1
|
Liu D, Wang J, Zhang S, Jiang H, Wu Y, Wang C, Chen W. The potential of ARL4C and its-mediated genes in atherosclerosis and agent development. Front Pharmacol 2025; 16:1513340. [PMID: 40176913 PMCID: PMC11961928 DOI: 10.3389/fphar.2025.1513340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Foam cells are the risk factors for atherosclerosis. Recently, ARL4C, a member of the ADP-ribosylation factor family of GTP-binding proteins, was found to promote cholesterol efflux to decrease foam cell formation, suggesting that ARL4C may be a new promising target for the treatment of atherosclerosis. In fact, ARL4C regulated the expression of multiple atherosis-related genes, including ABCA1, ALDH1A3, ARF6, ENHO, FLNA, LRP6, OSBPL5, Snail2, and SOX2. Many agents, including ABCA1 agonists (CS-6253, IMM-H007, RG7273, and R3R-01), FLNA antagonist sumifilam, LRP6 inhibitor BI-905677 and agonist SZN-1326, and SOX2 inhibitor STEMVAC, were investigated in clinical trials. Targeting these genes could improve the success rate of drug development in clinical trials. Indeed, many agents could regulate ARL4C expression, including LXR/RXR agonists, Ac-LDL, sucrose, T9-t11-CLA, and miR-26. Downregulation of ARL4C with siRNA and anti-sense oligonucleotide (ASO), such as ASO-1316, is developing in preclinical research for the treatment of lung adenocarcinoma, liver cancer, and colorectal cancer. Thus, ARL4C and its regulated genes may be a potential target for drug development. Thus, we focus on the role of ARL4C and its-mediated genes in atherosclerosis and agent development, which provide insights for the identification, research, and drug development of novel targets.
Collapse
Affiliation(s)
- Dan Liu
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
| | - Jie Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Shuangshuang Zhang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Yudong Wu
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Chao Wang
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Wujun Chen
- Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai, Guangdong, China
- Affiliated Hospital of Qingdao University, Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
2
|
Ahamad S, Saquib M, Hussain MK, Bhat SA. Targeting Wnt signaling pathway with small-molecule therapeutics for treating osteoporosis. Bioorg Chem 2025; 156:108195. [PMID: 39864370 DOI: 10.1016/j.bioorg.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge. Despite advancements in computer-aided drug design, it is rarely employed for designing Wnt signaling activators to treat osteoporosis, and high-throughput screen (HTS) remains the primary method for discovering initial hits. Acknowledging the promising therapeutic potential of these compounds in addressing bone diseases, this review underscores the need for further mechanistic elucidation to enhance our understanding of their applications. Additionally, caution must be exercised in the design of small molecule-based Wnt activators due to their association with oncological risks.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, UP, India
| | | | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
3
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00823-y. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Bottasso-Arias N, Mohanakrishnan M, Trovillion S, Burra K, Russell NX, Wu Y, Xu Y, Sinner D. Wnt5a and Notum Influence the Temporal Dynamics of Cartilaginous Mesenchymal Condensations in Developing Trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.02.610014. [PMID: 39282283 PMCID: PMC11398369 DOI: 10.1101/2024.09.02.610014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The trachea is essential for proper airflow to the lungs for gas exchange. Frequent congenital tracheal malformations affect the cartilage, causing the collapse of the central airway during the respiratory cycle. We have shown that Notum, a Wnt ligand de-acylase that attenuates the canonical branch of the Wnt signaling pathway, is necessary for cartilaginous mesenchymal condensations. In Notum deficient tracheas, chondrogenesis is delayed, and the tracheal lumen is narrowed. It is unknown if Notum attenuates non-canonical Wnt signaling. We observed premature tracheal chondrogenesis after mesenchymal deletion of the non-canonical Wnt5a ligand. We hypothesize that Notum and Wnt5a are required to mediate the timely formation of mesenchymal condensations, giving rise to the tracheal cartilage. Ex vivo culture of tracheal tissue shows that chemical inhibition of the Wnt non-canonical pathway promotes earlier condensations, while Notum inhibition presents delayed condensations. Furthermore, non-canonical Wnt induction prevents the formation of cartilaginous mesenchymal condensations. On the other hand, cell-cell interactions among chondroblasts increase in the absence of mesenchymal Wnt5a. By performing an unbiased analysis of the gene expression in Wnt5a and Notum deficient tracheas, we detect that by E11.5, mRNA of genes essential for chondrogenesis and extracellular matrix formation are upregulated in Wnt5a mutants. The expression profile supports the premature and delayed chondrogenesis observed in Wnt5a and Notum deficient tracheas, respectively. We conclude that Notum and Wnt5a are necessary for proper tracheal cartilage patterning by coordinating timely chondrogenesis. Thus, these studies shed light on molecular mechanisms underlying congenital anomalies of the trachea.
