1
|
Liu W, Ma Y, Wang M, He Y, Liu Y, Zhu Z, Ding Y, Zhang G, Wang S. Discovery of 3-amide-pyrimidine-based derivatives as potential fms-like tyrosine receptor kinase 3 (FLT3) inhibitors for treating acute myelogenous leukemia. Bioorg Med Chem Lett 2025; 117:130082. [PMID: 39708925 DOI: 10.1016/j.bmcl.2024.130082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
FLT3-ITD and TKD mutants play a central role in acute myeloid leukemia (AML), making FLT3 an attractive target for AML treatment. To discover next-generation FLT3 inhibitors and gather additional structure-activity relationship (SAR) information, we performed structural modifications of G-749 (denfivontinib) utilizing structure simplification and scaffold hopping strategies. Among these derivatives, MY-10 exhibited the most potent and selective inhibition of MV4-11 cell proliferation, demonstrating potent inhibitory activity against FLT3-ITD (IC50 = 6.5 nM) and FLT3-D835Y (IC50 = 10.3 nM) mutants. Notably, MY-10 exhibited no inhibitory activity against c-KIT kinase (IC50 > 100 μM). Mechanistic studies revealed that MY-10 arrested the cell cycle at the G0/G1 phase and efficiently induced apoptosis. Furthermore, it significantly reduced reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP), and strongly inhibited FLT3-mediated signaling pathways. These findings, along with the obtained SAR information, provide valuable insights for the further development of FLT3 inhibitors.
Collapse
MESH Headings
- fms-Like Tyrosine Kinase 3/antagonists & inhibitors
- fms-Like Tyrosine Kinase 3/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/chemical synthesis
- Structure-Activity Relationship
- Pyrimidines/pharmacology
- Pyrimidines/chemistry
- Pyrimidines/chemical synthesis
- Cell Proliferation/drug effects
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/chemical synthesis
- Molecular Structure
- Cell Line, Tumor
- Apoptosis/drug effects
- Drug Discovery
- Drug Screening Assays, Antitumor
- Amides/chemistry
- Amides/pharmacology
- Amides/chemical synthesis
- Dose-Response Relationship, Drug
- Reactive Oxygen Species/metabolism
- Membrane Potential, Mitochondrial/drug effects
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China; Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi Ma
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yanhong Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Zhenbao Zhu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi' an, Shaanxi 710021, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University (HKBU), Hong Kong Special Administrative Region.
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Chen B, Wang Z, Chen Q, Zhang Y, Wu S, Zhang Y, Li A, Ouyang W, Sima L, Li X, Zhao D, Luo B, Wang J, Tang L, Su X, Liao W. Discovery of pyridine-based derivatives as FLT3 inhibitors for the treatment of acute myeloid leukemia. Eur J Med Chem 2025; 283:117173. [PMID: 39705732 DOI: 10.1016/j.ejmech.2024.117173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/22/2024]
Abstract
FMS-like tyrosine receptor kinase 3 (FLT3) mutations, the most common genetic alterations found in acute myeloid leukemia (AML) patients, have been pursued as an ideal drug discovery target for the AML therapy. Taking compound 2 as lead, a series of pyridine derivatives bearing 1,2,3-triazole moiety were rationally designed and synthesized. The bioassays confirmed that these derivatives exerted potent antileukemia effects, and compound 12y was found to be the most potent one. 12y displayed double-digital nanomolar inhibitory activities against FLT3-ITD and FLT3-ITD driven human AML MOLM-13 cells as well as high selectivity over FLT3-ITD non-addicted cell lines. In addition, kinase profiling versus over 51 kinases demonstrated that 12y was potent against FLT3-ITD and VEGFR2. Moreover, treatment of MOLM-13 cells with 12y resulted in downregulated phosphorylation levels of FLT3 and STAT5, as well as cell cycle arrest and apoptosis. With the acceptable oral bioavailability of 19.2 % in SD rats, 12y prolonged the survival rate of NSG mice dose-dependently in MOLM-13 inoculated xenograft model without obvious toxicity. Overall, this study might provide a new insight for the development of novel FLT3 inhibitors.
Collapse
Affiliation(s)
- Beijing Chen
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Zhongyuan Wang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qi Chen
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Ying Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Shengfei Wu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Yu Zhang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Aihong Li
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Weiwei Ouyang
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University and Cancer Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Lijie Sima
- Department of Radiation Oncology, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, China
| | - Xiaoxu Li
- Department of Oncology, The Affiliated Hospital of Guizhou Medical University and Cancer Hospital of Guizhou Medical University, Guiyang, 550001, China
| | - Dongsheng Zhao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Bilan Luo
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jianta Wang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Tang
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China.
| | - Xiaoming Su
- Department of Radiation Oncology, The Ninth Medical Center of Chinese PLA General Hospital, Beijing, 100101, China.
| | - Weike Liao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
3
|
Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. MOLECULAR BIOMEDICINE 2025; 6:2. [PMID: 39757310 PMCID: PMC11700966 DOI: 10.1186/s43556-024-00239-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer remains a leading cause of mortality globally and a major health burden, with chemotherapy often serving as the primary therapeutic option for patients with advanced-stage disease, partially compensating for the limitations of non-curative treatments. However, the emergence of chemotherapy resistance significantly limits its efficacy, posing a major clinical challenge. Moreover, heterogeneity of resistance mechanisms across cancer types complicates the development of universally effective diagnostic and therapeutic approaches. Understanding the molecular mechanisms of chemoresistance and identifying strategies to overcome it are current research focal points. This review provides a comprehensive analysis of the key molecular mechanisms underlying chemotherapy resistance, including drug efflux, enhanced DNA damage repair (DDR), apoptosis evasion, epigenetic modifications, altered intracellular drug metabolism, and the role of cancer stem cells (CSCs). We also examine specific causes of resistance in major cancer types and highlight various molecular targets involved in resistance. Finally, we discuss current strategies aiming at overcoming chemotherapy resistance, such as combination therapies, targeted treatments, and novel drug delivery systems, while proposing future directions for research in this evolving field. By addressing these molecular barriers, this review lays a foundation for the development of more effective cancer therapies aimed at mitigating chemotherapy resistance.
Collapse
Affiliation(s)
- Yixiang Gu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yang Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Miaomiao Guo
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | | | - Ming Zhan
- The Core Laboratory in Medical Center of Clinical Research, State Key Laboratory of Medical Genomics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
4
|
Gorecki L, Reznickova E, Krystof V, Rezacova M, Ceckova M, Korabecny J. Strategies for the treatment of acute myeloid leukemia with FLT3 mutations: a patent review. Expert Opin Ther Pat 2025:1-28. [PMID: 39718422 DOI: 10.1080/13543776.2024.2446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 12/17/2024] [Indexed: 12/25/2024]
Abstract
INTRODUCTION Approximately one-third of all AML patients have a mutation in the Fms-like tyrosine kinase 3 (FLT3) gene, which is associated with a poor prognosis in these individuals. The 2017 approval of midostaurin, the first FLT3 inhibitor, spurred extensive development of more potent and selective inhibitors with an improved safety profile. AREAS COVERED This review analyzes patent inventions for the treatment of AML using FLT3 inhibitors, covering developments from the earliest to the most recent, disclosed in 2024. Our search using the global Espacenet database identified numerous compounds with low nanomolar inhibitory concentrations against FLT3-ITD and FLT3-TKD mutants. These compounds have shown promise in preclinical studies. Co-inhibition strategies and combinatorial therapies to overcome resistance and enhance anti-leukemic efficacy are also discussed. EXPERT OPINION Recent patents highlight advances in the field of FLT3 inhibitors with a focus on overcoming resistance, improving selectivity and potency. Future strategies may include third-generation inhibitors such as type III allosteric inhibitors, irreversible inhibitors, or PROTACs. Personalized medicine approaches utilizing genetic profiling to tailor therapies are emphasized. Exploration of novel combination regimens with emerging therapies like CAR T-cell therapy, immune checkpoint inhibitors, and small molecules targeting critical AML pathways is ongoing to further enhance anti-leukemic efficacy.
Collapse
Affiliation(s)
- Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Reznickova
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Rataj J, Gorecki L, Muthna D, Sorf A, Krystof V, Klener P, Ceckova M, Rezacova M, Korabecny J. Targeting FMS-like tyrosine kinase 3 (FLT3) in acute myeloid leukemia: Novel molecular approaches and therapeutic challenges. Biomed Pharmacother 2025; 182:117788. [PMID: 39733588 DOI: 10.1016/j.biopha.2024.117788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
Acute myeloid leukemia (AML), a heterogeneous hematologic malignancy, has generally a poor prognosis despite the recent advancements in diagnostics and treatment. Genetic instability, particularly mutations in the FMS-like tyrosine kinase 3 (FLT3) gene, is associated with severe outcomes. Approximately 30 % of AML patients harbor FLT3 mutations, which have been linked to higher relapse and reduced survival rates. Traditional AML treatments employ cytarabine and anthracyclines drugs. Furthermore, the development of FLT3 inhibitors has significantly improved therapy for FLT3-mutated AML patients. For example, the introduction of midostaurin, the first FLT3 inhibitor, improved patient outcomes. However, resistant AML cell clones continue to pose a challenge to the success of AML treatment. This review discusses FLT3 kinase, mutations, and role in AML pathogenesis. It explores the molecular mechanisms of FLT3 activation, signaling pathways, and the structure and function of the FLT3 receptor. Current and emerging therapeutic approaches are presented, while highlighting the latest FLT3 inhibitors in clinical use, and strategies to overcome drug resistance. Future directions, including personalized therapies and novel drug designs, are examined to provide updated insights into FLT3-targeted treatments. This comprehensive review aims to guide clinicians and researchers in the development of innovative therapies to improve AML patient outcomes.
Collapse
Affiliation(s)
- Jan Rataj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic
| | - Lukas Gorecki
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Darina Muthna
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic
| | - Ales Sorf
- Department of Toxicology and Military Pharmacy, Military Faculty of Medicine, University of Defence, Trebesska 1575, Hradec Kralove 500 01, Czech Republic; Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove, Czech Republic
| | - Vladimir Krystof
- Department of Experimental Biology, Faculty of Science, Palacký University, Slechtitelu 27, Olomouc 779 00, Czech Republic
| | - Pavel Klener
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Albertov 5/128 00, Prague 128 00, Czech Republic; First Department of Medicine, Department of Hematology, Charles University General Hospital, Katerinska 1660/32, Prague 121 08, Czech Republic
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, Hradec Kralove 500 05, Czech Republic.
| | - Martina Rezacova
- Department of Medical Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Simkova 870, Hradec Kralove 500 03, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic.
| |
Collapse
|
6
|
Wei TH, Wang ZX, Lu MY, Xu YJ, Yang J, Ni XF, Cheng Y, Zhang MY, Liu JC, Li QQ, Cai J, Chen ZJ, Kang JB, Li N, Dai WC, Ding N, Yu YC, Leng XJ, Xue X, Wang XL, Sun SL, Yang Y, Li NG, Shi ZH. Discovery of SILA-123 as a Highly Potent FLT3 Inhibitor for the Treatment of Acute Myeloid Leukemia with Various FLT3 Mutations. J Med Chem 2024; 67:21752-21780. [PMID: 39258312 DOI: 10.1021/acs.jmedchem.4c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The FLT3-ITD (internal tandem duplication) mutant has been a promising target for acute myeloid leukemia (AML) drug discovery but is now facing the challenge of resistance due to point mutations. Herein, we have discovered a type II FLT3 inhibitor, SILA-123. This inhibitor has shown highly potent inhibitory effects against FLT3-WT (IC50 = 2.1 nM) and FLT3-ITD (IC50 = 1.0 nM), tumor cells with the FLT3-ITD mutant such as MOLM-13 (IC50 = 0.98 nM) and MV4-11 (IC50 = 0.19 nM), as well as BaF3 cells associated with the FLT3-ITD mutant and point mutations like BaF3-FLT3-ITD-G697R (IC50 = 3.0 nM). Moreover, SILA-123 exhibited promising kinome selectivity against 310 kinases (S score (10) = 0.06). In in vivo studies, SILA-123 significantly suppressed the tumor growth in MV4-11 (50 mg/kg/d, TGI = 87.3%) and BaF3-FLT3-ITD-G697R (50 mg/kg/d, TGI = 60.0%) cell-inoculated allograft models. Our data suggested that SILA-123 might be a promising drug candidate for FLT3-ITD-positive AML.
