1
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
2
|
Li X, Wang C, Chai X, Liu X, Qiao K, Fu Y, Jin Y, Jia Q, Zhu F, Zhang Y. Discovery of Potent Selective HDAC6 Inhibitors with 5-Phenyl-1 H-indole Fragment: Virtual Screening, Rational Design, and Biological Evaluation. J Chem Inf Model 2024; 64:6147-6161. [PMID: 39042494 DOI: 10.1021/acs.jcim.4c01052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Among the HDACs family, histone deacetylase 6 (HDAC6) has attracted extensive attention due to its unique structure and biological functions. Numerous studies have shown that compared with broad-spectrum HDACs inhibitors, selective HDAC6 inhibitors exert ideal efficacy in tumor treatment with insignificant toxic and side effects, demonstrating promising clinical application prospect. Herein, we carried out rational drug design by integrating a deep learning model, molecular docking, and molecular dynamics simulation technology to construct a virtual screening process. The designed derivatives with 5-phenyl-1H-indole fragment as Cap showed desirable cytotoxicity to the various tumor cell lines, all of which were within 15 μM (ranging from 0.35 to 14.87 μM), among which compound 5i had the best antiproliferative activities against HL-60 (IC50 = 0.35 ± 0.07 μM) and arrested HL-60 cells in the G0/G1 phase. In addition, 5i exhibited better isotype selective inhibitory activities due to the potent potency against HDAC6 (IC50 = 5.16 ± 0.25 nM) and the reduced inhibitory activities against HDAC1 (selective index ≈ 124), which was further verified by immunoblotting results. Moreover, the representative binding conformation of 5i on HDAC6 was revealed and the key residues contributing 5i's binding were also identified via decomposition free-energy analysis. The discovery of lead compound 5i also indicates that virtual screening is still a beneficial tool in drug discovery and can provide more molecular skeletons with research potential for drug design, which is worthy of widespread application.
Collapse
Affiliation(s)
- Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengzhao Wang
- College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xu Chai
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Xingang Liu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Kening Qiao
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yan Fu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yanzhao Jin
- Shijiazhuang Xianyu Digital Biotechnology Co., Ltd, Shijiazhuang 050024, PR China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Feng Zhu
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| |
Collapse
|
3
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
4
|
Stone TW, Williams RO. Modulation of T cells by tryptophan metabolites in the kynurenine pathway. Trends Pharmacol Sci 2023; 44:442-456. [PMID: 37248103 DOI: 10.1016/j.tips.2023.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
Lymphocytes maturing in the thymus (T cells) are key factors in adaptive immunity and the regulation of inflammation. The kynurenine pathway of tryptophan metabolism includes several enzymes and compounds that can modulate T cell function, but manipulating these pharmacologically has not achieved the expected therapeutic activity for the treatment of autoimmune disorders and cancer. With increasing knowledge of other pathways interacting with kynurenines, the expansion of screening methods, and the application of virtual techniques to understanding enzyme structures and mechanisms, details of interactions between kynurenines and other pathways are being revealed. This review surveys some of these alternative approaches to influence T cell function indirectly via the kynurenine pathway and summarizes the most recent work on the development of compounds acting directly on the kynurenine pathway.
Collapse
Affiliation(s)
- Trevor W Stone
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Richard O Williams
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK.
| |
Collapse
|
5
|
Röhrig UF, Goullieux M, Bugnon M, Zoete V. Attracting Cavities 2.0: Improving the Flexibility and Robustness for Small-Molecule Docking. J Chem Inf Model 2023; 63:3925-3940. [PMID: 37285197 PMCID: PMC10305763 DOI: 10.1021/acs.jcim.3c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Indexed: 06/08/2023]
Abstract
Molecular docking is a computational approach for predicting the most probable position of a ligand in the binding site of a target macromolecule. Our docking algorithm Attracting Cavities (AC) has been shown to compare favorably to other widely used docking algorithms [Zoete, V.; et al. J. Comput. Chem. 2016, 37, 437]. Here we describe several improvements of AC, making the sampling more robust and providing more flexibility for either fast or high-accuracy docking. We benchmark the performance of AC 2.0 using the 285 complexes of the PDBbind Core set, version 2016. For redocking from randomized ligand conformations, AC 2.0 reaches a success rate of 73.3%, compared to 63.9% for GOLD and 58.0% for AutoDock Vina. Due to its force-field-based scoring function and its thorough sampling procedure, AC 2.0 also performs well for blind docking on the entire receptor surface. The accuracy of its scoring function allows for the detection of problematic experimental structures in the benchmark set. For cross-docking, the AC 2.0 success rate is about 30% lower than for redocking (42.5%), similar to GOLD (42.8%) and better than AutoDock Vina (33.1%), and it can be improved by an informed choice of flexible protein residues. For selected targets with a high success rate in cross-docking, AC 2.0 also achieves good enrichment factors in virtual screening.