Collapse
Affiliation(s)
- Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology, Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program. Current affiliation University of Cincinnati, College of Medicine
| | - Sarah Trovillion
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Yixin Wu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Washington University in St. Louis, Division of Biology & Biomedical Sciences
| | - Yan Xu
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
5
|
Kelson CO, Tessmann JW, Geisen ME, He D, Wang C, Gao T, Evers BM, Zaytseva YY. Upregulation of Fatty Acid Synthase Increases Activity of β-Catenin and Expression of NOTUM to Enhance Stem-like Properties of Colorectal Cancer Cells. Cells 2024; 13:1663. [PMID: 39404424 PMCID: PMC11475157 DOI: 10.3390/cells13191663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Dysregulated fatty acid metabolism is an attractive therapeutic target for colorectal cancer (CRC). We previously reported that fatty acid synthase (FASN), a key enzyme of de novo synthesis, promotes the initiation and progression of CRC. However, the mechanisms of how upregulation of FASN promotes the initiation and progression of CRC are not completely understood. Here, using Apc/VillinCre and ApcMin mouse models, we show that upregulation of FASN is associated with an increase in activity of β-catenin and expression of multiple stem cell markers, including Notum. Genetic and pharmacological downregulation of FASN in mouse adenoma organoids decreases the activation of β-catenin and expression of Notum and significantly inhibits organoid formation and growth. Consistently, we demonstrate that NOTUM is highly expressed in human CRC and its expression positively correlates with the expression of FASN in tumor tissues. Utilizing overexpression and shRNA-mediated knockdown of FASN, we demonstrate that upregulation of FASN increases β-catenin transcriptional activity, NOTUM expression and secretion, and enhances stem-like properties of human CRC cells. Pharmacological inhibition of NOTUM decreases adenoma organoids growth and proliferation of cancer cells. In summary, upregulation of FASN enhances β-catenin signaling, increases NOTUM expression and stem-like properties of CRC cells, thus suggesting that targeting FASN upstream of the β-catenin/NOTUM axis may be an effective preventative therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Mariah E. Geisen
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| | - Daheng He
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Chi Wang
- Biostatistics and Bioinformatics Shared Resource Facility, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (D.H.); (C.W.)
| | - Tianyan Gao
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; (T.G.); (B.M.E.)
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; (C.O.K.); (J.W.T.); (M.E.G.)