Collapse
Affiliation(s)
- Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China
| | - Yu-Jing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xing-Feng Ni
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yang Cheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zi-Jun Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Nan Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| |
Collapse
|
7
|
Yang J, Zhang Y, Li YC, Wang QX, Zhang MY, Xu YJ, Wang JJ, Liang XT, Jing XL, Zhou SS, Li QQ, Wang ZX, Zhou Y, Qiao N, Wei TH, Ding N, Xue X, Yu YC, Wang XL, Sun SL, Dai WC, Li NG, Shi ZH. Design, Synthesis, and Biological Activities Evaluation of Type I FLT3 Inhibitors for the Treatment of Acute Myeloid Leukemia. Drug Dev Res 2024; 85:e70022. [PMID: 39569546 DOI: 10.1002/ddr.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/08/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024]
Abstract
The abnormal overexpression of FLT3 kinase is intimately associated with pathogenesis of acute myeloid leukemia (AML), positioning FLT3 inhibitors as pivotal therapeutic agents. Despite the availability of three FDA-approved FLT3 inhibitors, their clinical utility is hampered by resistance stemming from tyrosine kinase domain (TKD) mutations. Through an integrative analysis of case studies, we identified a potential advantage of type I FLT3 inhibitors in overcoming TKD mutation-induced resistance. Structure-activity relationships (SAR) analysis indicated that FW-1 exhibited over 50% inhibition against FLT3 at a concentration of 1 μM and demonstrated potent activity against AML cell lines MV4-11 (IC50 = 2.68 μM) and MOLM-13 (IC50 = 1.03 μM). In our cellular mechanistic studies, FW-1 also effectively induced apoptosis by arresting cell cycle progression in the G0/G1 phase. This study introduces FW-1 as a promising lead for type I FLT3 inhibitor, warranting further optimization.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue-Chu Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Jing Xu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Ting Liang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Long Jing
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shuang-Shuang Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nuo Qiao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Ruglioni M, Crucitta S, Luculli GI, Tancredi G, Del Giudice ML, Mechelli S, Galimberti S, Danesi R, Del Re M. Understanding mechanisms of resistance to FLT3 inhibitors in adult FLT3-mutated acute myeloid leukemia to guide treatment strategy. Crit Rev Oncol Hematol 2024; 201:104424. [PMID: 38917943 DOI: 10.1016/j.critrevonc.2024.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
The presence of FLT3 mutations, including the most common FLT3-ITD (internal tandem duplications) and FLT3-TKD (tyrosine kinase domain), is associated with an unfavorable prognosis in patients affected by acute myeloid leukemia (AML). In this setting, in recent years, new FLT3 inhibitors have demonstrated efficacy in improving survival and treatment response. Nevertheless, the development of primary and secondary mechanisms of resistance poses a significant obstacle to their efficacy. Understanding these mechanisms is crucial for developing novel therapeutic approaches to overcome resistance and improve the outcomes of patients. In this context, the use of novel FLT3 inhibitors and the combination of different targeted therapies have been studied. This review provides an update on the molecular alterations involved in the resistance to FLT3 inhibitors, and describes how the molecular monitoring may be used to guide treatment strategy in FLT3-mutated AML.
Collapse
Affiliation(s)
- Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giovanna Irene Luculli
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Gaspare Tancredi
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Maria Livia Del Giudice
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Sandra Mechelli
- Unit of Internal Medicine 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Romano Danesi
- Department of Oncology and Hemato-Oncology, University of Milan, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Italy
| |
Collapse
|
9
|
Zhao Y, Tian Y, Pang X, Li G, Shi S, Yan A. Classification of FLT3 inhibitors and SAR analysis by machine learning methods. Mol Divers 2024; 28:1995-2011. [PMID: 37142889 DOI: 10.1007/s11030-023-10640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/17/2023] [Indexed: 05/06/2023]
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase, which is an important target for anti-cancer therapy. In this work, we conducted a structure-activity relationship (SAR) study on 3867 FLT3 inhibitors we collected. MACCS fingerprints, ECFP4 fingerprints, and TT fingerprints were used to represent the inhibitors in the dataset. A total of 36 classification models were built based on support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGBoost), and deep neural networks (DNN) algorithms. Model 3D_3 built by deep neural networks (DNN) and TT fingerprints performed best on the test set with the highest prediction accuracy of 85.83% and Matthews correlation coefficient (MCC) of 0.72 and also performed well on the external test set. In addition, we clustered 3867 inhibitors into 11 subsets by the K-Means algorithm to figure out the structural characteristics of the reported FLT3 inhibitors. Finally, we analyzed the SAR of FLT3 inhibitors by RF algorithm based on ECFP4 fingerprints. The results showed that 2-aminopyrimidine, 1-ethylpiperidine,2,4-bis(methylamino)pyrimidine, amino-aromatic heterocycle, [(2E)-but-2-enyl]dimethylamine, but-2-enyl, and alkynyl were typical fragments among highly active inhibitors. Besides, three scaffolds in Subset_A (Subset 4), Subset_B, and Subset_C showed a significant relationship to inhibition activity targeting FLT3.
Collapse
Affiliation(s)
- Yunyang Zhao
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, People's Republic of China
| | - Yujia Tian
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, People's Republic of China
| | - Xiaoyang Pang
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, People's Republic of China
| | - Guo Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, People's Republic of China
| | - Shenghui Shi
- College of Information Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing, 100029, People's Republic of China.
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing, 100029, People's Republic of China.
| |
Collapse
|
10
|
Carullo G, Rossi S, Giudice V, Pezzotta A, Chianese U, Scala P, Carbone S, Fontana A, Panzeca G, Pasquini S, Contri C, Gemma S, Ramunno A, Saponara S, Galvani F, Lodola A, Mor M, Benedetti R, Selleri C, Varani K, Butini S, Altucci L, Vincenzi F, Pistocchi A, Campiani G. Development of Epigenetic Modifiers with Therapeutic Potential in FMS-Related Tyrosine Kinase 3/Internal Tandem Duplication (FLT3/ITD) Acute Myeloid Leukemia and Other Blood Malignancies. ACS Pharmacol Transl Sci 2024; 7:2125-2142. [PMID: 39022363 PMCID: PMC11249625 DOI: 10.1021/acsptsci.4c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024]
Abstract
Blood cancers encompass a group of diseases affecting the blood, bone marrow, or lymphatic system, representing the fourth most commonly diagnosed cancer worldwide. Leukemias are characterized by the dysregulated proliferation of myeloid and lymphoid cells with different rates of progression (acute or chronic). Among the chronic forms, hairy cell leukemia (HCL) is a rare disease, and no drugs have been approved to date. However, acute myeloid leukemia (AML) is one of the most aggressive malignancies, with a low survival rate, especially in cases with FLT3-ITD mutations. Epigenetic modifications have emerged as promising strategies for the treatment of blood cancers. Epigenetic modulators, such as histone deacetylase (HDAC) inhibitors, are increasingly used for targeted cancer therapy. New hydroxamic acid derivatives, preferentially inhibiting HDAC6 (5a-q), were developed and their efficacy was investigated in different blood cancers, including multiple myeloma (MM), HCL, and AML, pointing out their pro-apoptotic effect as the mechanism of cell death. Among the inhibitors described, 5c, 5g, and 5h were able to rescue the hematopoietic phenotype in vivo using the FLT3-ITD zebrafish model of AML. 5c (leuxinostat) proved its efficacy in cells from FLT3-ITD AML patients, promoting marked acetylation of α-tubulin compared to histone H3, thereby confirming HDAC6 as a preferential target for this new class of hydroxamic acid derivatives at the tested doses.
Collapse
Affiliation(s)
- Gabriele Carullo
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Sara Rossi
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Valentina Giudice
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Alex Pezzotta
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Ugo Chianese
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
| | - Pasqualina Scala
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Sabrina Carbone
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Anna Fontana
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Giovanna Panzeca
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Silvia Pasquini
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Borsari 46, Ferrara 44121, Italy
| | - Chiara Contri
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Sandra Gemma
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Anna Ramunno
- Department
of Pharmacy, University of Salerno, Giovanni Paolo II, 132, Fisciano, SA 84084, Italy
| | - Simona Saponara
- Department
of Life Sciences, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Francesca Galvani
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Alessio Lodola
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Marco Mor
- Department
of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, Parma 43124, Italy
| | - Rosaria Benedetti
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
- Program
of Medical Epigenetics, Vanvitelli Hospital, Naples 80138, Italy
| | - Carmine Selleri
- Department
of Medicine, Surgery, Dentistry “Scuola Medica Salernitana”, University of Salerno, Via S. Allende, Baronissi, SA 84081, Italy
| | - Katia Varani
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Stefania Butini
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | - Lucia Altucci
- Department
of Precision Medicine, University of Campania
Luigi Vanvitelli, Via de Crecchio 7, Naples 80138, Italy
- Program
of Medical Epigenetics, Vanvitelli Hospital, Naples 80138, Italy
- Biogem
Institute of Molecular and Genetic Biology, Ariano Irpino 83031, Italy
| | - Fabrizio Vincenzi
- Department
of Translational Medicine, University of
Ferrara, Via Borsari 46, Ferrara 44121, Italy
| | - Anna Pistocchi
- Department
of Medical Biotechnology and Translational Medicine, University of Milan, LITA, Fratelli Cervi 93, Segrate, MI 20054, Italy
| | - Giuseppe Campiani
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
- Bioinformatics
Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| |
Collapse
|
11
|
Tecik M, Adan A. Emerging DNA Methylome Targets in FLT3-ITD-Positive Acute Myeloid Leukemia: Combination Therapy with Clinically Approved FLT3 Inhibitors. Curr Treat Options Oncol 2024; 25:719-751. [PMID: 38696033 PMCID: PMC11222205 DOI: 10.1007/s11864-024-01202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2024] [Indexed: 07/04/2024]
Abstract
OPINION STATEMENT The internal tandem duplication (ITD) mutation of the FMS-like receptor tyrosine kinase 3 (FLT3-ITD) is the most common mutation observed in approximately 30% of acute myeloid leukemia (AML) patients. It represents poor prognosis due to continuous activation of downstream growth-promoting signaling pathways such as STAT5 and PI3K/AKT. Hence, FLT3 is considered an attractive druggable target; selective small FLT3 inhibitors (FLT3Is), such as midostaurin and quizartinib, have been clinically approved. However, patients possess generally poor remission rates and acquired resistance when FLT3I used alone. Various factors in patients could cause these adverse effects including altered epigenetic regulation, causing mainly abnormal gene expression patterns. Epigenetic modifications are required for hematopoietic stem cell (HSC) self-renewal and differentiation; however, critical driver mutations have been identified in genes controlling DNA methylation (such as DNMT3A, TET2, IDH1/2). These regulators cause leukemia pathogenesis and affect disease diagnosis and prognosis when they co-occur with FLT3-ITD mutation. Therefore, understanding the role of different epigenetic alterations in FLT3-ITD AML pathogenesis and how they modulate FLT3I's activity is important to rationalize combinational treatment approaches including FLT3Is and modulators of methylation regulators or pathways. Data from ongoing pre-clinical and clinical studies will further precisely define the potential use of epigenetic therapy together with FLT3Is especially after characterized patients' mutational status in terms of FLT3 and DNA methlome regulators.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey.
| |
Collapse
|
12
|
Bruzzese A, Vigna E, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Stanzione G, Zimbo A, Lugli E, Neri A, Morabito F, Gentile M. The potential of triplet combination therapies for patients with FLT3-ITD -mutated acute myeloid leukemia. Expert Rev Hematol 2024; 17:241-253. [PMID: 38748404 DOI: 10.1080/17474086.2024.2356258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) encompasses a heterogeneous group of aggressive myeloid malignancies, where FMS-like tyrosine kinase 3 (FLT3) mutations are prevalent, accounting for approximately 25-30% of adult patients. The presence of this mutation is related to a dismal prognosis and high relapse rates. In the lasts years many FLT3 inhibitors have been developed. AREAS COVERED This review provides a comprehensive overview of FLT3mut AML, summarizing the state of art of current treatment and available data about combination strategies including an FLT3 inhibitor. EXPERT OPINION In addition, the review discusses the emergence of drug resistance and the need for a nuanced approaches in treating patients who are ineligible for or resistant to intensive chemotherapy. Specifically, it explores the historical context of FLT3 inhibitors (FLT3Is) and their impact on treatment outcomes, emphasizing the pivotal role of midostaurin, as well as gilteritinib and quizartinib, and providing detailed insights into ongoing trials exploring the safety and efficacy of novel triplet combinations involving FLT3Is in different AML settings.
