, we believe it is possible to develop a tool compound for every human kinase. We hope this review will prove to be both a useful resource as well as inspire the discovery of a tool for every kinase.
Collapse
Affiliation(s)
- Brian Anderson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Peter Rosston
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - Zachary W. Davis-Gilbert
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, U.S.A
| |
Collapse
|
6
|
Ong HW, Truong A, Kwarcinski F, de Silva C, Avalani K, Havener TM, Chirgwin M, Galal KA, Willis C, Krämer A, Liu S, Knapp S, Derbyshire ER, Zutshi R, Drewry DH. Discovery of potent Plasmodium falciparum protein kinase 6 (PfPK6) inhibitors with a type II inhibitor pharmacophore. Eur J Med Chem 2023; 249:115043. [PMID: 36736152 PMCID: PMC10052868 DOI: 10.1016/j.ejmech.2022.115043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 01/01/2023]
Abstract
Malaria is a devastating disease that causes significant global morbidity and mortality. The rise of drug resistance against artemisinin-based combination therapy demonstrates the necessity to develop alternative antimalarials with novel mechanisms of action. We report the discovery of Ki8751 as an inhibitor of essential kinase PfPK6. 79 derivatives were designed, synthesized and evaluated for PfPK6 inhibition and antiplasmodial activity. Using group efficiency analyses, we established the importance of key groups on the scaffold consistent with a type II inhibitor pharmacophore. We highlight modifications on the tail group that contribute to antiplasmodial activity, cumulating in the discovery of compound 67, a PfPK6 inhibitor (IC50 = 13 nM) active against the P. falciparum blood stage (EC50 = 160 nM), and compound 79, a PfPK6 inhibitor (IC50 < 5 nM) with dual-stage antiplasmodial activity against P. falciparum blood stage (EC50 = 39 nM) and against P. berghei liver stage (EC50 = 220 nM).
Collapse
Affiliation(s)
- Han Wee Ong
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna Truong
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Frank Kwarcinski
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Chandi de Silva
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Krisha Avalani
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael Chirgwin
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Kareem A Galal
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Caleb Willis
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC, 27599-3420, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599-3420, USA
| | - Stefan Knapp
- Structural Genomics Consortium, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Emily R Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC, 27710, USA.
| | - Reena Zutshi
- Luceome Biotechnologies, L.L.C, 1665 E. 18th Street, Suite 106, Tucson, AZ, 85719, USA.
| | - David H Drewry
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Lineberger Comprehensive Cancer Center, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Zhang L, Luo B, Lu Y, Chen Y. Targeting Death-Associated Protein Kinases for Treatment of Human Diseases: Recent Advances and Future Directions. J Med Chem 2023; 66:1112-1136. [PMID: 36645394 DOI: 10.1021/acs.jmedchem.2c01606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The death-associated protein kinase (DAPK) family is a member of the calcium/calmodulin-regulated serine/threonine protein kinase family, and studies have shown that its role, as its name suggests, is mainly to regulate cell death. The DAPK family comprises five members, including DAPK1, DAPK2, DAPK3, DRAK1 and DRAK2, which show high homology in the common N-terminal kinase domain but differ in the extra-catalytic domain. Notably, previous research has suggested that the DAPK family plays an essential role in both the development and regulation of human diseases. However, only a few small-molecule inhibitors have been reported. In this Perspective, we mainly discuss the structure, biological function, and role of DAPKs in diseases and the currently discovered small-molecule inhibitors, providing valuable information for the development of the DAPK field.
Collapse
Affiliation(s)
- Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Boqin Luo
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yingying Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yi Chen
- State Key Laboratory of Biotherapy and Cancer Center and Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
8
|
Wells CI, Drewry DH. Developing a Kinase Chemogenomic Set: Facilitating Investigation into Kinase Biology by Linking Phenotypes to Targets. Methods Mol Biol 2023; 2706:11-24. [PMID: 37558938 DOI: 10.1007/978-1-0716-3397-7_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Advances in increasingly complex phenotypic screening with lower throughput have necessitated the screening of smaller more highly annotated sets. One such collection of compounds which has been recently assembled is the kinase chemogenomic set. This is a set of curated kinase inhibitors built upon previous iterations, PKIS and PKIS2, and donations from our partners. Each compound in the set has been carefully selected based on selectivity, potency, and kinome coverage. These compounds as a set have been made available to the scientific community, enabling phenotypic screens to identify kinases that drive novel biology. Additionally, the associated data deposited in the public domain have also been used to inform new inhibitor design. Further expansion of this set to complete kinome coverage will allow for a greater understanding of kinase biology and its role in disease.