| |
Collapse
|
6
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-mediated WNT silencing drives extravillous trophoblast cell lineage development. Proc Natl Acad Sci U S A 2024; 121:e2403003121. [PMID: 39325428 PMCID: PMC11459147 DOI: 10.1073/pnas.2403003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first-trimester EVT cells developing in situ and up-regulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial Per-Arnt-Sim (PAS) domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical Wingless-related integration site (WNT) signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Ayelen Moreno-Irusta
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Kaela M. Varberg
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Marija Kuna
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Khursheed Iqbal
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - Anna M. Galligos
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
| | - John D. Aplin
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Division of Developmental Biology and Medicine, Maternal and Fetal Health Research Centre, The University of Manchester, ManchesterM13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St. Mary’s Hospital, University of Manchester, ManchesterM13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai980-8575, Japan
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS66160
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO64108
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
7
|
Shukla V, Moreno-Irusta A, Varberg KM, Kuna M, Iqbal K, Galligos AM, Aplin JD, Choudhury RH, Okae H, Arima T, Soares MJ. NOTUM-MEDIATED WNT SILENCING DRIVES EXTRAVILLOUS TROPHOBLAST CELL LINEAGE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579974. [PMID: 38405745 PMCID: PMC10888853 DOI: 10.1101/2024.02.13.579974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Trophoblast stem (TS) cells have the unique capacity to differentiate into specialized cell types, including extravillous trophoblast (EVT) cells. EVT cells invade into and transform the uterus where they act to remodel the vasculature facilitating the redirection of maternal nutrients to the developing fetus. Disruptions in EVT cell development and function are at the core of pregnancy-related disease. WNT-activated signal transduction is a conserved regulator of morphogenesis of many organ systems, including the placenta. In human TS cells, activation of canonical WNT signaling is critical for maintenance of the TS cell stem state and its downregulation accompanies EVT cell differentiation. We show that aberrant WNT signaling undermines EVT cell differentiation. Notum, palmitoleoyl-protein carboxylesterase (NOTUM), a negative regulator of canonical WNT signaling, was prominently expressed in first trimester EVT cells developing in situ and upregulated in EVT cells derived from human TS cells. Furthermore, NOTUM was required for optimal human TS cell differentiation to EVT cells. Activation of NOTUM in EVT cells is driven, at least in part, by endothelial PAS domain 1 (also called hypoxia-inducible factor 2 alpha). Collectively, our findings indicate that canonical WNT signaling is essential for maintenance of human trophoblast cell stemness and regulation of human TS cell differentiation. Downregulation of canonical WNT signaling via the actions of NOTUM is required for optimal EVT cell differentiation.
Collapse
Affiliation(s)
- Vinay Shukla
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Kaela M. Varberg
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Marija Kuna
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Anna M. Galligos
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
| | - John D. Aplin
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Ruhul H. Choudhury
- Maternal and Fetal Health Research Centre, Division of Developmental Biology and Medicine, The University of Manchester, Manchester M13 9WL, United Kingdom
- Manchester Academic Health Sciences Centre, St Mary’s Hospital, University of Manchester, Manchester M13 9WL, United Kingdom
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811 Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Michael J. Soares
- Institute for Reproductive and Developmental Sciences, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS
- Center for Perinatal Research, Children’s Research Institute, Children’s Mercy, Kansas City, MO
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
8
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
9
|
Álvarez-Sánchez A, Grinat J, Doria-Borrell P, Mellado-López M, Pedrera-Alcócer É, Malenchini M, Meseguer S, Hemberger M, Pérez-García V. The GPI-anchor biosynthesis pathway is critical for syncytiotrophoblast differentiation and placental development. Cell Mol Life Sci 2024; 81:246. [PMID: 38819479 PMCID: PMC11143174 DOI: 10.1007/s00018-024-05284-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.
Collapse
Affiliation(s)
- Andrea Álvarez-Sánchez
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Johanna Grinat
- Epigenetics Programme, The Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Paula Doria-Borrell
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Maravillas Mellado-López
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Érica Pedrera-Alcócer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Marta Malenchini
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Salvador Meseguer
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| | - Myriam Hemberger
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Calle de Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
10
|
Tate EW, Soday L, de la Lastra AL, Wang M, Lin H. Protein lipidation in cancer: mechanisms, dysregulation and emerging drug targets. Nat Rev Cancer 2024; 24:240-260. [PMID: 38424304 DOI: 10.1038/s41568-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 03/02/2024]
Abstract
Protein lipidation describes a diverse class of post-translational modifications (PTMs) that is regulated by over 40 enzymes, targeting more than 1,000 substrates at over 3,000 sites. Lipidated proteins include more than 150 oncoproteins, including mediators of cancer initiation, progression and immunity, receptor kinases, transcription factors, G protein-coupled receptors and extracellular signalling proteins. Lipidation regulates the physical interactions of its protein substrates with cell membranes, regulating protein signalling and trafficking, and has a key role in metabolism and immunity. Targeting protein lipidation, therefore, offers a unique approach to modulate otherwise undruggable oncoproteins; however, the full spectrum of opportunities to target the dysregulation of these PTMs in cancer remains to be explored. This is attributable in part to the technological challenges of identifying the targets and the roles of protein lipidation. The early stage of drug discovery for many enzymes in the pathway contrasts with efforts for drugging similarly common PTMs such as phosphorylation and acetylation, which are routinely studied and targeted in relevant cancer contexts. Here, we review recent advances in identifying targetable protein lipidation pathways in cancer, the current state-of-the-art in drug discovery, and the status of ongoing clinical trials, which have the potential to deliver novel oncology therapeutics targeting protein lipidation.