Collapse
Affiliation(s)
| | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Gaia Stanzione
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Division of Hematology, Azienda Policlinico-S. Marco, University of Catania, Catania, Italy
| | - Annamaria Zimbo
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- UOC Laboratorio Analisi Cliniche, Biomolecolari e Genetica, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Elisabetta Lugli
- Ematologia Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Emilia-Romagna, Reggio Emilia, Italy
| | | | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
13
|
Soudi A, Bender O, Celik I, El-Hafeez AAA, Dogan R, Atalay A, Elkaeed EB, Alsfouk AA, Abdelhafez EMN, Aly OM, Sippl W, Ali TFS. Discovery and Anticancer Screening of Novel Oxindole-Based Derivative Bearing Pyridyl Group as Potent and Selective Dual FLT3/CDK2 Kinase Inhibitor. Pharmaceuticals (Basel) 2024; 17:659. [PMID: 38794229 PMCID: PMC11124822 DOI: 10.3390/ph17050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Protein kinases regulate cellular activities and make up over 60% of oncoproteins and proto-oncoproteins. Among these kinases, FLT3 is a member of class III receptor tyrosine kinase family which is abundantly expressed in individuals with acute leukemia. Our previous oxindole-based hit has a particular affinity toward FLT3 (IC50 = 2.49 μM) and has demonstrated selectivity towards FLT3 ITD-mutated MV4-11 AML cells, with an IC50 of 4.3 μM. By utilizing the scaffold of the previous hit, sixteen new compounds were synthesized and screened against NCI-60 human cancer cell lines. This leads to the discovery of a potent antiproliferative compound, namely 5l, with an average GI50 value against leukemia and colon cancer subpanels equalling 3.39 and 5.97 µM, respectively. Screening against a specific set of 10 kinases that are associated with carcinogenesis indicates that compound 5l has a potent FLT3 inhibition (IC50 = 36.21 ± 1.07 nM). Remarkably, compound 5l was three times more effective as a CDK2 inhibitor (IC50 = 8.17 ± 0.32 nM) compared to sunitinib (IC50 = 27.90 ± 1.80 nM). Compound 5l was further analyzed by means of docking and molecular dynamics simulation for CDK2 and FLT3 active sites which provided a rational for the observed strong inhibition of kinases. These results suggest a novel structural scaffold candidate that simultaneously inhibits CDK2 and FLT3 and gives encouragement for further development as a potential therapeutic for leukemia and colon cancer.
Collapse
Affiliation(s)
- Aya Soudi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Rumeysa Dogan
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Arzu Atalay
- Biotechnology Institute, Ankara University, Ankara 06135, Turkey
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | | | - Omar M. Aly
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle, Germany
| | - Taha F. S. Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| |
Collapse
|
14
|
Wang Z, Lu X, Liu C, Huang F, Lu T, Chen Y, Liu L, Lu S. Discovery of FLT3-targeting PROTACs with potent antiproliferative activity against acute myeloid leukemia cells harboring FLT3 mutations. Eur J Med Chem 2024; 268:116237. [PMID: 38387337 DOI: 10.1016/j.ejmech.2024.116237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Acute myeloid leukemia (AML) patients harboring Fms-like tyrosine kinase 3 (FLT3) mutations often suffer from poor prognosis and relapse. Targeted protein degradation utilizing proteolysis targeting chimeras (PROTACs) is considered as a novel therapeutic strategy in drug discovery and may be a promising modality to target FLT3 mutations for the development of potent anti-AML drugs. Herein, a kind of FLT3-targeting PROTACs was rationally developed based on a FLT3 inhibitor previously reported by us. The representative compound 35 showed potent and selective antiproliferative activities against AML cells harboring FLT3 mutations. Western blot assay demonstrated that compound 35 effectively induced the degradation of FLT3-ITD and decreased the phosphorylation levels of FLT3-ITD, AKT, STAT5 and ERK in MV4-11 cells in a dose-dependent manner. Flow cytometry analysis illustrated that compound 35 strongly induced apoptosis and cell cycle arrest in MV4-11 cells in a dose-dependent manner. Moreover, compound 35 displayed favorable metabolic stability in in-vitro liver microsomes studies. Comparative molecular dynamic (MD) simulation studies further elucidated the underlying mechanism of compound 35 to stabilize the dynamic ensemble of the FLT3-compound 35-cereblon (CRBN) ternary complex. Taken together, compound 35 could serve as a lead molecule for developing FLT3 degraders against AML.
Collapse
Affiliation(s)
- Zhijie Wang
- ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, PR China; School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xun Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Lifei Liu
- Department of Infectious Disease, Children's Hospital of Nanjing Medical University, Nanjing, 210008, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
15
|
Liu W, Bai Y, Zhou L, Jin J, Zhang M, Wang Y, Lin R, Huang W, Ren X, Ma N, Zhou F, Wang Z, Ding K. Discovery of LWY713 as a potent and selective FLT3 PROTAC degrader with in vivo activity against acute myeloid leukemia. Eur J Med Chem 2024; 264:115974. [PMID: 38007910 DOI: 10.1016/j.ejmech.2023.115974] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Fms-like tyrosine kinase 3 (FLT3) has been validated as a therapeutic target for acute myeloid leukemia (AML). While a number of FLT3 kinase inhibitors have been approved for AML treatment, the clinical data revealed that they cannot achieve complete and sustained suppression of FLT3 signaling at the tolerated dose. Here we report a series of new, potent and selective FLT3 proteolysis targeting chimera degraders. The optimal compound LWY713 potently induced the degradation of FLT3 with a DC50 value of 0.64 nM and a Dmax value of 94.8% in AML MV4-11 cells with FLT3-internal tandem duplication (ITD) mutation. Mechanistic studies demonstrated that LWY713 selectively induced FLT3 degradation in a cereblon- and proteasome-dependent manner. LWY713 potently inhibited FLT3 signaling, suppressed cell proliferation, and induced cell G0/G1-phase arrest and apoptosis in MV4-11 cells. Importantly, LWY713 displayed potent in vivo antitumor activity in MV4-11 xenograft models.
Collapse
Affiliation(s)
- Wenyan Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Yu Bai
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Licheng Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Jian Jin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Meiying Zhang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Yongxing Wang
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., #38 Chuangye North Road, Jinwan District, Zhuhai, 519000, China
| | - Runfeng Lin
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., #38 Chuangye North Road, Jinwan District, Zhuhai, 519000, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Nan Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Rd., Shanghai, 200032, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou, 511400, China; Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
16
|
Ma C, Cui S, Xu R. Developments of Fms-like Tyrosine Kinase 3 Inhibitors as Anticancer Agents for AML Treatment. Curr Med Chem 2024; 31:4657-4686. [PMID: 38204232 DOI: 10.2174/0109298673277543231205072556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated gene in acute myeloid leukemia. As a receptor tyrosine kinase (RTK), FLT3 plays a role in the proliferation and differentiation of hematopoietic stem cells. As the most frequent molecular alteration in AML, FLT3 has drawn the attention of many researchers, and a lot of small molecule inhibitors targeting FLT3 have been intensively investigated as potential drugs for AML therapy. METHODS In this paper, PubMed and SciFinder® were used as a tool; the publications about "FLT3 inhibitor" and "Acute myeloid leukemia" were surveyed from 2014 to the present with an exclusion of those published as patents. RESULTS In this study, the structural characterization and biological activities of representative FLT3 inhibitors were summarized. The major challenges and future directions for further research are discussed. CONCLUSION Recently, numerous FLT3 inhibitors have been discovered and employed in FLT3-mutated AML treatment. In order to overcome the drug resistance caused by FLT3 mutations, screening multitargets FLT3 inhibitors has become the main research direction. In addition, the emergence of irreversible FLT3 inhibitors also provides new ideas for discovering new FLT3 inhibitors.
Collapse
Affiliation(s)
- Chenchen Ma
- College of Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Central Laboratory of Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
- Shandong Key Laboratory of Dominant Diseases of traditional Chinese Medicine, Jinan 250014, China
| | - Siyuan Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruirong Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Institute of Hematology, Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
- Shandong Provincial Health Commission Key Laboratory of Hematology of Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
17
|
Abo Al-Hamd MG, Tawfik HO, Abdullah O, Yamaguchi K, Sugiura M, Mehany ABM, El-Hamamsy MH, El-Moselhy TF. Recruitment of hexahydroquinoline as anticancer scaffold targeting inhibition of wild and mutants EGFR (EGFR WT, EGFR T790M, and EGFR L858R). J Enzyme Inhib Med Chem 2023; 38:2241674. [PMID: 37548154 PMCID: PMC10408569 DOI: 10.1080/14756366.2023.2241674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
Hexahydroquinoline (HHQ) scaffold was constructed and recruited for development of new series of anticancer agents. Thirty-two new compounds were synthesised where x-ray crystallography was performed to confirm enantiomerism. Thirteen compounds showed moderate to good activity against NCI 60 cancer cell lines, with GI % mean up to 74% for 10c. Expending erlotinib as a reference drug, target compounds were verified for their inhibiting activities against EGFRWT, EGFRT790M, and EGFRL858R where compound 10d was the best inhibitor with IC50 = 0.097, 0.280, and 0.051 µM, respectively, compared to erlotinib (IC50 = 0.082 µM, 0.342 µM, and 0.055 µM, respectively). Safety profile was validated using normal human lung (IMR-90) cells. 10c and 10d disrupted cell cycle at pre-G1 and G2/M phases in lung cancer, HOP-92, and cell line. Molecular docking study was achieved to understand the potential binding interactions and affinities in the active sites of three versions of EGFRs.