Collapse
Affiliation(s)
- Carrow I Wells
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA.
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC, USA.
| | - David H Drewry
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, UNC-CH, Chapel Hill, NC, USA
| |
Collapse
|
9
|
Liu C, Zhang Y, Zhang Y, Liu Z, Mao F, Chai Z. Mechanistic Insights into the Mechanism of Inhibitor Selectivity toward the Dark Kinase STK17B against Its High Homology STK17A. Molecules 2022; 27:molecules27144655. [PMID: 35889528 PMCID: PMC9317881 DOI: 10.3390/molecules27144655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
As a member of the death-associated protein kinase (DAPK) family, STK17B plays an important role in the regulation of cellular apoptosis and has been considered as a promising drug target for hepatocellular carcinoma. However, the highly conserved ATP-binding site of protein kinases represents a challenge to design selective inhibitors for a specific DAPK isoform. In this study, molecular docking, multiple large-scale molecular dynamics (MD) simulations, and binding free energy calculations were performed to decipher the molecular mechanism of the binding selectivity of PKIS43 toward STK17B against its high homology STK17A. MD simulations revealed that STK17A underwent a significant conformational arrangement of the activation loop compared to STK17B. The binding free energy predictions suggested that the driving force to control the binding selectivity of PKIS43 was derived from the difference in the protein–ligand electrostatic interactions. Furthermore, the per-residue free energy decomposition unveiled that the energy contribution from Arg41 at the phosphate-binding loop of STK17B was the determinant factor responsible for the binding specificity of PKIS43. This study may provide useful information for the rational design of novel and potent selective inhibitors toward STK17B.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; (C.L.); (Z.L.)
| | - Yichi Zhang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China;
| | - Yuqing Zhang
- MD Cancer Center, Yue Yang Hospital of Integrative Traditional Chinese and Western Medicine, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China;
| | - Zonghan Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; (C.L.); (Z.L.)
| | - Feifei Mao
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Correspondence: (F.M.); (Z.C.)
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200433, China; (C.L.); (Z.L.)
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai 201104, China
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai 200032, China
- Correspondence: (F.M.); (Z.C.)
| |
Collapse
|
10
|
Perturbation of biological processes with small molecule kinase inhibitors. Curr Opin Chem Biol 2022; 70:102185. [PMID: 35853282 DOI: 10.1016/j.cbpa.2022.102185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
The reversible phosphorylation of substrates mediated by kinases and phosphatases affects their subcellular localization, catalytic activity, and/or interaction with other molecules. It is essential for signal transduction and the regulation of nearly all cellular processes, such as proliferation, apoptosis, metabolism, motility, and differentiation. Small molecule kinase inhibitors (SMKIs) have served as critical chemical probes to reveal the biological functions and mechanisms of kinases and their potential as therapeutic targets. In this review, we focused on a few novel SMKIs and their recent application in biological and preclinical studies to showcase how highly selective and potent SMKIs can be developed and utilized to propel the investigations on kinases and the biology behind.
Collapse
|
11
|
Kurz CG, Preuss F, Tjaden A, Cusack M, Amrhein JA, Chatterjee D, Mathea S, Berger LM, Berger BT, Krämer A, Weller M, Weiss T, Müller S, Knapp S, Hanke T. Illuminating the Dark: Highly Selective Inhibition of Serine/Threonine Kinase 17A with Pyrazolo[1,5- a]pyrimidine-Based Macrocycles. J Med Chem 2022; 65:7799-7817. [PMID: 35608370 DOI: 10.1021/acs.jmedchem.2c00173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Serine/threonine kinase 17A (death-associated protein kinase-related apoptosis-inducing protein kinase 1─DRAK1) is a part of the death-associated protein kinase (DAPK) family and belongs to the so-called dark kinome. Thus, the current state of knowledge of the cellular function of DRAK1 and its involvement in pathophysiological processes is very limited. Recently, DRAK1 has been implicated in tumorigenesis of glioblastoma multiforme (GBM) and other cancers, but no selective inhibitors of DRAK1 are available yet. To this end, we optimized a pyrazolo[1,5-a]pyrimidine-based macrocyclic scaffold. Structure-guided optimization of this macrocyclic scaffold led to the development of CK156 (34), which displayed high in vitro potency (KD = 21 nM) and selectivity in kinomewide screens. Crystal structures demonstrated that CK156 (34) acts as a type I inhibitor. However, contrary to studies using genetic knockdown of DRAK1, we have seen the inhibition of cell growth of glioma cells in 2D and 3D culture only at low micromolar concentrations.