Collapse
Affiliation(s)
- Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
- Francis Crick Institute, London, UK.
| | - Lior Soday
- Department of Chemistry, Imperial College London, London, UK
| | | | - Mei Wang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hening Lin
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
11
|
da Silva AM, Yevdokimova V, Benoit YD. Sam68 is a druggable vulnerability point in cancer stem cells. Cancer Metastasis Rev 2024; 43:441-456. [PMID: 37792222 PMCID: PMC11016129 DOI: 10.1007/s10555-023-10145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Sam68 (Src associated in mitosis of 68 kDa) is an RNA-binding and multifunctional protein extensively characterized in numerous cellular functions, such as RNA processing, cell cycle regulation, kinase- and growth factor signaling. Recent investigations highlighted Sam68 as a primary target of a class of reverse-turn peptidomimetic drugs, initially developed as inhibitors of Wnt/β-catenin mediated transcription. Further investigations on such compounds revealed their capacity to selectively eliminate cancer stem cell (CSC) activity upon engaging Sam68. This work highlighted previously unappreciated roles for Sam68 in the maintenance of neoplastic self-renewal and tumor-initiating functions. Here, we discuss the implication of Sam68 in tumorigenesis, where central findings support its contribution to chromatin regulation processes essential to CSCs. We also review advances in CSC-targeting drug discovery aiming to modulate Sam68 cellular distribution and protein-protein interactions. Ultimately, Sam68 constitutes a vulnerability point of CSCs and an attractive therapeutic target to impede neoplastic stemness in human tumors.
Collapse
Affiliation(s)
- Amanda Mendes da Silva
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Veronika Yevdokimova
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Yannick D Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
12
|
Li Q, Qi S, Liang J, Tian Y, He S, Liao Q, Xing S, Han L, Chen X. Review of triazole scaffolds for treatment and diagnosis of Alzheimer's disease. Chem Biol Interact 2023; 382:110623. [PMID: 37451665 DOI: 10.1016/j.cbi.2023.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Triazole scaffolds, a series of 5-membered heterocycles, are well known for their high efficacy, low toxicity, and superior pharmacokinetics. Alzheimer's disease (AD) is the first neurodegenerative disorder with complex pathological mechanisms. Triazole, as an aromatic group with three nitrogen atoms, forms polar and non-polar interactions with diverse key residues in the receptor-ligand binding procedure, and has been widely used in the molecular design in the development of anti-AD agents. Moreover, considering the simple synthesis approaches, triazole scaffolds are commonly used to link two pharmacodynamic groups in one chemical molecule, forming multi-target directed ligands (MTDLs). Furthermore, the click reaction between azide- and cyano-modified enzyme and ligand provides feasibility for the new modulator discovery, compound tissue distribution evaluation, enzyme localization, and pharmacological mechanism study, promoting the diagnosis of AD course.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Yuqing Tian
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Qinghong Liao
- Shandong Junrong Technology Transfer Co., Ltd, Qingdao, 266071, Shandong, PR China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Xuehong Chen
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
13
|
Kim H, Lichtenstein AH, Ganz P, Miller ER, Coresh J, Appel LJ, Rebholz CM. Associations of circulating proteins with lipoprotein profiles: proteomic analyses from the OmniHeart randomized trial and the Atherosclerosis Risk in Communities (ARIC) Study. Clin Proteomics 2023; 20:27. [PMID: 37400771 PMCID: PMC10316599 DOI: 10.1186/s12014-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Within healthy dietary patterns, manipulation of the proportion of macronutrient can reduce CVD risk. However, the biological pathways underlying healthy diet-disease associations are poorly understood. Using an untargeted, large-scale proteomic profiling, we aimed to (1) identify proteins mediating the association between healthy dietary patterns varying in the proportion of macronutrient and lipoproteins, and (2) validate the associations between diet-related proteins and lipoproteins in the Atherosclerosis Risk in Communities (ARIC) Study. METHODS In 140 adults from the OmniHeart trial, a randomized, cross-over, controlled feeding study with 3 intervention periods (carbohydrate-rich; protein-rich; unsaturated fat-rich dietary patterns), 4,958 proteins were quantified at the end of each diet intervention period using an aptamer assay (SomaLogic). We assessed differences in log2-transformed proteins in 3 between-diet comparisons using paired t-tests, examined the associations between diet-related proteins and lipoproteins using linear regression, and identified proteins mediating these associations using a causal mediation analysis. Levels of diet-related proteins and lipoprotein associations were validated in the ARIC study (n = 11,201) using multivariable linear regression models, adjusting for important confounders. RESULTS Three between-diet comparisons identified 497 significantly different proteins (protein-rich vs. carbohydrate-rich = 18; unsaturated fat-rich vs. carbohydrate-rich = 335; protein-rich vs. unsaturated fat-rich dietary patterns = 398). Of these, 9 proteins [apolipoprotein M, afamin, collagen alpha-3(VI) chain, chitinase-3-like protein 1, inhibin beta A chain, palmitoleoyl-protein carboxylesterase NOTUM, cathelicidin antimicrobial peptide, guanylate-binding protein 2, COP9 signalosome complex subunit 7b] were positively associated with lipoproteins [high-density lipoprotein (HDL)-cholesterol (C) = 2; triglyceride = 5; non-HDL-C = 3; total cholesterol to HDL-C ratio = 1]. Another protein, sodium-coupled monocarboxylate transporter 1, was inversely associated with HDL-C and positively associated with total cholesterol to HDL-C ratio. The proportion of the association between diet and lipoproteins mediated by these 10 proteins ranged from 21 to 98%. All of the associations between diet-related proteins and lipoproteins were significant in the ARIC study, except for afamin. CONCLUSIONS We identified proteins that mediate the association between healthy dietary patterns varying in macronutrients and lipoproteins in a randomized feeding study and an observational study. TRIAL REGISTRATION NCT00051350 at clinicaltrials.gov.
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
| | - Alice H. Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA USA
| | - Peter Ganz
- Department of Medicine, University of California San Francisco, San Francisco, CA USA
| | - Edgar R. Miller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Lawrence J. Appel
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 East Monument Street, Suite 2-500, Baltimore, MD 21287 USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
| |
Collapse
|
14
|
Atkinson BN, Willis NJ, Zhao Y, Patel C, Frew S, Costelloe K, Magno L, Svensson F, Jones EY, Fish PV. Designed switch from covalent to non-covalent inhibitors of carboxylesterase Notum activity. Eur J Med Chem 2023; 251:115132. [PMID: 36934521 PMCID: PMC10626578 DOI: 10.1016/j.ejmech.2023.115132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023]
Abstract
N-Acyl indolines 4 are potent, non-covalent Notum inhibitors developed from a covalent virtual screening hit 2a. The lead compounds were simple to synthesise, achieved excellent potency in a biochemical Notum-OPTS assay and restored Wnt signalling in a cell-based TCF/LEF reporter assay. Multiple high resolution X-ray structures established a common binding mode of these inhibitors with the indoline bound centred in the palmiteolate pocket with key interactions being aromatic stacking and a water mediated hydrogen bond to the oxyanion hole. These N-acyl indolines 4 will be useful tools for use in vitro studies to investigate the role of Notum in disease models, especially when paired with a structurally related covalent inhibitor (e.g. 4w and 2a). Overall, this study highlights the designed switch from covalent to non-covalent Notum inhibitors and so illustrates a complementary approach for hit generation and target inhibition.