Collapse
Affiliation(s)
- Mahmoud G. Abo Al-Hamd
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Koki Yamaguchi
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Masaharu Sugiura
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mervat H. El-Hamamsy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tarek F. El-Moselhy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Wang Z, Wu D, Zhao X, Liu C, Jia S, He Q, Huang F, Cheng Z, Lu T, Chen Y, Chen Y, Yang P, Lu S. Rational discovery of dual FLT3/HDAC inhibitors as a potential AML therapy. Eur J Med Chem 2023; 260:115759. [PMID: 37659198 DOI: 10.1016/j.ejmech.2023.115759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Acute myeloid leukemia (AML) patients often experience poor therapeutic outcomes and relapse after treatment with single-target drugs, representing the urgent need of new therapies. Simultaneous inhibition of multiple oncogenic signals is a promising strategy for tumor therapy. Previous studies have reported that concomitant inhibition of Fms-like tyrosine kinase 3 (FLT3) and histone deacetylases (HDACs) can significantly improve the therapeutic efficacy for AML. Herein, a series of novel dual FLT3/HDAC inhibitors were developed through a rational structure-based drug design strategy for the first time. Among them, multiple compounds showed potent and equivalent inhibitory activities against FLT3-ITD and HDAC1, with the representative compound 63 selectively inhibiting HDAC class I (HDAC1/2/3/8) and IIB isoforms (HDAC6) related to tumorigenesis, and intensively blocking proliferation of MV4-11 cells. The antiproliferation activity was proven to depend on the dual inhibition of FLT3 and HDAC1. Mechanism assays demonstrated that 63 prohibited both FLT3 and HDAC pathways, induced apoptosis and arrested cell cycle in MV4-11 cells in a dose-dependent manner. In summary, this study validated the therapeutic potential of a kind of dual FLT3/HDAC inhibitors for AML and provided novel compounds for further biological investigation on concomitant inhibition of FLT3/HDAC pathways. Additionally, the structure-based drug design strategy described herein may provide profound enlightenment for developing superior anti-AML drugs.
Collapse
Affiliation(s)
- Zhijie Wang
- ShenZhen Hospital, Southern Medical University, Shenzhen, 518000, PR China; School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China.
| | - Pei Yang
- Experimental Teaching Demonstration Center of Pharmaceutical Chemistry, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
19
|
Lian X, Gao Y, Li X, Wang P, Tong L, Li J, Zhou Y, Liu T. Design, synthesis and biological evaluation of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Bioorg Med Chem Lett 2023; 96:129519. [PMID: 37838343 DOI: 10.1016/j.bmcl.2023.129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive cancer, which is characterized by clonal expansion of myeloid progenitors in the bone marrow and peripheral blood. FMS-like tyrosine kinase 3 (FLT3) mutations are the most frequently identified mutations, present in approximately 25-30 % AML patients, making FLT3 inhibitors a crucial treatment option for AML. In this study, we described the design, synthesis and biological evaluation of a series of 2-aminopyrimidine derivatives as potent FLT3 inhibitors. Notably, compound 15 displayed potent kinase inhibitory activities against FLT3 (FLT3-WT IC50 = 7.42 ± 1.23 nM; FLT3-D835Y IC50 = 9.21 ± 0.04 nM) and robust antiproliferative activities against MV4-11 cells (IC50 = 0.83 ± 0.15 nM) and MOLM-13 cells (IC50 = 10.55 ± 1.70 nM). Compound 15 also possessed potent antiproliferative activities against BaF3 cells carrying various FLT3-TKD and FLT3-ITD-TKD mutations, indicating its potential to overcome on-target resistance caused by FLT3 mutations. In summary, compound 15 showed promising potential for further exploration as a treatment of AML.
Collapse
Affiliation(s)
- Xuanmin Lian
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuemei Li
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peipei Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lexian Tong
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Jia Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yubo Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China.
| | - Tao Liu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Yang J, Friedman R. Combination strategies to overcome drug resistance in FLT + acute myeloid leukaemia. Cancer Cell Int 2023; 23:161. [PMID: 37568211 PMCID: PMC10416533 DOI: 10.1186/s12935-023-03000-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) remains difficult to treat despite the development of novel formulations and targeted therapies. Activating mutations in the FLT3 gene are common among patients and make the tumour susceptible to FLT3 inhibitors, but resistance to such inhibitors develops quickly. METHODS We examined combination therapies aimed at FLT3+-AML, and studied the development of resistance using a newly developed protocol. Combinations of FLT3, CDK4/6 and PI3K inhibitors were tested for synergism. RESULTS We show that AML cells express CDK4 and that the CDK4/6 inhibitors palbociclib and abemaciclib inhibit cellular growth. PI3K inhibitors were also effective in inhibiting the growth of AML cell lines that express FLT3-ITD. Whereas resistance to quizartinib develops quickly, the combinations overcome such resistance. CONCLUSIONS This study suggests that a multi-targeted intervention involving a CDK4/6 inhibitor with a FLT3 inhibitor or a pan-PI3K inhibitor might be a valuable therapeutic strategy for AML to overcome drug resistance. Moreover, many patients cannot tolerate high doses of the drugs that were studied (quizartinib, palbociclib and PI3K inhibitors) for longer periods, and it is therefore of high significance that the drugs act synergistically and lower doses can be used.
Collapse
Affiliation(s)
- Jingmei Yang
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, 391 82, Kalmar, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Science, Linnaeus University, Kalmar Campus, 391 82, Kalmar, Sweden.
| |
Collapse
|
21
|
Ezelarab HAA, Ali TFS, Abbas SH, Hassan HA, Beshr EAM. Indole-based FLT3 inhibitors and related scaffolds as potential therapeutic agents for acute myeloid leukemia. BMC Chem 2023; 17:73. [PMID: 37438819 DOI: 10.1186/s13065-023-00981-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Fms-like tyrosine kinase 3 (FLT3) mutation mechanisms are among the most common genetic abnormalities detected in about 30% of acute myeloid leukemia (AML) patients. These mutations are accompanied by poor clinical response, although all these progressions in identifying and interpreting biological AML bio-targets. Several small structured FLT3 inhibitors have been ameliorated to struggle against AML. Despite all these developments regarding these inhibitors, the Overall survival rate is about five years or more in less than one-third of diagnosed AML patients. Midostaurin was the first FDA-approved FLT3 inhibitor in 2017 in the United States and Europe for AML remedy. Next, Gilteritinib was an FDA-approved FLT3 inhibitor in 2018 and in the next year, Quizartinib was approved an as FLT3 inhibitor in Japan. Interestingly, indole-based motifs had risen as advantaged scaffolds with unusual multiple kinase inhibitory activity. This review summarises indole-based FLT3 inhibitors and related scaffolds, including FDA-approved drugs, clinical candidates, and other bioactive compounds. Furthermore, their chemotypes, mechanism of action, and interaction mode over both wild and mutated FLT3 target proteins had been judgmentally discussed. Therefore, this review could offer inspiring future perspectives into the finding of new FLT3-related AML therapies.
Collapse
Affiliation(s)
- Hend A A Ezelarab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| | - Heba A Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Eman A M Beshr
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
22
|
Divar M, Edraki N, Damghani T, Moosavi F, Mohabbati M, Alipour A, Pirhadi S, Saso L, Khabnadideh S, Firuzi O. Novel spiroindoline quinazolinedione derivatives as anticancer agents and potential FLT3 kinase inhibitors. Bioorg Med Chem 2023; 90:117367. [PMID: 37348260 DOI: 10.1016/j.bmc.2023.117367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 06/24/2023]
Abstract
Despite considerable recent progress in therapeutic strategies, cancer still remains one of the leading causes of death. Molecularly targeted therapies, in particular those focused on blocking receptor tyrosine kinases have produced promising outcomes in recent years. In this study, a new series of spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (5a-5l) were synthesized and evaluated as potential kinase inhibitors with anticancereffects. The anti-proliferative activity was measured by MTT assay, while the cell cycle was studied using flow cytometry. Moreover, kinase inhibition profiles of the most promising compounds were assessed against a panel of 25 oncogenic kinases. Compounds 5f,5g,5i, and 5jshowed anti-proliferative effect against EBC-1, A549, and HT-29 solid tumor models in addition to leukemia cell line K562. In particular, compound 5f, bearing 4-methylphenyl pendant on the isatin ring displayed considerable potency with IC50 values of 2.4 to 13.4 μM against cancer cells. The most potent derivatives also altered the distribution of cells in different phases of cell cycle and increased the sub-G1 phase cells in K562 cells. Moreover, kinase inhibition assays identified FLT3 kinase was as the primary targetof these derivatives. Compound 5f at 25 μM concentration showed inhibitory activities of 55% and 62% against wild-type FLT3 and its mutant, D835Y, respectively. Finally, the docking and simulation studies revealed the important interactions of compound 5f with wild type and mutant FLT3. The results of this study showed that some novel spiroindoline quinazolinedione compounds could be potential candidates for further development as novel targeted anticancer agents.
Collapse
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mohabbati
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Alipour
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, Rome, Italy
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Takahashi S. Combination Therapies with Kinase Inhibitors for Acute Myeloid Leukemia Treatment. Hematol Rep 2023; 15:331-346. [PMID: 37367084 DOI: 10.3390/hematolrep15020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/10/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Targeting kinase activity is considered to be an attractive therapeutic strategy to overcome acute myeloid leukemia (AML) since aberrant activation of the kinase pathway plays a pivotal role in leukemogenesis through abnormal cell proliferation and differentiation block. Although clinical trials for kinase modulators as single agents remain scarce, combination therapies are an area of therapeutic interest. In this review, the author summarizes attractive kinase pathways for therapeutic targets and the combination strategies for these pathways. Specifically, the review focuses on combination therapies targeting the FLT3 pathways, as well as PI3K/AKT/mTOR, CDK and CHK1 pathways. From a literature review, combination therapies with the kinase inhibitors appear more promising than monotherapies with individual agents. Therefore, the development of efficient combination therapies with kinase inhibitors may result in effective therapeutic strategies for AML.
Collapse
Affiliation(s)
- Shinichiro Takahashi
- Division of Laboratory Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
24
|
Zhi Y, Li H, Yang P, Jin Q, Yao C, Li B, Ling J, Guo H, Li T, Jin J, Wang Y, Chen Y, Lu T, Lu S. Rational design of 4-((6-phenoxypyrimidin-4-yl)amino)-N-(4-(piperazin-1-yl)phenyl)-1H-pyrazole-3-carboxamide (LT-540-717) as orally bioavailable FLT3 inhibitor. Eur J Med Chem 2023; 256:115448. [PMID: 37163951 DOI: 10.1016/j.ejmech.2023.115448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/12/2023]
Abstract
In recent years, fms-like tyrosine kinase 3 (FLT3) was confirmed as an exciting target for treatment of AML. However, resistance to FLT3 inhibitors caused by acquired point mutations in tyrosine kinase domain (TKD) have limited their sustained efficacious. Thus, there remains an unmet need to develop high-efficacy FLT3 inhibitors against both FLT3 internal tandem duplication (ITD) and FLT3 (TKD) mutations. Herein, we describe the discovery of compound LT-540-717 (32), a potent FLT3 inhibitor (IC50: 0.62 nM), starting from FN-1501. Compound 32 exhibited highly inhibitory activity against several acquired FLT3 mutations including FLT3 (ITD, D835V), FLT3 (ITD, F691L), FLT3 (D835Y) and FLT3 (D835V). Additionally, 32 displayed potent antiproliferative activity against FLT3-mutation driven BaF3 and AML cells. Oral administration of 32 (25 mg/kg, QD) significantly prohibited tumor growth (tumor-inhibition rate is 94.18%), and no obvious side effect was observed even when increasing dose to 50 mg/kg (tumor-inhibition rate is 93.98%). Furthermore, 32 showed an acceptable bioavailability (F = 33.3% in rat and 72.7% in beagles), a suitable half-life time (T1/2 = 3.5 h in rat and T1/2 = 11.1 h in beagles), and a satisfactory metabolic stability. In summary, these results show the therapeutic potential of 32 to become a new anti-AML drug, especially for AML harboring dual FLT3 (ITD, TKD) mutations.