Collapse
Affiliation(s)
- Christian G Kurz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Franziska Preuss
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Martin Cusack
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Deep Chatterjee
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Sebastian Mathea
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany.,Frankfurt Cancer Institute (FCI), Paul-Ehrlich-Straße 42-44, Frankfurt 60596, Germany
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Frauenklinikstrasse 26, Zurich 8091, Switzerland
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt 60438, Germany.,Structural Genomics Consortium, Buchman Institute for Molecular Life Science (BMLS), Max-von-Laue-Straße 15, Frankfurt 60438, Germany
| |
Collapse
|
12
|
Liu C, Li Z, Liu Z, Yang S, Wang Q, Chai Z. Understanding the P-Loop Conformation in the Determination of Inhibitor Selectivity Toward the Hepatocellular Carcinoma-Associated Dark Kinase STK17B. Front Mol Biosci 2022; 9:901603. [PMID: 35620482 PMCID: PMC9127184 DOI: 10.3389/fmolb.2022.901603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/26/2022] Open
Abstract
As a member of the death-associated protein kinase family of serine/threonine kinases, the STK17B has been associated with diverse diseases such as hepatocellular carcinoma. However, the conformational dynamics of the phosphate-binding loop (P-loop) in the determination of inhibitor selectivity profile to the STK17B are less understood. Here, a multi-microsecond length molecular dynamics (MD) simulation of STK17B in the three different states (ligand-free, ADP-bound, and ligand-bound states) was carried out to uncover the conformational plasticity of the P-loop. Together with the analyses of principal component analysis, cross-correlation and generalized correlation motions, secondary structural analysis, and community network analysis, the conformational dynamics of the P-loop in the different states were revealed, in which the P-loop flipped into the ADP-binding site upon the inhibitor binding and interacted with the inhibitor and the C-lobe, strengthened the communication between the N- and C-lobes. These resulting interactions contributed to inhibitor selectivity profile to the STK17B. Our results may advance our understanding of kinase inhibitor selectivity and offer possible implications for the design of highly selective inhibitors for other protein kinases.
Collapse
Affiliation(s)
- Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Zhizhen Li
- Department of Biliary Surgery I, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Zonghan Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Shiye Yang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
| | - Qing Wang
- Oncology Department, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongtao Chai
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University (Navy Medical University), Shanghai, China
- Department of Hepatic Surgery, Shanghai Geriatric Center, Shanghai, China
| |
Collapse
|
13
|
Potjewyd FM, Annor‐Gyamfi JK, Aubé J, Chu S, Conlon IL, Frankowski KJ, Guduru SKR, Hardy BP, Hopkins MD, Kinoshita C, Kireev DB, Mason ER, Moerk CT, Nwogbo F, Pearce KH, Richardson TI, Rogers DA, Soni DM, Stashko M, Wang X, Wells C, Willson TM, Frye SV, Young JE, Axtman AD. AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12246. [PMID: 35475262 PMCID: PMC9019904 DOI: 10.1002/trc2.12246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Introduction The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.
Collapse
Affiliation(s)
- Frances M. Potjewyd
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Joel K. Annor‐Gyamfi
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Jeffrey Aubé
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Shaoyou Chu
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Ivie L. Conlon
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Kevin J. Frankowski
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Shiva K. R. Guduru
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Brian P. Hardy
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Megan D. Hopkins
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Chizuru Kinoshita
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Dmitri B. Kireev
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Emily R. Mason
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Charles T. Moerk
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Felix Nwogbo
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Kenneth H. Pearce
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Timothy I. Richardson
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - David A. Rogers
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Disha M. Soni
- Department of MedicineDivision of Clinical PharmacologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Michael Stashko
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Xiaodong Wang
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Carrow Wells
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Timothy M. Willson
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| | - Stephen V. Frye
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryCenter for Integrative Chemical Biology and Drug DiscoveryChapel HillNorth CarolinaUSA
| | - Jessica E. Young
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Institute for Stem Cell and Regenerative MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Alison D. Axtman
- UNC Eshelman School of PharmacyDivision of Chemical Biology and Medicinal ChemistryStructural Genomics ConsortiumChapel HillNorth CarolinaUSA
| |
Collapse
|
14
|
New Compounds with Bioisosteric Replacement of Classic Choline Kinase Inhibitors Show Potent Antiplasmodial Activity. Pharmaceutics 2021; 13:pharmaceutics13111842. [PMID: 34834257 PMCID: PMC8621770 DOI: 10.3390/pharmaceutics13111842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
In the fight against Malaria, new strategies need to be developed to avoid resistance of the parasite to pharmaceutics and other prevention barriers. Recently, a Host Directed Therapy approach based on the suppression of the starting materials uptake from the host by the parasite has provided excellent results. In this article, we propose the synthesis of bioisosteric compounds that are capable of inhibiting Plasmodium falciparum Choline Kinase and therefore to reduce choline uptake, which is essential for the development of the parasite. Of the 41 bioisosteric compounds reported herein, none showed any influence of the linker on the antimalarial and enzyme inhibitory activity, whereas an effect of the type of cationic heads used could be observed. SARs determined that the thienopyrimidine substituted in 4 by a pyrrolidine is the best scaffold, independently of the chosen linker. The decrease in lipophilicity seems to improve the antimalarial activity but to cause an opposite effect on the inhibition of the enzyme. While potent compounds with similar good inhibitory values have been related to the proposed mechanism of action, some of them still show discrepancies and further studies are needed to determine their specific molecular target.
