1
|
Janin YL. On the origins of SARS-CoV-2 main protease inhibitors. RSC Med Chem 2024; 15:81-118. [PMID: 38283212 PMCID: PMC10809347 DOI: 10.1039/d3md00493g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 01/30/2024] Open
Abstract
In order to address the world-wide health challenge caused by the COVID-19 pandemic, the 3CL protease/SARS-CoV-2 main protease (SARS-CoV-2-Mpro) coded by its nsp5 gene became one of the biochemical targets for the design of antiviral drugs. In less than 3 years of research, 4 inhibitors of SARS-CoV-2-Mpro have actually been authorized for COVID-19 treatment (nirmatrelvir, ensitrelvir, leritrelvir and simnotrelvir) and more such as EDP-235, FB-2001 and STI-1558/Olgotrelvir or five undisclosed compounds (CDI-988, ASC11, ALG-097558, QLS1128 and H-10517) are undergoing clinical trials. This review is an attempt to picture this quite unprecedented medicinal chemistry feat and provide insights on how these cysteine protease inhibitors were discovered. Since many series of covalent SARS-CoV-2-Mpro inhibitors owe some of their origins to previous work on other proteases, we first provided a description of various inhibitors of cysteine-bearing human caspase-1 or cathepsin K, as well as inhibitors of serine proteases such as human dipeptidyl peptidase-4 or the hepatitis C protein complex NS3/4A. This is then followed by a description of the results of the approaches adopted (repurposing, structure-based and high throughput screening) to discover coronavirus main protease inhibitors.
Collapse
Affiliation(s)
- Yves L Janin
- Structure et Instabilité des Génomes (StrInG), Muséum National d'Histoire Naturelle, INSERM, CNRS, Alliance Sorbonne Université 75005 Paris France
| |
Collapse
|
2
|
Eruera AR, McSweeney AM, McKenzie-Goldsmith GM, Opel-Reading HK, Thomas SX, Campbell AC, Stubbing L, Siow A, Hubert JG, Brimble MA, Ward VK, Krause KL. Crystal Structure of Inhibitor-Bound GII.4 Sydney 2012 Norovirus 3C-Like Protease. Viruses 2023; 15:2202. [PMID: 38005879 PMCID: PMC10674469 DOI: 10.3390/v15112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Norovirus is the leading cause of viral gastroenteritis worldwide, and there are no approved vaccines or therapeutic treatments for chronic or severe norovirus infections. The structural characterisation of the norovirus protease and drug development has predominantly focused upon GI.1 noroviruses, despite most global outbreaks being caused by GII.4 noroviruses. Here, we determined the crystal structures of the GII.4 Sydney 2012 ligand-free norovirus protease at 2.79 Å and at 1.83 Å with a covalently bound high-affinity (IC50 = 0.37 µM) protease inhibitor (NV-004). We show that the active sites of the ligand-free protease structure are present in both open and closed conformations, as determined by their Arg112 side chain orientation. A comparative analysis of the ligand-free and ligand-bound protease structures reveals significant structural differences in the active site cleft and substrate-binding pockets when an inhibitor is covalently bound. We also report a second molecule of NV-004 non-covalently bound within the S4 substrate binding pocket via hydrophobic contacts and a water-mediated hydrogen bond. These new insights can guide structure-aided drug design against the GII.4 genogroup of noroviruses.
Collapse
Affiliation(s)
- Alice-Roza Eruera
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| | - Alice M. McSweeney
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Geena M. McKenzie-Goldsmith
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Helen K. Opel-Reading
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| | - Simone X. Thomas
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Ashley C. Campbell
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| | - Louise Stubbing
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Andrew Siow
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Jonathan G. Hubert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street and 3b Symonds Street, Auckland 1142, New Zealand; (L.S.); (A.S.); (J.G.H.); (M.A.B.)
| | - Vernon K. Ward
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (A.-R.E.); (A.M.M.); (G.M.M.-G.); (S.X.T.)
| | - Kurt L. Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (H.K.O.-R.); (A.C.C.)
| |
Collapse
|
3
|
Stubbing LA, Hubert JG, Bell-Tyrer J, Hermant YO, Yang SH, McSweeney AM, McKenzie-Goldsmith GM, Ward VK, Furkert DP, Brimble MA. P 1 Glutamine isosteres in the design of inhibitors of 3C/3CL protease of human viruses of the Pisoniviricetes class. RSC Chem Biol 2023; 4:533-547. [PMID: 37547456 PMCID: PMC10398354 DOI: 10.1039/d3cb00075c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Viral infections are one of the leading causes of acute morbidity in humans and much endeavour has been made by the synthetic community for the development of drugs to treat associated diseases. Peptide-based enzyme inhibitors, usually short sequences of three or four residues, are one of the classes of compounds currently under development for enhancement of their activity and pharmaceutical properties. This review reports the advances made in the design of inhibitors targeting the family of highly conserved viral proteases 3C/3CLpro, which play a key role in viral replication and present minimal homology with mammalian proteases. Particular focus is put on the reported development of P1 glutamine isosteres to generate potent inhibitors mimicking the natural substrate sequence at the site of recognition.'