Collapse
Affiliation(s)
- Yanle Zhi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Hongmei Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Pei Yang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Qiaomei Jin
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chao Yao
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Baoquan Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jun Ling
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Hao Guo
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Tonghui Li
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Jianlin Jin
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Yue Wang
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| | - Yadong Chen
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| | - Tao Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China.
| |
Collapse
|
25
|
Ran F, Liu Y, Zhu J, Wu H, Tao W, Xie X, Hu Y, Zhang Y, Ling Y. Design, synthesis and pharmacological characterization of aminopyrimidine derivatives as BTK/FLT3 dual-target inhibitors against acute myeloid leukemia. Bioorg Chem 2023; 134:106479. [PMID: 36989958 DOI: 10.1016/j.bioorg.2023.106479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/17/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
A novel class of aminopyrimidine-based Bruton's tyrosine kinase (BTK) and FMS-like tyrosine kinase 3 (FLT3) dual-target inhibitors based on the BTK inhibitor spebrutinib was designed for the treatment of acute myeloid leukemia. Representative compounds 14d, 14g, 14j and 14m effectively inhibited BTK, FLT3, and FLT3(D835Y) mutant activities with low nanomolar IC50's. These compounds displayed potent antiproliferative activities against leukemia cells with IC50's of 0.29-950 nM. In particular, 14m had IC50 values 101-1045 times lower than those of spebrutinib against all cancer cell lines tested. Compound 14m effectively induced autophagy and apoptosis in MV-4-11 cells through regulating related proteins in a dose-dependent manner. Finally, intraperitoneal administration of 14m at 20 mg/kg significantly repressed the growth of MV-4-11 cells with a TGI value of 95.68% with no apparent toxicity. These BTK/FLT3 dual-target inhibitors represent promising leads for further structural optimization and antitumor mechanism studies.
Collapse
|
26
|
Sun Y, Tang L, Wu C, Wang J, Wang C. RSK inhibitors as potential anticancer agents: Discovery, optimization, and challenges. Eur J Med Chem 2023; 251:115229. [PMID: 36898330 DOI: 10.1016/j.ejmech.2023.115229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Ribosomal S6 kinase (RSK) family is a group of serine/threonine kinases, including four isoforms (RSK1/2/3/4). As a downstream effector of the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, RSK participates in many physiological activities such as cell growth, proliferation, and migration, and is intimately involved in tumor occurrence and development. As a result, it is recognized as a potential target for anti-cancer and anti-resistance therapies. There have been several RSK inhibitors discovered or designed in recent decades, but only two have entered clinical trials. Low specificity, low selectivity, and poor pharmacokinetic properties in vivo limit their clinical translation. Published studies performed structure optimization by increasing interaction with RSK, avoiding hydrolysis of pharmacophores, eliminating chirality, adapting to binding site shape, and becoming prodrugs. Besides enhancing efficacy, the focus of further design will move towards selectivity since there are functional differences among RSK isoforms. This review summarized the types of cancers associated with RSK, along with the structural characteristics and optimization process of the reported RSK inhibitors. Furthermore, we addressed the importance of RSK inhibitors' selectivity and discussed future drug development directions. This review is expected to shed light on the emergence of RSK inhibitors with high potency, specificity, and selectivity.
Collapse
Affiliation(s)
- Ying Sun
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lichao Tang
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, 60208, IL, United States
| | - Chengyong Wu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Nasimian A, Al Ashiri L, Ahmed M, Duan H, Zhang X, Rönnstrand L, Kazi JU. A Receptor Tyrosine Kinase Inhibitor Sensitivity Prediction Model Identifies AXL Dependency in Leukemia. Int J Mol Sci 2023; 24:ijms24043830. [PMID: 36835239 PMCID: PMC9959897 DOI: 10.3390/ijms24043830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Despite incredible progress in cancer treatment, therapy resistance remains the leading limiting factor for long-term survival. During drug treatment, several genes are transcriptionally upregulated to mediate drug tolerance. Using highly variable genes and pharmacogenomic data for acute myeloid leukemia (AML), we developed a drug sensitivity prediction model for the receptor tyrosine kinase inhibitor sorafenib and achieved more than 80% prediction accuracy. Furthermore, by using Shapley additive explanations for determining leading features, we identified AXL as an important feature for drug resistance. Drug-resistant patient samples displayed enrichment of protein kinase C (PKC) signaling, which was also identified in sorafenib-treated FLT3-ITD-dependent AML cell lines by a peptide-based kinase profiling assay. Finally, we show that pharmacological inhibition of tyrosine kinase activity enhances AXL expression, phosphorylation of the PKC-substrate cyclic AMP response element binding (CREB) protein, and displays synergy with AXL and PKC inhibitors. Collectively, our data suggest an involvement of AXL in tyrosine kinase inhibitor resistance and link PKC activation as a possible signaling mediator.
Collapse
Affiliation(s)
- Ahmad Nasimian
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lina Al Ashiri
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Mehreen Ahmed
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Hongzhi Duan
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Xiaoyue Zhang
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 22381 Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden
- Correspondence: ; Tel.: +46-462226407
| |
Collapse
|
28
|
Zhang Y, Wang P, Wang Y, Shen Y. Sitravatinib as a potent FLT3 inhibitor can overcome gilteritinib resistance in acute myeloid leukemia. Biomark Res 2023; 11:8. [PMID: 36691065 PMCID: PMC9872318 DOI: 10.1186/s40364-022-00447-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Gilteritinib is the only drug approved as monotherapy for acute myeloid leukemia (AML) patients harboring FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation throughout the world. However, drug resistance inevitably develops in clinical. Sitravatinib is a multi-kinase inhibitor under evaluation in clinical trials of various solid tumors. In this study, we explored the antitumor activity of sitravatinib against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS Growth inhibitory assays were performed in AML cell lines and BaF3 cells expressing various FLT3 mutants to evaluate the antitumor activity of sitravatinib in vitro. Immunoblotting was used to examine the activity of FLT3 and its downstream pathways. Molecular docking was performed to predict the binding sites of FLT3 to sitravatinib. The survival benefit of sitravatinib in vivo was assessed in MOLM13 xenograft mouse models and mouse models of transformed BaF3 cells harboring different FLT3 mutants. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of sitravatinib. RESULTS Sitravatinib inhibited cell proliferation, induced cell cycle arrest and apoptosis in FLT3-ITD AML cell lines. In vivo studies showed that sitravatinib exhibited a better therapeutic effect than gilteritinib in MOLM13 xenograft model and BaF3-FLT3-ITD model. Unlike gilteritinib, the predicted binding sites of sitravatinib to FLT3 did not include F691 residue. Sitravatinib displayed a potent inhibitory effect on FLT3-ITD-F691L mutation which conferred resistance to gilteritinib and all other FLT3 inhibitors available, both in vitro and in vivo. Compared with gilteritinib, sitravatinib retained effective activity against FLT3 mutation in the presence of cytokines through the more potent and steady inhibition of p-ERK and p-AKT. Furthermore, patient blasts harboring FLT3-ITD were more sensitive to sitravatinib than to gilteritinib in vitro and in the PDX model. CONCLUSIONS Our study reveals the potential therapeutic role of sitravatinib in FLT3 mutant AML and provides an alternative inhibitor for the treatment of AML patients who are resistant to current FLT3 inhibitors.
Collapse
Affiliation(s)
- Yvyin Zhang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Peihong Wang
- Department of Hematology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000 China
| | - Yang Wang
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yang Shen
- grid.412277.50000 0004 1760 6738Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine (Shanghai), Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
29
|
Wang QX, Wang YB, Sha JK, Zhou H, Liu JC, Wu JZ, Tong ZJ, Cai J, Chen ZJ, Zhang CQ, Zheng XR, Wang JJ, Wang XL, Xue X, Yu YC, Ding N, Leng XJ, Dai WC, Sun SL, Chang L, Li NG, Shi ZH. Discovery of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine derivatives as novel FLT3 covalent inhibitors for the intervention of acute myeloid leukemia. Drug Dev Res 2023; 84:296-311. [PMID: 36644989 DOI: 10.1002/ddr.22032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/17/2023]
Abstract
Small molecule covalent drugs have proved to be desirable therapies especially on drug resistance related to point mutations. Secondary mutations of FLT3 have become the main mechanism of FLT3 inhibitors resistance which further causes the failure of treatment. Herein, a series of 4-(4-aminophenyl)-6-phenylisoxazolo[3,4-b]pyridine-3-amine covalent derivatives were synthesized and optimized to overcome the common secondary resistance mutations of FLT3. Among these derivatives, compound F15 displayed potent inhibition activities against FLT3 (IC50 = 123 nM) and FLT3-internal tandem duplication (ITD) by 80% and 26.06%, respectively, at the concentration of 1 μM. Besides, F15 exhibited potent activity against FLT3-dependent human acute myeloid leukemia (AML) cell lines MOLM-13 (IC50 = 253 nM) and MV4-11 (IC50 = 91 nM), as well as BaF3 cells with variety of secondary mutations. Furthermore, cellular mechanism assays indicated that F15 inhibited phosphorylation of FLT3 and its downstream signaling factors. Notably, F15 could be considered for further development as potential drug candidate to treat AML.
Collapse
Affiliation(s)
- Qing-Xin Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi-Bo Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiu-Kai Sha
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hai Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia-Chuan Liu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jia-Zhen Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhen-Jiang Tong
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi-Jun Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chen-Qian Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin-Rui Zheng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiao-Long Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Design and synthesis of selective FLT3 inhibitors via exploration of back pocket II. Future Med Chem 2023; 15:57-71. [PMID: 36651264 DOI: 10.4155/fmc-2022-0231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: The clinical benefits of FLT3 inhibitors against acute myeloid leukemia (AML) have been limited by selectivity and resistance mutations. Thus, to identify FLT3 inhibitors possessing high selectivity and potency is of necessity. Methods & results: The authors used computational methods to systematically compare pocket similarity with 269 kinases. Subsequently, based on these investigations and beginning with in-house compound 10, they synthesized a series of 6-methyl-isoxazol[3,4-b]pyridine-3-amino derivatives and identified that compound 45 (IC50: 103 nM) displayed gratifying potency in human AML cell lines with FLT3-internal tandem duplications mutation as well as FLT3-internal tandem duplications-tyrosine kinase domain-transformed BaF3 cells. Conclusion: The integrated biological activity results indicated that compound 45 deserves further development for therapeutic remedies for AML.
Collapse
|
31
|
Tsuzuki H, Kawase T, Nakazawa T, Mori M, Yoshida T. Anti-tumor effect of antibody drug conjugate ASP1235 targeting Fms-like tyrosine kinase 3 with venetoclax plus azacitidine in an acute myeloid leukemia xenograft mouse model. Oncotarget 2022; 13:1359-1368. [PMID: 36537913 PMCID: PMC9765856 DOI: 10.18632/oncotarget.28331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody drug conjugates (ADC) are one of the attractive modalities for the treatment of acute myeloid leukemia (AML). Previously, we have developed ASP1235, a novel ADC targeting Fms-like tyrosine kinase 3 (FLT3) which is widely expressed on the leukemic blasts of AML patients. In this study, we sought to evaluate the therapeutic effect of ASP1235 in combination with venetoclax plus azacitidine, a novel standard-of-care treatment for elderly AML patients, in ASP1235 poor sensitive AML cells. To identify the suitable preclinical model, we first evaluated the growth inhibitory effect of ASP1235 on several leukemia cell lines expressing FLT3 and found that THP-1 cells were partially sensitive to ASP1235 in vitro. Furthermore, ASP1235 showed marginal anti-tumor activity in a THP-1 xenograft model. Compared to the leukemic blasts in most of the relapsed or refractory (R/R) AML patients tested, THP-1 cells expressed equivalent protein levels of Bcl-2, suggesting that ASP1235 in combination with venetoclax plus azacitidine is a rational treatment in the THP-1 model. In vitro, ASP1235 showed a cytotoxic effect on THP-1 cells in combination with venetoclax, and the combination effect was greater than the additive effect. Furthermore, ASP1235 also showed a combination effect with venetoclax plus azacitidine treatment. Similarly, the combination of ASP1235, venetoclax and azacitidine showed a superior anti-tumor effect in a THP-1 xenograft model without obvious body weight loss. These findings provide supportive evidence that the triple combination of ASP1235, venetoclax and azacitidine would improve the clinical outcome of ASP1235 monotherapy and venetoclax plus azacitidine regimen in AML patients.