Collapse
Affiliation(s)
- Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Chandni Patel
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Sarah Frew
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Kathryn Costelloe
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
15
|
Song L, Sun M, Shi J, Tian Z, Song Y, Liu H, Zhao S, Yin H, Ge G. Rational Construction of a Novel Bioluminescent Substrate for Sensing the Tumor-Associated Hydrolase Notum. Anal Chem 2023; 95:5489-5493. [PMID: 36962078 DOI: 10.1021/acs.analchem.3c00633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Notum, one of the key serine hydrolases in mammals, hydrolyzes the palmitoleoyl moieties of many important proteins and modulates multiple signaling pathways including Wnt/β-catenin signaling. Notum is tightly associated with multiple human diseases, but the reliable and practical tools for sensing Notum activities in complex biological systems are rarely reported. Herein, an efficient strategy was used to rationally construct a specific bioluminescent substrate for Notum. Following computer-aided molecular design and experimental verification, octanoyl luciferin (OL) was selected as the optimum substrate for human Notum, with excellent specificity, high detection sensitivity and high signal-to-noise ratio. Under physiological conditions, OL was readily hydrolyzed by Notum or Notum-containing biological specimens to release d-luciferin that could be easily detected by various fluorescence devices in the presence of luciferase. The applicability of OL for real-time sensing native Notum was examined in living cells, extracellular matrix, and tissue preparations. OL was also used for constructing a high-throughput assay for screening of Notum inhibitors, while a natural compound (bergapten) was newly identified as a potent Notum inhibitor. Collectively, this study devises a reliable and easy-to-use tool for sensing Notum activities in biological systems, which will strongly facilitate hNotum-associated fundamental studies, disease diagnosis, and drug discovery.
Collapse
Affiliation(s)
- Lilin Song
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Mengru Sun
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jinhui Shi
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenhao Tian
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yuqing Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huixin Liu
- Health Sciences Institute, China Medical University, Shenyang, Liaoning Province, 110122, China
| | - Shanshan Zhao
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning Province, 110042, China
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
16
|
A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging. Molecules 2023; 28:molecules28052317. [PMID: 36903562 PMCID: PMC10005208 DOI: 10.3390/molecules28052317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Carboxylesterases (CEs) play important physiological roles in the human body and are involved in numerous cellular processes. Monitoring CEs activity has great potential for the rapid diagnosis of malignant tumors and multiple diseases. Herein, we developed a new phenazine-based "turn-on" fluorescent probe DBPpys by introducing 4-bromomethyl-phenyl acetate to DBPpy, which can selectively detect CEs with a low detection limit (9.38 × 10-5 U/mL) and a large Stokes shift (more than 250 nm) in vitro. In addition, DBPpys can also be converted into DBPpy by carboxylesterase in HeLa cells and localized in lipid droplets (LDs), emitting bright near-infrared fluorescence under the irradiation of white light. Moreover, we achieved the detection of cell health status by measuring the intensity of NIR fluorescence after co-incubation of DBPpys with H2O2-pretreated HeLa cells, indicating that DBPpys has great potential applications for assessing CEs activity and cellular health.
Collapse
|
17
|
Shi JH, Zhao B, Song LL, Song YQ, Sun MR, Tian T, Chen HY, Song YQ, Sun JM, Ge GB. Chalcone derivatives as novel, potent and selective inhibitors against human Notum: Structure–activity relationships and biological evaluations. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
19
|
Macyczko JR, Wang N, Zhao J, Ren Y, Lu W, Ikezu TC, Zhao N, Liu CC, Bu G, Li Y. Suppression of Wnt/β-Catenin Signaling Is Associated with Downregulation of Wnt1, PORCN, and Rspo2 in Alzheimer's Disease. Mol Neurobiol 2023; 60:26-35. [PMID: 36215026 PMCID: PMC9795414 DOI: 10.1007/s12035-022-03065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/03/2022] [Indexed: 12/30/2022]
Abstract
Wnt and R-spondin (Rspo) proteins are two major types of endogenous Wnt/β-catenin signaling agonists. While Wnt/β-catenin signaling is greatly diminished in Alzheimer's disease (AD), it remains to be elucidated whether the inhibition of this pathway is associated with dysregulation of Wnt and Rspo proteins. By analyzing temporal cortex RNA-seq data of the human postmortem brain samples, we found that WNT1 and RRPO2 were significantly downregulated in human AD brains. In addition, the expression of Wnt acyltransferase porcupine (PORCN), which is essential for Wnt maturation and secretion, was greatly deceased in these human AD brains. Interestingly, the lowest levels of WNT1, PORCN, and RSPO2 expression were found in human AD brains carrying two copies of APOE4 allele, the strongest genetic risk factor of late-onset AD. Importantly, there were positive correlations among the levels of WNT1, PORCN, and RSPO2 expression in human AD brains. Supporting observations in humans, Wnt1, PORCN, and Rspo2 were downregulated and Wnt/β-catenin signaling was diminished in the 5xFAD amyloid model mice. In human APOE-targeted replacement mice, downregulation of WNT1, PORCN, and RSPO2 expression was positively associated with aging and APOE4 genotype. Finally, WNT1 and PORCN expression and Wnt/β-catenin signaling were inhibited in human APOE4 iPSC-derived astrocytes when compared to the isogenic APOE3 iPSC-derived astrocytes. Altogether, our findings suggest that the dysregulations of Wnt1, PORCN, and Rspo2 could be coordinated together to diminish Wnt/β-catenin signaling in aging- and APOE4-dependent manners in the AD brain.