Collapse
Affiliation(s)
- Louise A Stubbing
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Jonathan G Hubert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Joseph Bell-Tyrer
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Yann O Hermant
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Sung Hyun Yang
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
| | - Alice M McSweeney
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Geena M McKenzie-Goldsmith
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Vernon K Ward
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago PO Box 56, 720 Cumberland Street Dunedin 9054 New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland 23 Symonds Street and 3b Symonds Street Auckland 1142 New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland 3b Symonds Street Auckland 1142 New Zealand
| |
Collapse
|
4
|
Ma C, Meng H, Li J, Yang X, Jiang Y, Yu B. Photocatalytic
Transition‐Metal‐Free
Direct
3‐Acetalation
of Quinoxaline‐2(
1
H
)‐ones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Hui Meng
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Jing Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Xianguang Yang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Yuqin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry Zhengzhou University. Zhengzhou 450001 China
| |
Collapse
|
5
|
Bai B, Belovodskiy A, Hena M, Kandadai AS, Joyce MA, Saffran HA, Shields JA, Khan MB, Arutyunova E, Lu J, Bajwa SK, Hockman D, Fischer C, Lamer T, Vuong W, van Belkum MJ, Gu Z, Lin F, Du Y, Xu J, Rahim M, Young HS, Vederas JC, Tyrrell DL, Lemieux MJ, Nieman JA. Peptidomimetic α-Acyloxymethylketone Warheads with Six-Membered Lactam P1 Glutamine Mimic: SARS-CoV-2 3CL Protease Inhibition, Coronavirus Antiviral Activity, and in Vitro Biological Stability. J Med Chem 2022; 65:2905-2925. [PMID: 34242027 PMCID: PMC8291138 DOI: 10.1021/acs.jmedchem.1c00616] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Indexed: 12/11/2022]
Abstract
Recurring coronavirus outbreaks, such as the current COVID-19 pandemic, establish a necessity to develop direct-acting antivirals that can be readily administered and are active against a broad spectrum of coronaviruses. Described in this Article are novel α-acyloxymethylketone warhead peptidomimetic compounds with a six-membered lactam glutamine mimic in P1. Compounds with potent SARS-CoV-2 3CL protease and in vitro viral replication inhibition were identified with low cytotoxicity and good plasma and glutathione stability. Compounds 15e, 15h, and 15l displayed selectivity for SARS-CoV-2 3CL protease over CatB and CatS and superior in vitro SARS-CoV-2 antiviral replication inhibition compared with the reported peptidomimetic inhibitors with other warheads. The cocrystallization of 15l with SARS-CoV-2 3CL protease confirmed the formation of a covalent adduct. α-Acyloxymethylketone compounds also exhibited antiviral activity against an alphacoronavirus and non-SARS betacoronavirus strains with similar potency and a better selectivity index than remdesivir. These findings demonstrate the potential of the substituted heteroaromatic and aliphatic α-acyloxymethylketone warheads as coronavirus inhibitors, and the described results provide a basis for further optimization.
Collapse
Affiliation(s)
- Bing Bai
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Alexandr Belovodskiy
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Mostofa Hena
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Appan Srinivas Kandadai
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Holly A. Saffran
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Justin A. Shields
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Elena Arutyunova
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jimmy Lu
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Sardeev K. Bajwa
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Darren Hockman
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - Conrad Fischer
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tess Lamer
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wayne Vuong
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Marco J. van Belkum
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Zhengxian Gu
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Fusen Lin
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Yanhua Du
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Jia Xu
- WuXi AppTec (Shanghai) Co., Ltd.,
G Warehouse #101, No. 10 Building, #227 Meisheng Road, WaiGaoQiao Free Trade Zone,
Shanghai 200131, China
| | - Mohammad Rahim
- Rane Pharmaceuticals, Inc.