Collapse
Affiliation(s)
- Hirofumi Tsuzuki
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan,Correspondence to:Hirofumi Tsuzuki, email:
| | - Tatsuya Kawase
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Taisuke Nakazawa
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Masamichi Mori
- 2Applied Research and Operations, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Taku Yoshida
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
32
|
Tecik M, Adan A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. Onco Targets Ther 2022; 15:1449-1478. [PMID: 36474506 PMCID: PMC9719701 DOI: 10.2147/ott.s384293] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/19/2022] [Indexed: 08/13/2023] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is mutated in approximately 30% of acute myeloid leukemia (AML) patients. The presence of FLT3-ITD (internal tandem duplication, 20-25%) mutation and, to a lesser extent, FLT3-TKD (tyrosine kinase domain, 5-10%) mutation is associated with poorer diagnosis and therapy response since the leukemic cells become hyperproliferative and resistant to apoptosis after continuous activation of FLT3 signaling. Targeting FLT3 has been the focus of many pre-clinical and clinical studies. Hence, many small-molecule FLT3 inhibitors (FLT3is) have been developed, some of which are approved such as midostaurin and gilteritinib to be used in different clinical settings, either in combination with chemotherapy or alone. However, many questions regarding the best treatment strategy remain to be answered. On the other hand, various FLT3-dependent and -independent resistance mechanisms could be evolved during FLT3i therapy which limit their clinical impact. Therefore, identifying molecular mechanisms of resistance and developing novel strategies to overcome this obstacle is a current interest in the field. In this review, recent studies of approved FLT3i and knowledge about major resistance mechanisms of clinically approved FLT3i's will be discussed together with novel treatment approaches such as designing novel FLT3i and dual FLT3i and combination strategies including approved FLT3i plus small-molecule agents targeting altered molecules in the resistant cells to abrogate resistance. Moreover, how to choose an appropriate FLT3i for the patients will be summarized based on what is currently known from available clinical data. In addition, strategies beyond FLT3i's including immunotherapeutics, small-molecule FLT3 degraders, and flavonoids will be summarized to highlight potential alternatives in FLT3-mutated AML therapy.
Collapse
Affiliation(s)
- Melisa Tecik
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gul University, Kayseri, Turkey
| | - Aysun Adan
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| |
Collapse
|
33
|
Cytotoxicity and Lipase Inhibition of Essential Oils from Amazon Annonaceae Species. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Essential oils from Amazonian species are gaining increasing interest worldwide due to their medicinal and cosmetic applications; however, the relation among the chemical constituents and their biological properties are not well explored. Therefore, the present research aims to obtain an understanding of the bioactivity of chemical compounds in the essential oils of plants from the Annonaceae family (Bocageopsis pleiosperma, Onychopetalum amazonicum, Unonopsis duckei, U. floribunda, U. rufescens, U.stipitata, U. guatterioides, Duguetia flagellaris and Xylopia benthamii). By means of gas chromatography coupled to mass spectrometry, in vitro cytotoxic and anti-lipase assays, principal component analysis and molecular docking, it was possible to establish the main compounds that may be responsible for the cytotoxic effect of O. amazonicum and B. pleiosperma. Moreover, the anti-lipase potential of D. flagellaris was also established, as well as its composition related to the activity. Thus, by the employed strategy, allo-aromadendrene, cryptomerione, δ-cadinene and β-bisabolene were suggested as plausible cytotoxic agents against cancer cell lines, and dehydroaromadendrene, spathulenol and elemol, against lipase. The present study provides significant information on the chemical profile and bioactivity studies of Amazon Annonaceae aromatic plants.
Collapse
|
34
|
Ge SS, Liu SB, Xue SL. Developments and challenges of FLT3 inhibitors in acute myeloid leukemia. Front Oncol 2022; 12:996438. [PMID: 36185253 PMCID: PMC9515417 DOI: 10.3389/fonc.2022.996438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
FLT3 mutations are one of the most common genetic alterations in acute myeloid leukemia (AML) and are identified in approximately one-third of newly diagnosed patients. Aberrant FLT3 receptor signaling has important implications for the biology and clinical management of AML. In recent years, targeting FLT3 has been a part of every course of treatment in FLT3-ITD/TKD-mutated AML and contributes to substantially prolonged survival. At the same time, wide application of next-generation sequencing (NGS) technology has revealed a series of non-canonical FLT3 mutations, including point mutations and small insertions/deletions. Some of these mutations may be able to influence downstream phosphorylation and sensitivity to FLT3 inhibitors, while the correlation with clinical outcomes remains unclear. Exploration of FLT3-targeted therapy has made substantial progress, but resistance to FLT3 inhibitors has become a pressing issue. The mechanisms underlying FLT3 inhibitor tolerance can be roughly divided into primary resistance and secondary resistance. Primary resistance is related to abnormalities in signaling factors, such as FL, CXCL12, and FGF2, and secondary resistance mainly involves on-target mutations and off-target aberrations. To overcome this problem, novel agents such as FF-10101 have shown promising potential. Multitarget strategies directed at FLT3 and anomalous signaling factors simultaneously are in active clinical development and show promising results.
Collapse
Affiliation(s)
- Shuai-Shuai Ge
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Sheng-Li Xue
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Zhou S, Yang B, Xu Y, Gu A, Peng J, Fu J. Understanding gilteritinib resistance to FLT3-F691L mutation through an integrated computational strategy. J Mol Model 2022; 28:247. [PMID: 35932378 DOI: 10.1007/s00894-022-05254-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) serves as an important drug target for acute myeloid leukemia (AML), and gene mutations of FLT3 have been closely associated with AML patients with an incidence rate of ~ 30%. However, the mechanism of the clinically relevant F691L gatekeeper mutation conferred resistance to the drug gilteritinib remained poorly understood. In this study, multiple microsecond molecular dynamics (MD) simulations, end-point free energy calculations, and dynamic correlated and network analyses were performed to investigate the molecular basis of gilteritinib resistance to the FLT3-F691L mutation. The simulations revealed that the resistant mutation largely induced the conformational changes of the activation loop (A-loop), the phosphate-binding loop, and the helix αC of the FLT3 protein. The binding abilities of the gilteritinib to the wild-type and the F691L mutant were different through the binding free energy prediction. The simulation results further indicated that the driving force to determine the binding affinity of gilteritinib was derived from the differences in the energy terms of electrostatic and van der Waals interactions. Moreover, the per-residue free energy decomposition suggested that the four residues (Phe803, Gly831, Leu832, and Ala833) located at the A-loop of FLT3 had a significant impact on the binding affinity of gilteritinib to the F691L mutant. This study may provide useful information for the design of novel FLT3 inhibitors specially targeting the F691L gatekeeper mutant.
Collapse
Affiliation(s)
- Shibo Zhou
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Bo Yang
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Yufeng Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Aihua Gu
- Department of Medicine, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China
| | - Juan Peng
- Department of Ultrasonography, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Jinfeng Fu
- Department of Radiology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
36
|
Wang CC, Wang XL, Ding D, Ma ZW, Liu Z, Chen XP, Chen YJ. Efficient Construction of Tetracyclic 1,2,4‐triazoline‐Fused Dibenzo[b,f][1,4]oxazepines through KI/TBHP‐Mediated [3+2] Annulation between DBO‐Imines and N‐Tosylhydrazones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chuan-Chuan Wang
- Henan University of Animal Husbandry and Economy Faculty of Science CHINA
| | - Xin-Lu Wang
- Zhengzhou University School of Pharmaceutical Sciences CHINA
| | - Degang Ding
- Henan University of Animal Husbandry and Economy Faculty of Science CHINA
| | - Zhi-Wei Ma
- Henan University of Animal Husbandry and Economy Faculty of Science CHINA
| | - Zhijing Liu
- Henan University of Animal Husbandry and Economy Faculty of Science CHINA
| | - Xiao-Pei Chen
- Henan University of Animal Husbandry and Economy Faculty of Science CHINA
| | - Ya-Jing Chen
- Zhengzhou University School of Pharmaceutical Sciences 100 Science Avenue 450001 Zhengzhou CHINA
| |
Collapse
|
37
|
Yuan W, Zhang S, Zhu H. Advances in clinical studies of FLT3 inhibitors in acute myeloid leukemia. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:507-514. [PMID: 37202100 DOI: 10.3724/zdxbyxb-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy. AML patients with FLT3 mutations tend to have a high relapse rate and poor outcome, so FLT3 gene has become an important target for AML treatment, and a series of FLT3 inhibitors have been developed. According to the characteristics of FLT3 inhibitors, they can be divided into first-generation FLT3 inhibitors and second-generation FLT3 inhibitors. So far, totally eight FLT3 inhibitors have been undergone clinical trials and only three were approved for the treatment of AML patients, including Midostourin, Quizartinib and Gilteritinib. FLT3 inhibitors can improve the response rate of patients by combining with standard chemotherapy; in the follow-up maintenance treatment, FLT3 inhibitors can also reduce the disease recurrence rate and improve the overall prognosis of patients. However, the primary drug resistance caused by the bone marrow microenvironment, as well as secondary resistance caused by other mutations may result in poor efficacy of FLT3 inhibitors. For such patients, the combination of FLT3 inhibitor with other drugs may reduce the occurrence of drug resistance and improve the subsequent efficacy of patients. This article reviews the current status of FLT3 inhibitors in clinical research of AML patients and the treatment of FLT3-resistant patients to provide reference for clinicians.
Collapse
Affiliation(s)
- Wei Yuan
- 1. Medical College of China Three Gorges University, Yichang 443000, Hubei Province, China
- 2. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Shizhong Zhang
- 1. Medical College of China Three Gorges University, Yichang 443000, Hubei Province, China
- 2. Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, China Three Gorges University, Yichang 443000, Hubei Province, China
| | - Honghu Zhu
- 3. Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
38
|
Wang Z, Ren J, Jia K, Zhao Y, Liang L, Cheng Z, Huang F, Zhao X, Cheng J, Song S, Sheng T, Wan W, Shu Q, Wu D, Zhang J, Lu T, Chen Y, Ran T, Lu S. Identification and structural analysis of a selective tropomyosin receptor kinase C (TRKC) inhibitor. Eur J Med Chem 2022; 241:114601. [PMID: 35872544 DOI: 10.1016/j.ejmech.2022.114601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 07/07/2022] [Indexed: 11/04/2022]
Abstract
Tropomyosin receptor kinases (TRKs) are a family of TRKA, TRKB and TRKC isoforms. It has been widely reported that TRKs are implicated in a variety of tumors with several Pan-TRK inhibitors currently being used or evaluated in clinical treatment. However, off-target adverse events frequently occur in the clinical use of Pan-TRK inhibitors, which result in poor patient compliance, even drug discontinuation. Although a subtype-selectivity TRK inhibitor may avert the potential off-target adverse events and can act as a more powerful tool compound in the biochemical studies on TRKs, the high sequence similarities of TRKs hinder the development of subtype-selectivity TRK inhibitors. For example, no selective TRKC inhibitor has been reported. Herein, a selective TRKC inhibitor (L13) was disclosed, with potent TRKC inhibitory activity and 107.5-/34.9-fold selectivity over TRKA/B (IC50 TRKA/B/C = 1400 nM, 454 nM, 13 nM, respectively). Extensive molecular dynamics simulations illustrated that key interactions of L13 with the residues and diversely conserved water molecules in the ribose regions of different TRKs may be the structural basis of selectivity. This will provide inspiring insights into the development of subtype-selectivity TRK inhibitors. Moreover, L13 could serve as a tool compound to investigate the distinct biological functions of TRKC and a starting point for further research on drugs specifically targeting TRKC.