Collapse
Affiliation(s)
- Ute F. Röhrig
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Mathilde Goullieux
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Marine Bugnon
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular
Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
- Department
of Oncology UNIL-CHUV, Lausanne University,
Ludwig Institute for Cancer Research Lausanne Branch, CH-1066 Epalinges, Switzerland
| |
Collapse
|
6
|
Wang K, Song LH, Liang QL, Zhang Y, Ma XL, Wang Q, Zhang HY, Jiang CN, Wei JH, Huang RZ. Discovery of novel sulfonamide chromone-oxime derivatives as potent indoleamine 2,3-dioxygenase 1 inhibitors. Eur J Med Chem 2023; 254:115349. [PMID: 37060754 DOI: 10.1016/j.ejmech.2023.115349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
A series of chromone-oxime derivatives containing piperazine sulfonamide moieties were designed, synthesized and evaluated for their inhibitory activities against IDO1. These compounds displayed moderate to good inhibitory activity against IDO1 with IC50 values in low micromolar range. Among them, compound 10m bound effectively to IDO1 with good inhibitory activities (hIDO1 IC50 = 0.64 μM, HeLa IDO1 IC50 = 1.04 μM) and were selected for further investigation. Surface plasmon resonance analysis confirmed the direct interaction between compound 10m and IDO1 protein. Molecular docking study of the most active compound 10m revealed key interactions between 10m and IDO1 in which the chromone-oxime moiety coordinated to the heme iron and formed several hydrogen bonds with the porphyrin ring of heme and ALA264, consistent with the observation by UV-visible spectra that 10m induced a Soret peak shift from 403 to 421 nm. Moreover, compound 10m exhibited no cytotoxicity at its effective concentration in MTT assay. Consistently, in vivo assays results demonstrated that 10m displayed potent antitumor activity with low toxicity in CT26 tumor-bearing Balb/c mice, in comparison with 1-methyl-l-tryptophan (1-MT) and 4-amino-N-(3-chloro-4-fluorophenyl)-N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide (IDO5L). In brief, the results suggested that chromone-oxime derivatives containing sulfonamide moieties might serve as IDO1 inhibitors for the development of new antitumor agents.
Collapse
Affiliation(s)
- Ke Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Long-Hao Song
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Qiao-Ling Liang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ye Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Xian-Li Ma
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Qi Wang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Hui-Yong Zhang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Cai-Na Jiang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| | - Jian-Hua Wei
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| | - Ri-Zhen Huang
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China; Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
7
|
Röhrig UF, Majjigapu SR, Vogel P, Reynaud A, Pojer F, Dilek N, Reichenbach P, Ascenção K, Irving M, Coukos G, Michielin O, Zoete V. Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J Enzyme Inhib Med Chem 2022; 37:1773-1811. [PMID: 35758198 PMCID: PMC9246256 DOI: 10.1080/14756366.2022.2089665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The haem enzyme indoleamine 2,3-dioxygenase 1 (IDO1) catalyses the rate-limiting step in the kynurenine pathway of tryptophan metabolism and plays an essential role in immunity, neuronal function, and ageing. Expression of IDO1 in cancer cells results in the suppression of an immune response, and therefore IDO1 inhibitors have been developed for use in anti-cancer immunotherapy. Here, we report an extension of our previously described highly efficient haem-binding 1,2,3-triazole and 1,2,4-triazole inhibitor series, the best compound having both enzymatic and cellular IC50 values of 34 nM. We provide enzymatic inhibition data for almost 100 new compounds and X-ray diffraction data for one compound in complex with IDO1. Structural and computational studies explain the dramatic drop in activity upon extension to pocket B, which has been observed in diverse haem-binding inhibitor scaffolds. Our data provides important insights for future IDO1 inhibitor design.
Collapse
Affiliation(s)
- Ute F Röhrig
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Somi Reddy Majjigapu
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Pierre Vogel
- Laboratory of Glycochemistry and Asymmetric Synthesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aline Reynaud
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nahzli Dilek
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Patrick Reichenbach
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Kelly Ascenção
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - George Coukos
- Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| | - Olivier Michielin
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research-Lausanne Branch, Lausanne, CH-1011, Switzerland
| | - Vincent Zoete
- SIB Swiss Institute of Bioinformatics, Molecular Modeling Group, Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, Epalinges, Switzerland
| |
Collapse
|
8
|
Mirgaux M, Leherte L, Wouters J. Temporary Intermediates of L-Trp Along the Reaction Pathway of Human Indoleamine 2,3-Dioxygenase 1 and Identification of an Exo Site. Int J Tryptophan Res 2021; 14:11786469211052964. [PMID: 34949925 PMCID: PMC8689440 DOI: 10.1177/11786469211052964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/19/2021] [Indexed: 12/28/2022] Open
Abstract
Protein dynamics governs most of the fundamental processes in the human body.