4290 91a Street NW, Edmonton, Alberta T6E 5V2, Canada
| | - Howard S. Young
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - John C. Vederas
- Department of Chemistry, University of
Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| | - M. Joanne Lemieux
- Li Ka Shing Institute of Virology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Biochemistry, University of
Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - James A. Nieman
- Li Ka Shing Applied Virology Institute,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
- Department of Medical Microbiology and Immunology,
University of Alberta, Edmonton, Alberta T6G 2E1,
Canada
| |
Collapse
|
6
|
Stille JK, Tjutrins J, Wang G, Venegas FA, Hennecker C, Rueda AM, Sharon I, Blaine N, Miron CE, Pinus S, Labarre A, Plescia J, Burai Patrascu M, Zhang X, Wahba AS, Vlaho D, Huot MJ, Schmeing TM, Mittermaier AK, Moitessier N. Design, synthesis and in vitro evaluation of novel SARS-CoV-2 3CL pro covalent inhibitors. Eur J Med Chem 2022; 229:114046. [PMID: 34995923 PMCID: PMC8665847 DOI: 10.1016/j.ejmech.2021.114046] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022]
Abstract
Severe diseases such as the ongoing COVID-19 pandemic, as well as the previous SARS and MERS outbreaks, are the result of coronavirus infections and have demonstrated the urgent need for antiviral drugs to combat these deadly viruses. Due to its essential role in viral replication and function, 3CLpro (main coronaviruses cysteine-protease) has been identified as a promising target for the development of antiviral drugs. Previously reported SARS-CoV 3CLpro non-covalent inhibitors were used as a starting point for the development of covalent inhibitors of SARS-CoV-2 3CLpro. We report herein our efforts in the design and synthesis of submicromolar covalent inhibitors when the enzymatic activity of the viral protease was used as a screening platform.
Collapse
Affiliation(s)
- Julia K Stille
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Jevgenijs Tjutrins
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Guanyu Wang
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Felipe A Venegas
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Christopher Hennecker
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Andrés M Rueda
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Itai Sharon
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler Montreal, QC, Canada, H3G 0B1
| | - Nicole Blaine
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Caitlin E Miron
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Sharon Pinus
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Anne Labarre
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Jessica Plescia
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Mihai Burai Patrascu
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Xiaocong Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Alexander S Wahba
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Danielle Vlaho
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - Mitchell J Huot
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir William Osler Montreal, QC, Canada, H3G 0B1
| | - Anthony K Mittermaier
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8.
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC, Canada, H3A 0B8.
| |
Collapse
|
7
|
Vuong W, Vederas JC. Improved Synthesis of a Cyclic Glutamine Analogue Used in Antiviral Agents Targeting 3C and 3CL Proteases Including SARS-CoV-2 M pro. J Org Chem 2021; 86:13104-13110. [PMID: 34459196 PMCID: PMC8425337 DOI: 10.1021/acs.joc.1c01299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/28/2022]
Abstract
An intermediate in the synthesis of numerous antiviral protease inhibitors is the glutamine analogue, (3S)-pyrrolid-2-one-3-yl-l-alanine. Preparations of compounds based on this pharmacophore are hindered by the lack of a reliably high yielding synthesis of protected forms of this amino acid. We describe an improved scalable route with readily available reagents and facile purification. This methodology employs γ-allylation of dimethyl N-BocGlu, further Boc N-protection, OsO4-periodate oxidation, O-Me oxime formation, and RaNi-catalyzed hydrogenolysis with concomitant cyclization under basic conditions.
Collapse
Affiliation(s)
- Wayne Vuong
- Department of Chemistry, University of
Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - John C. Vederas
- Department of Chemistry, University of
Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|
8
|
Current and Future Antiviral Strategies to Tackle Gastrointestinal Viral Infections. Microorganisms 2021; 9:microorganisms9081599. [PMID: 34442677 PMCID: PMC8399003 DOI: 10.3390/microorganisms9081599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/16/2023] Open
Abstract
Acute gastroenteritis caused by virus has a major impact on public health worldwide in terms of morbidity, mortality, and economic burden. The main culprits are rotaviruses, noroviruses, sapoviruses, astroviruses, and enteric adenoviruses. Currently, there are no antiviral drugs available for the prevention or treatment of viral gastroenteritis. Here, we describe the antivirals that were identified as having in vitro and/or in vivo activity against these viruses, originating from in silico design or library screening, natural sources or being repurposed drugs. We also highlight recent advances in model systems available for this (hard to cultivate) group of viruses, such as organoid technologies, and that will facilitate antiviral studies as well as fill some of current knowledge gaps that hamper the development of highly efficient therapies against gastroenteric viruses.
Collapse
|