Collapse
Affiliation(s)
- Zhijie Wang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiwei Ren
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Kun Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, PR China
| | - Li Liang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jie Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Shiyu Song
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, 210038, PR China
| | - Tiancheng Sheng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Weiqi Wan
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Qingqing Shu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Junhao Zhang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Ting Ran
- Drug and Vaccine Research Center, Guangzhou Laboratory, Guangzhou, 510005, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
39
|
Manobianco SA, Rakiewicz T, Wilde L, Palmisiano ND. Novel Mechanisms for Post-Transplant Maintenance Therapy in Acute Myeloid Leukemia. Front Oncol 2022; 12:892289. [PMID: 35912243 PMCID: PMC9336463 DOI: 10.3389/fonc.2022.892289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Allogeneic stem cell transplantation has improved survival for patients with acute myeloid leukemia (AML), especially for patients with disease at high risk of relapse. However, relapse remains the most common cause of treatment failure and death in the post-transplant period. Maintenance therapy, an extended course of treatment after achieving remission to reduce the rate of relapse, is an important component of the treatment of various hematologic malignancies; however, its role in the treatment of AML is far less well-defined. Recently, there has been significant interest in the use of novel therapeutic agents as maintenance therapy after allogeneic stem cell transplant, utilizing new mechanisms of treatment and more favorable toxicity profiles. In this review, we will discuss the mechanistic and clinical data for post-transplant maintenance therapies in AML. Then, we will review several emergent and current clinical trials which aim to incorporate novel agents into maintenance therapy regimens.
Collapse
Affiliation(s)
- Steven A. Manobianco
- Thomas Jefferson University Hospital, Jefferson University Hospitals, Philadelphia, PA, United States
| | - Tara Rakiewicz
- Thomas Jefferson University Hospital, Jefferson University Hospitals, Philadelphia, PA, United States
| | - Lindsay Wilde
- Department of Medical Oncology, Division of Hematologic Malignancy and Stem Cell Transplantation, Philadelphia, PA, United States
| | - Neil D. Palmisiano
- Department of Medical Oncology, Division of Hematologic Malignancy and Stem Cell Transplantation, Philadelphia, PA, United States
| |
Collapse
|
40
|
Sun SL, Wu SH, Kang JB, Ma YY, Chen L, Cao P, Chang L, Ding N, Xue X, Li NG, Shi ZH. Medicinal Chemistry Strategies for the Development of Bruton's Tyrosine Kinase Inhibitors against Resistance. J Med Chem 2022; 65:7415-7437. [PMID: 35594541 DOI: 10.1021/acs.jmedchem.2c00030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant efficacy, one of the major limitations of small-molecule Bruton's tyrosine kinase (BTK) agents is the presence of clinically acquired resistance, which remains a major clinical challenge. This Perspective focuses on medicinal chemistry strategies for the development of BTK small-molecule inhibitors against resistance, including the structure-based design of BTK inhibitors targeting point mutations, e.g., (i) developing noncovalent inhibitors from covalent inhibitors, (ii) avoiding steric hindrance from mutated residues, (iii) making interactions with the mutated residue, (iv) modifying the solvent-accessible region, and (v) developing new scaffolds. Additionally, a comparative analysis of multi-inhibitions of BTK is presented based on cross-comparisons between 2916 unique BTK ligands and 283 other kinases that cover 7108 dual/multiple inhibitions. Finally, targeting the BTK allosteric site and uding proteolysis-targeting chimera (PROTAC) as two potential strategies are addressed briefly, while also illustrating the possibilities and challenges to find novel ligands of BTK.
Collapse
Affiliation(s)
- Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shi-Han Wu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ji-Bo Kang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yi-Yuan Ma
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lu Chen
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Liang Chang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhi-Hao Shi
- Department of Organic Chemistry, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
41
|
Lee JH, Shin JE, Kim W, Jeong P, Kim MJ, Oh SJ, Lee HJ, Park HW, Han SY, Kim YC. Discovery of indirubin-3'-aminooxy-acetamide derivatives as potent and selective FLT3/D835Y mutant kinase inhibitors for acute myeloid leukemia. Eur J Med Chem 2022; 237:114356. [PMID: 35489222 DOI: 10.1016/j.ejmech.2022.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 11/19/2022]
Abstract
Mutations in Fms-like tyrosine kinase 3 (FLT3) have been implicated in the pathogenesis of acute myeloid leukemia (AML) by affecting the proliferation and differentiation of hematopoietic stem and progenitor cells. Although several FLT3 inhibitors have been developed, the occurrence of secondary TKD mutations of FLT3 such FLT3/D835Y and FLT3/F691L lead to drug resistance and has become a key area of unmet medical needs. To overcome the obstacle of secondary TKD mutations, a new series of indirubin-3'-aminooxy-acetamide derivatives was discovered as potent and selective FLT3 and FLT3/D835Y inhibitors that were predicted to bind at the DFG-in active conformation of FLT3 in molecular docking studies. Through structure-activity relationship studies, the most optimized compound 13a was developed as a potent inhibitor at FLT3 and FLT3/D835Y with IC50 values of 0.26 nM and 0.18 nM, respectively, which also displayed remarkably strong in vitro anticancer activities, with single-digit nanomolar GI50 values for several AML (MV4-11 and MOLM14) and Ba/F3 cell lines expressed with secondary TKD mutated FLT3 kinases as well as FLT3-ITD. The selectivity profiles of compound 13a in the oncology kinase panel and various human cancer cell lines were prominent, demonstrating that its inhibitory activities were mainly focused on a few members of the receptor tyrosine kinase family and AML versus solid tumor cell lines. Furthermore, significant in vivo anticancer efficacy of compound 13a was confirmed in a xenograft animal model implanted with FLT3-ITD/D835Y-expressing MOLM-14 cells related to secondary TKD mutation.
Collapse
Affiliation(s)
- Je-Heon Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
| | - WooChan Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Pyeonghwa Jeong
- R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea; Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Myung Jin Kim
- R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea
| | - Su Jin Oh
- R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea
| | - Hyo Jeong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea.
| | - Sun-Young Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam-do, 52828, South Korea.
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea; R&D Center, PeLeMed, Co. Ltd., Seoul, 06100, South Korea.
| |
Collapse
|
42
|
Park HJ, Choi G, Ha S, Kim Y, Choi MJ, Kim M, Islam MK, Chang Y, Kwon TJ, Kim D, Jang E, Kim TH, Chang SJ, Kim YH. MBP-11901 Inhibits Tumor Growth of Hepatocellular Carcinoma through Multitargeted Inhibition of Receptor Tyrosine Kinases. Cancers (Basel) 2022; 14:cancers14081994. [PMID: 35454900 PMCID: PMC9030223 DOI: 10.3390/cancers14081994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Although various treatments such as surgery and chemotherapy exist for advanced or unresectable HCC, most patients suffer from intractable diseases, having a poor prognosis. While immunotherapy using immune checkpoint inhibitors was recently proposed for HCC, only a small percentage of patients respond. Thus, there remains an unmet need for the development of therapeutic agents for the treatment of liver cancer. Here, we presented multi-RTKi MBP-11901, an innovative targeted anticancer agent for HCC, suggesting it as a new therapeutic strategy for the treatment of liver cancer. Abstract Hepatocellular carcinomas (HCCs) are aggressive tumors with a poor prognosis. Approved first-line treatments include sorafenib, lenvatinib, and a combination of atezolizumab and bevacizumab; however, they do not cure HCC. We investigated MBP-11901 as a drug candidate for HCC. Cell proliferation and cytotoxicity were evaluated using normal and cancer human liver cell lines, while Western blotting and flow cytometry evaluated apoptosis. The anticancer effect of MBP-11901 was verified in vitro through migration, invasion, colony formation, and JC-1 MMP assays. In mouse models, the tumor volume, tumor weight, and bodyweight were measured, and cancer cell proliferation and apoptosis were analyzed. The toxicity of MBP-11901 was investigated through GOT/GPT and histological analyses in the liver and kidney. The signaling mechanism of MBP-11901 was investigated through kinase assays, phosphorylation analysis, and in silico docking simulations. Results. MBP-11901 was effective against various human HCC cell lines, leading to the disappearance of most tumors when administered orally in animal models. This effect was dose-dependent, with no differences in efficacy according to administration intervals. MBP-11901 induced anticancer effects by targeting the signaling mechanisms of FLT3, VEGFR2, c-KIT, and PDGFRβ. MBP-11901 is suggested as a novel therapeutic agent for the treatment of advanced or unresectable liver cancer.
Collapse
Affiliation(s)
- Hyun Jin Park
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Garam Choi
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Seongmin Ha
- Institute of Biomedical Engineering Research, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (S.H.); (M.K.I.); (Y.C.)
| | - Yesl Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Min-Jin Choi
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Minsup Kim
- InCerebro Drug Discovery Institute, Seoul 01811, Korea;
| | - Md. Kamrul Islam
- Institute of Biomedical Engineering Research, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (S.H.); (M.K.I.); (Y.C.)
| | - Yongmin Chang
- Institute of Biomedical Engineering Research, Kyungpook National University, 680, Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; (S.H.); (M.K.I.); (Y.C.)
| | - Tae-Jun Kwon
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Cheombok-ro, Dong-gu, Daegu 41061, Korea; (T.-J.K.); (D.K.)
| | - Dongkyu Kim
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80, Cheombok-ro, Dong-gu, Daegu 41061, Korea; (T.-J.K.); (D.K.)
| | - Eunbee Jang
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Korea; (E.J.); (T.H.K.)
| | - Tae Hwan Kim
- College of Pharmacy, Daegu Catholic University, 13-13, Hayang-ro, Hayang-eup, Gyeongsan-si 38430, Korea; (E.J.); (T.H.K.)
| | - Sha Joung Chang
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
| | - Yeoun-Hee Kim
- R&D Center, Etnova Therapeutics Corp., 124, Sagimakgol-ro, Jungwon-gu, Seongnam-si 13207, Korea; (H.J.P.); (G.C.); (Y.K.); (M.-J.C.); (S.J.C.)
- Correspondence: ; Tel.: +82-31-776-3403
| |
Collapse
|
43
|
Abdelgawad MA, Mohamed FEA, Lamie PF, Bukhari SNA, Al-Sanea MM, Musa A, Elmowafy M, Nayl AA, Karam Farag A, Ali SM, Shaker ME, Omar HA, Abdelhameid MK, Kandeel MM. Design, synthesis, and biological evaluation of novel pyrido-dipyrimidines as dual topoisomerase II/FLT3 inhibitors in leukemia cells. Bioorg Chem 2022; 122:105752. [PMID: 35339926 DOI: 10.1016/j.bioorg.2022.105752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 11/24/2022]
Abstract
Dual inhibition of topoisomerase (topo) II and FLT3 kinase, as in the case of C-1311, was shown to overcome the shortcomings of using topo II inhibitors solely. In the present study, we designed and synthesized two series of pyrido-dipyrimidine- and pseudo-pyrido-acridone-containing compounds. The two series were evaluated against topo II and FLT3 as well as the HL-60 promyelocytic leukemia cell line in vitro. Compounds 6, 7, and 20 showed higher potency against topo II than the standard amsacrine (AMSA), whereas compounds 19 and 20 were stronger FLT3 inhibitors than the standard DACA. Compounds 19 and 20 showed to be dual inhibitors of both enzymes. Compounds 6, 7, 19, and 20 were more potent inhibitors of the HL-60 cell line than the standard AMSA. The results of the in vitro DNA flow cytometry analysis assay and Annexin V-FITC apoptosis analysis showed that 19 and 20 induced cell cycle arrest at the G2/M phase, significantly higher total percentage of apoptosis, and late-stage apoptosis in HL-60 cell lines than AMSA. Furthermore, 19 and 20 upregulated several apoptosis biomarkers such as p53, TNFα, caspase 3/7 and increased the Bax/Bcl-2 ratio. These results showed that 19 and 20 deserve further evaluation of their antiproliferative activities, particularly in leukemia. Molecular docking studies were performed for selected compounds against topo II and FLT3 enzymes to investigate their binding patterns. Compound 19 exerted dual fitting inside the active site of both enzymes.