Collapse
Affiliation(s)
- Jesse R Macyczko
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Tadafumi C Ikezu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
- Center for Regenerative Medicine, Neuroregeneration Laboratory, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
20
|
Functional regulation of Wnt protein through post-translational modifications. Biochem Soc Trans 2022; 50:1797-1808. [DOI: 10.1042/bst20220735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Wnts are lipid-modified signaling glycoproteins present in all metazoans that play key roles in development and homeostasis. Post-translational modifications of Wnts regulate their function. Wnts have a unique post-translational modification, O-linked palmitoleation, that is absolutely required for their function. This Wnt-specific modification occurs during Wnt biosynthesis in the endoplasmic reticulum (ER), catalyzed by the O-acyltransferase Porcupine (PORCN). Palmitoleation is required for Wnt to bind to its transporter Wntless (WLS/Evi) as well as to its receptor Frizzled (FZD). Recent structural studies have illustrated how PORCN recognizes its substrates, and how drugs inhibit this. The abundance of WLS is tightly regulated by intracellular recycling and ubiquitylation-mediated degradation in the ER. The function of Wnt glycosylation is less well understood, and the sites and types of glycosylation are not largely conserved among different Wnts. In polarized tissues, the type of glycans can determine whether the route of trafficking is apical or basolateral. In addition, pairing of the 24 highly conserved cysteines in Wnts to form disulfide bonds is critical in maintaining proper structure and activities. Extracellularly, the amino terminus of a subset of Wnts can be cleaved by a dedicated glycosylphosphatidylinositol (GPI)-anchored metalloprotease TIKI, resulting in the inactivation of these Wnt proteins. Additionally, NOTUM is a secreted extracellular carboxylesterase that removes the palmitoleate moiety from Wnt, antagonizing its activity. In summary, Wnt signaling activity is controlled at multiple layers by post-translational modifications.
Collapse
|
21
|
Sileo P, Simonin C, Melnyk P, Chartier-Harlin MC, Cotelle P. Crosstalk between the Hippo Pathway and the Wnt Pathway in Huntington's Disease and Other Neurodegenerative Disorders. Cells 2022; 11:cells11223631. [PMID: 36429058 PMCID: PMC9688160 DOI: 10.3390/cells11223631] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hippo pathway consists of a cascade of kinases that controls the phosphorylation of the co-activators YAP/TAZ. When unphosphorylated, YAP and TAZ translocate into the nucleus, where they mainly bind to the TEAD transcription factor family and activate genes related to cell proliferation and survival. In this way, the inhibition of the Hippo pathway promotes cell survival, proliferation, and stemness fate. Another pathway can modulate these processes, namely the Wnt/β-catenin pathway that is indeed involved in cellular functions such as proliferation and cell survival, as well as apoptosis, growth, and cell renewal. Wnt signaling can act in a canonical or noncanonical way, depending on whether β-catenin is involved in the process. In this review, we will focus only on the canonical Wnt pathway. It has emerged that YAP/TAZ are components of the β-catenin destruction complex and that there is a close relationship between the Hippo pathway and the canonical Wnt pathway. Furthermore, recent data have shown that both of these pathways may play a role in neurodegenerative diseases, such as Huntington's disease, Alzheimer's disease, or Amyotrophic Lateral Sclerosis. Thus, this review analyzes the Hippo pathway and the Wnt pathway, their crosstalk, and their involvement in Huntington's disease, as well as in other neurodegenerative disorders. Altogether, these data suggest possible therapeutic approaches targeting key players of these pathways.