Particularly, the dynamics of loops located near an active site can be involved
in the positioning of the substrate and the reaction mechanism. The
understanding of the functioning of dynamic loops is therefore a challenge, and
often requires the use of a multi-disciplinary approach mixing, for example,
crystallographic experiments and molecular dynamics simulations. In the present
work, the dynamic behavior of the JK-loop of the human indoleamine
2,3-dioxygenase 1 hemoprotein, a target for immunotherapy, is investigated. To
overcome the lack of knowledge on this dynamism, the study reported here is
based on 3 crystal structures presenting different conformations of the loop,
completed with molecular dynamics trajectories and MM-GBSA analyses, in order to
trace the reaction pathway of the enzyme. In addition, the crystal structures
identify an exo site in the small unit of the enzyme, that is populated
redundantly by the substrate or the product of the reaction. The role of this
newer reported exo site still needs to be investigated.
Collapse
Affiliation(s)
- Manon Mirgaux
- Laboratoire de Chimie Biologique Structurale, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Laurence Leherte
- Laboratoire de Chimie Biologique Structurale, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Johan Wouters
- Laboratoire de Chimie Biologique Structurale, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Department of Chemistry, Rue de Bruxelles 61, 5000 Namur, Belgium
| |
Collapse
|
9
|
Röhrig UF, Michielin O, Zoete V. Structure and Plasticity of Indoleamine 2,3-Dioxygenase 1 (IDO1). J Med Chem 2021; 64:17690-17705. [PMID: 34907770 DOI: 10.1021/acs.jmedchem.1c01665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Since the discovery of the implication of indoleamine 2,3-dioxygenase 1 (IDO1) in tumoral immune resistance in 2003, the search for inhibitors has been intensely pursued both in academia and in pharmaceutical companies, supported by the publication of the first crystal structure of IDO1 in 2006. More recently, it has become clear that IDO1 is an important player in various biological pathways and diseases ranging from neurodegenerative diseases to infection and autoimmunity. Its inhibition may lead to clinical benefit in different therapeutic settings. At present, over 50 experimental structures of IDO1 in complex with different ligands are available in the Protein Data Bank. Our analysis of this wealth of structural data sheds new light on several open issues regarding IDO1's structure and function.
Collapse
Affiliation(s)
- Ute F Röhrig
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Olivier Michielin
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology, University Hospital of Lausanne (CHUV), Ludwig Cancer Research─Lausanne Branch, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, SIB Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.,Department of Oncology UNIL-CHUV, Ludwig Lausanne Branch, 1066 Epalinges, Switzerland
| |
Collapse
|
10
|
Fallarini S, Bhela IP, Aprile S, Torre E, Ranza A, Orecchini E, Panfili E, Pallotta MT, Massarotti A, Serafini M, Pirali T. The [1,2,4]Triazolo[4,3-a]pyridine as a New Player in the Field of IDO1 Catalytic Holo-Inhibitors. ChemMedChem 2021; 16:3439-3450. [PMID: 34355531 PMCID: PMC9291769 DOI: 10.1002/cmdc.202100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/03/2021] [Indexed: 01/22/2023]
Abstract
Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Irene P. Bhela
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Silvio Aprile
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Enza Torre
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Alice Ranza
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Elena Orecchini
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Eleonora Panfili
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Maria T. Pallotta
- Department of Medicine and SurgeryUniversity of PerugiaPerugia06132Italy
| | - Alberto Massarotti
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| | - Marta Serafini
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
- Current address: Department of ChemistryChemistry Research LaboratoryUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Tracey Pirali
- Department of Pharmaceutical SciencesUniversità degli Studi del Piemonte OrientaleLargo Donegani 228100NovaraItaly
| |
Collapse
|
11
|
Kozlova A, Thabault L, Liberelle M, Klaessens S, Prévost JRC, Mathieu C, Pilotte L, Stroobant V, Van den Eynde B, Frédérick R. Rational Design of Original Fused-Cycle Selective Inhibitors of Tryptophan 2,3-Dioxygenase. J Med Chem 2021; 64:10967-10980. [PMID: 34338527 DOI: 10.1021/acs.jmedchem.1c00323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tryptophan 2,3-dioxygenase (TDO2) is a heme-containing enzyme constitutively expressed at high concentrations in the liver and responsible for l-tryptophan (l-Trp) homeostasis. Expression of TDO2 in cancer cells results in the inhibition of immune-mediated tumor rejection due to an enhancement of l-Trp catabolism via the kynurenine pathway. In the study herein, we disclose a new 6-(1H-indol-3-yl)-benzotriazole scaffold of TDO2 inhibitors developed through rational design, starting from existing inhibitors. Rigidification of the initial scaffold led to the synthesis of stable compounds displaying a nanomolar cellular potency and a better understanding of the structural modulations that can be accommodated inside the active site of hTDO2.
Collapse
Affiliation(s)
- Arina Kozlova
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium.,Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Léopold Thabault
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium.,Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels B-1200, Belgium
| | - Maxime Liberelle
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Julien R C Prévost
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Caroline Mathieu
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| | - Luc Pilotte
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels B-1200, Belgium.,de Duve Institute, UCLouvain, Brussels B-1200, Belgium.,Walloon Excellence in Life Sciences and Biotechnology, Brussels B-1200, Belgium
| | - Raphaël Frédérick
- Louvain Drug Research Institute (LDRI), Université Catholique de Louvain (UCLouvain), Brussels B-1200, Belgium
| |
Collapse
|