Collapse
Affiliation(s)
- Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia.
| | - Fatma E A Mohamed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Phoebe F Lamie
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Syed N A Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohammad M Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, 72341 Sakaka, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - A A Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ahmed Karam Farag
- Manufacturing Department, Curachem Inc., Chungcheongbuk-do 28161, Republic of Korea
| | - Sameeha M Ali
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Hany A Omar
- College of Pharmacy, University of Sharjah, United Arab Emirates
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Manal M Kandeel
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
44
|
Cilibrasi V, Spanò V, Bortolozzi R, Barreca M, Raimondi MV, Rocca R, Maruca A, Montalbano A, Alcaro S, Ronca R, Viola G, Barraja P. Synthesis of 2H-Imidazo[2',1':2,3] [1,3]thiazolo[4,5-e]isoindol-8-yl-phenylureas with promising therapeutic features for the treatment of acute myeloid leukemia (AML) with FLT3/ITD mutations. Eur J Med Chem 2022; 235:114292. [PMID: 35339838 DOI: 10.1016/j.ejmech.2022.114292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/28/2022]
Abstract
Despite progressive advances in understanding the molecular biology of acute myeloid leukemia (AML), the conventional therapeutic approach has not changed substantially, and the outcome for most patients is poor. Thus, continuous efforts on the discovery of new compounds with improved features are required. Following a multistep sequence, we have identified a new tetracyclic ring system with strong antiproliferative activity towards several haematological cell lines. The new compounds possess structural properties typical of inactive-state-binding kinase inhibitors and are structurally related to quizartinib which is known as type-II tyrosine kinase inhibitor. In particular, the high activity found in two cell lines MOLM-13 and MV4-11, expressing the constitutively activated mutant FLT3/ITD, indicates inhibition of FLT3 kinase and on the basis of structure-activity relationship (SAR) the presence of an ureido moiety demonstrates to play a key role in driving the antiproliferative activity towards these cell lines. Molecular modelling studies supported the mechanism of recognition of the most active compounds within the FLT3 pocket where quizartinib binds. Moreover, Molecular Dynamics simulation (MDs) revealed the formation of a recurrent H-bond with Asp829, which more stabilizes the complex of 9c and the FLT3 inactive state. In MV4-11 cell line compound 9c reduces the phosphorylation of FLT3 (Y591) and some of its downstream targets leading to cell cycle arrest at G1 phase and induction of apoptosis. In an MV4-11 xenograft mouse model, 9c significantly reduces the tumor growth at the dose of 1-3 mg/kg without apparent toxicity.
Collapse
Affiliation(s)
- Vincenzo Cilibrasi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Virginia Spanò
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Bortolozzi
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Maria Valeria Raimondi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Roberta Rocca
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Medicina Sperimentale e Clinica, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Maruca
- Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Alessandra Montalbano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Stefano Alcaro
- Net4Science srl, Academic Spinoff, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy; Dipartimento di Scienze della Salute, Università Magna Græcia di Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| | - Roberto Ronca
- Dipartimento di Medicina Molecolare e Traslazionale Unità di Oncologia Sperimentale ed Immunologia, Università di Brescia, 25123, Brescia, Italy
| | - Giampietro Viola
- Istituto di Ricerca Pediatrica IRP, Fondazione Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy; Dipartimento di Salute della Donna e del Bambino, Laboratorio di Oncoematologia Università di Padova, Via Giustiniani 2, 35131, Padova, Italy.
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
45
|
Li W, Zhang J, Wang M, Dong R, Zhou X, Zheng X, Sun L. Pyrimidine-fused Dinitrogenous Penta-heterocycles as a Privileged Scaffold for Anti-Cancer Drug Discovery. Curr Top Med Chem 2022; 22:284-304. [PMID: 35021973 DOI: 10.2174/1568026622666220111143949] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Pyrimidine-fused derivatives that are the inextricable part of DNA and RNA play a key role in the normal life cycle of cells. Pyrimidine-fused dinitrogenous penta-heterocycles including pyrazolopyrimidines and imidazopyrimidines is a special class of pyrimidine-fused compounds contributing to an important portion in anti-cancer drug discovery, which have been discovered as core structure for promising anti-cancer agents used in clinic or clinical evaluations. Pyrimidine-fused dinitrogenous penta-heterocycles have become one privileged scaffold for anti-cancer drug discovery. This review consists of the recent progress of pyrimidine-fused dinitrogenous penta-heterocycles as anti-cancer agents and their synthetic strategies. In addition, this review also summarizes some key structure-activity relationships (SARs) of pyrimidine-fused dinitrogenous penta-heterocycle derivatives as anti-cancer agents.
Collapse
Affiliation(s)
- Wen Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jinyang Zhang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Min Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ru Dong
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zhou
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xin Zheng
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| | - Liping Sun
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
46
|
Friedman R. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. Biochim Biophys Acta Rev Cancer 2021; 1877:188666. [PMID: 34896257 DOI: 10.1016/j.bbcan.2021.188666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia is an aggressive cancer, which, in spite of increasingly better understanding of its genetic background remains difficult to treat. Mutations in the FLT3 gene are observed in ≈30% of the patients. Most of these mutations are internal tandem duplications (ITDs) of a sequence within the protein coding region, an activation mechanism that is almost non-existent with other genes and cancers. As patients each carry their own unique set of mutations, it is challenging to understand how ITDs activate the protein, and ascertain the risk for each individual patient. Available treatment options are limited due to development of drug resistance. Here, recent studies are reviewed that help to better understand the molecular mechanism behind activation of the FLT3 protein due to mutations. It is argued that difference in mutation sequences and especially location might be coupled to prognosis. When it comes to FLT3 inhibitors, key differences between them can be attributed to the mode of inhibition (type-1 and type-2 inhibitors), effective inhibitory coefficient in the blood plasma and off-target binding. Accounting for the position and length of insertions may in the future be used to predict prognosis and rationalise treatment. Development of new inhibitors must take into account the potential for resistance mutations. Inhibitors aimed at multiple specific targets are currently being developed. These, and as well as combination therapies will hopefully lead to longer periods during which targeted FLT3 therapy will remain effective.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences, Faculty of Health and Life Sciences, Linnæus University, 391 82 Kalmar, Sweden.
| |
Collapse
|
47
|
Discovery of imidazo[1,2-a]pyridine-thiophene derivatives as FLT3 and FLT3 mutants inhibitors for acute myeloid leukemia through structure-based optimization of an NEK2 inhibitor. Eur J Med Chem 2021; 225:113776. [PMID: 34479037 DOI: 10.1016/j.ejmech.2021.113776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/20/2022]
Abstract
FMS-like tyrosine kinase 3 (FLT3) with an internal tandem duplication (ITD) mutation has been validated as a driver lesion and a therapeutic target for acute myeloid leukemia (AML). Currently, several potent small-molecule FLT3 kinase inhibitors are being evaluated or have completed evaluation in clinical trials. However, many of these inhibitors are challenged by the secondary mutations on kinase domain, especially the point mutations at the activation loop (D835) and gatekeeper residue (F691). To overcome the resistance challenge, we identified a novel series of imidazo[1,2-a]pyridine-thiophene derivatives from a NIMA-related kinase 2 (NEK2) kinase inhibitor CMP3a, which retained inhibitory activities on FTL3-ITDD835V and FLT3-ITDF691L. Through this study, we identified the imidazo[1,2-a]pyridine-thiophene derivatives as type-I inhibitors of FLT3. Moreover, we observed compound 5o as an inhibitor displaying equal anti-proliferative activities against FLT3-ITD, FTL3-ITDD835Y and FLT3-ITDF691L driven acute myeloid leukemia (AML) cell lines. Meanwhile, the apoptotic effects of compound supported its mechanism of anti-proliferative action. These results indicate that the imidazo[1,2-a]pyridine-thiophene scaffold is promising for targeting acquired resistance caused by FLT3 secondary mutations and compound 5o is an interesting lead in this direction.
Collapse
|
48
|
Discovery of a Benzimidazole-based Dual FLT3/TrKA Inhibitor Targeting Acute Myeloid Leukemia. Bioorg Med Chem 2021; 56:116596. [DOI: 10.1016/j.bmc.2021.116596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022]
|
49
|
Molecular Modeling Studies of N-phenylpyrimidine-4-amine Derivatives for Inhibiting FMS-like Tyrosine Kinase-3. Int J Mol Sci 2021; 22:ijms222212511. [PMID: 34830393 PMCID: PMC8622510 DOI: 10.3390/ijms222212511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Overexpression and frequent mutations in FMS-like tyrosine kinase-3 (FLT3) are considered risk factors for severe acute myeloid leukemia (AML). Hyperactive FLT3 induces premature activation of multiple intracellular signaling pathways, resulting in cell proliferation and anti-apoptosis. We conducted the computational modeling studies of 40 pyrimidine-4,6-diamine-based compounds by integrating docking, molecular dynamics, and three-dimensional structure-activity relationship (3D-QSAR). Molecular docking showed that K644, C694, F691, E692, N701, D829, and F830 are critical residues for the binding of ligands at the hydrophobic active site. Molecular dynamics (MD), together with Molecular Mechanics Poison-Boltzmann/Generalized Born Surface Area, i.e., MM-PB(GB)SA, and linear interaction energy (LIE) estimation, provided critical information on the stability and binding affinity of the selected docked compounds. The MD study suggested that the mutation in the gatekeeper residue F691 exhibited a lower binding affinity to the ligand. Although, the mutation in D835 in the activation loop did not exhibit any significant change in the binding energy to the most active compound. We developed the ligand-based comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models. CoMFA (q2 = 0.802, r2 = 0.983, and QF32 = 0.698) and CoMSIA (q2 = 0.725, r2 = 0.965 and QF32 = 0.668) established the structure-activity relationship (SAR) and showed a reasonable external predictive power. The contour maps from the CoMFA and CoMSIA models could explain valuable information about the favorable and unfavorable positions for chemical group substitution, which can increase or decrease the inhibitory activity of the compounds. In addition, we designed 30 novel compounds, and their predicted pIC50 values were assessed with the CoMSIA model, followed by the assessment of their physicochemical properties, bioavailability, and free energy calculation. The overall outcome could provide valuable information for designing and synthesizing more potent FLT3 inhibitors.
Collapse
|
50
|
Chen Y, Bai G, Li Y, Ning Y, Cao S, Zhou J, Ding J, Zhang H, Xie H, Duan W. Discovery and structure - activity relationship exploration of pyrazolo[1,5-a]pyrimidine derivatives as potent FLT3-ITD inhibitors. Bioorg Med Chem 2021; 48:116422. [PMID: 34583130 DOI: 10.1016/j.bmc.2021.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Internal tandem duplications of FLT3 (FLT3-ITD) occur in approximately 25% of all acute myeloid leukemia (AML) cases and confer a poor prognosis. Optimization of the screening hit 1 from our in-house compound library led to the discovery of a series of pyrazolo[1,5-a]pyrimidine derivatives as potent and selective FLT3-ITD inhibitors. Compounds 17 and 19 displayed potent FLT3-ITD activities both with IC50 values of 0.4 nM and excellent antiproliferative activities against AML cell lines. Especially, compounds 17 and 19 inhibited the quizartinib resistance- conferring mutations, FLT3D835Y, both with IC50 values of 0.3 nM. Moreover, western blot analysis indicated that compounds 17 and 19 potently inhibited the phosphorylation of FLT3 and attenuated downstream signaling in AML cells. These results indicated that pyrazolo[1,5-a]pyrimidine derivatives could be promising FLT3-ITD inhibitors for the treatment AML.
Collapse
Affiliation(s)
- Yun Chen
- Division of Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Gang Bai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yan Li
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Yi Ning
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Sufen Cao
- Division of Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| | - Hua Xie
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, PR China.
| | - Wenhu Duan
- Division of Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China.
| |
Collapse
|