Collapse
|
15
|
Serafim RAM, Elkins JM, Zuercher WJ, Laufer SA, Gehringer M. Chemical Probes for Understudied Kinases: Challenges and Opportunities. J Med Chem 2021; 65:1132-1170. [PMID: 34477374 DOI: 10.1021/acs.jmedchem.1c00980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over 20 years after the approval of the first-in-class protein kinase inhibitor imatinib, the biological function of a significant fraction of the human kinome remains poorly understood while most research continues to be focused on few well-validated targets. Given the strong genetic evidence for involvement of many kinases in health and disease, the understudied fraction of the kinome holds a large and unexplored potential for future therapies. Specific chemical probes are indispensable tools to interrogate biology enabling proper preclinical validation of novel kinase targets. In this Perspective, we highlight recent case studies illustrating the development of high-quality chemical probes for less-studied kinases and their application in target validation. We spotlight emerging techniques and approaches employed in the generation of chemical probes for protein kinases and beyond and discuss the associated challenges and opportunities.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Jonathan M Elkins
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - William J Zuercher
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany.,Tübingen Center for Academic Drug Discovery, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided & Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Krishnathas GM, Strödke B, Mittmann L, Zech T, Berger LM, Reichel CA, Rösser S, Schmid T, Knapp S, Müller S, Bracher F, Fürst R, Bischoff-Kont I. C81-evoked inhibition of the TNFR1-NFκB pathway during inflammatory processes for stabilization of the impaired vascular endothelial barrier for leukocytes. FASEB J 2021; 35:e21656. [PMID: 34042211 DOI: 10.1096/fj.202100037r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/08/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Chronic inflammation-related diseases are characterized by persistent leukocyte infiltration into the underlying tissue. The vascular endothelium plays a major role in this pathophysiological condition. Only few therapeutic strategies focus on the vascular endothelium as a major target for an anti-inflammatory approach. In this study, we present the natural compound-derived carbazole derivative C81 as chemical modulator interfering with leukocyte-endothelial cell interactions. An in vivo assay employing intravital microscopy to monitor leukocyte trafficking after C81 treatment in postcapillary venules of a murine cremaster muscle was performed. Moreover, in vitro assays using HUVECs and monocytes were implemented. The impact of C81 on cell adhesion molecules and the NFκB signaling cascade was analyzed in vitro in endothelial cells. Effects of C81 on protein translation were determined by incorporation of a puromycin analog-based approach and polysome profiling. We found that C81 significantly reduced TNF-activated leukocyte trafficking in postcapillary venules. Similar results were obtained in vitro when C81 reduced leukocyte-endothelial cell interactions by down-regulating cell adhesion molecules. Focusing on the NFκB signaling cascade, we found that C81 reduced the activation on multiple levels of the cascade through promoted IκBα recovery by attenuation of IκBα ubiquitination and through reduced protein levels of TNFR1 caused by protein translation inhibition. We suggest that C81 might represent a promising lead compound for interfering with inflammation-related processes in endothelial cells by down-regulation of IκBα ubiquitination on the one hand and inhibition of translation on the other hand without exerting cytotoxic effects.
Collapse
Affiliation(s)
| | - Benjamin Strödke
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Laura Mittmann
- Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Thomas Zech
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt/Main, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt/Main, Germany
| | - Christoph A Reichel
- Department of Otorhinolaryngology and Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University München, Munich, Germany
| | - Silvia Rösser
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Faculty of Medicine, Goethe University, Frankfurt/Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt/Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt/Main, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt/Main, Germany
| | - Iris Bischoff-Kont
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|