Collapse
Affiliation(s)
- Pasquale Sileo
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Clémence Simonin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Centre de Référence Maladie de Huntington, CHU Lille, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
| | - Marie-Christine Chartier-Harlin
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| | - Philippe Cotelle
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000 Lille, France
- ENSCL-Centrale Lille, CS 90108, F-59652 Villeneuve d’Ascq, France
- Correspondence: (M.-C.C.-H.); (P.C.)
| |
Collapse
|
22
|
Willis N, Mahy W, Sipthorp J, Zhao Y, Woodward HL, Atkinson BN, Bayle ED, Svensson F, Frew S, Jeganathan F, Monaghan A, Benvegnù S, Jolly S, Vecchia L, Ruza RR, Kjær S, Howell S, Snijders AP, Bictash M, Salinas PC, Vincent JP, Jones EY, Whiting P, Fish PV. Design of a Potent, Selective, and Brain-Penetrant Inhibitor of Wnt-Deactivating Enzyme Notum by Optimization of a Crystallographic Fragment Hit. J Med Chem 2022; 65:7212-7230. [PMID: 35536179 PMCID: PMC9150124 DOI: 10.1021/acs.jmedchem.2c00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 12/26/2022]
Abstract
Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.
Collapse
Affiliation(s)
- Nicky
J. Willis
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - William Mahy
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - James Sipthorp
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Hannah L. Woodward
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Benjamin N. Atkinson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Elliott D. Bayle
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Fiona Jeganathan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Stefano Benvegnù
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Jolly
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Luca Vecchia
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Reinis R. Ruza
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Svend Kjær
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - Steven Howell
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | | | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Patricia C. Salinas
- Department
of Cell and Developmental Biology, Laboratory for Molecular and Cellular
Biology, University College London, London WC1E 6BT, U.K.
| | - Jean-Paul Vincent
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine,
Roosevelt Drive, Oxford OX3 7BN, U.K.
| | - Paul Whiting
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
- The
Francis Crick Institute, 1 Midland Road, Kings Cross, London NW1 1AT, U.K.
| |
Collapse
|
23
|
High-throughput optical assays for sensing serine hydrolases in living systems and their applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Silpa L, Sim R, Russell AJ. Recent Advances in Small Molecule Stimulation of Regeneration and Repair. Bioorg Med Chem Lett 2022; 61:128601. [PMID: 35123003 DOI: 10.1016/j.bmcl.2022.128601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/02/2022]
Abstract
Therapeutic approaches to stimulate regeneration and repair have the potential to transform healthcare and improve outcomes for patients suffering from numerous chronic degenerative diseases. To date most approaches have involved the transplantation of therapeutic cells, and while there have been a small number of clinical approvals, major hurdles exist to the routine adoption of such therapies. In recent years humans and other mammals have been shown to possess a regenerative capacity across multiple tissues and organs, and an innate regenerative and repair response has been shown to be activated in these organs in response to injury. These realisations have inspired a transformative approach in regenerative medicine: the development of new agents to directly target these innate regeneration and repair pathways. In this article we will review the current state of the art in the discovery of small molecule modulators of regeneration and their translation towards therapeutic agents, focussing specifically on the areas of neuroregeneration and cardiac regeneration.
Collapse
Affiliation(s)
- Laurence Silpa
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Rachel Sim
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA
| | - Angela J Russell
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford OX1 3TA; Department of Pharmacology, University of Oxford, University of Oxford OX1 3QT.
| |
Collapse
|
25
|
Steadman D, Atkinson BN, Zhao Y, Willis NJ, Frew S, Monaghan A, Patel C, Armstrong E, Costelloe K, Magno L, Bictash M, Jones EY, Fish PV, Svensson F. Virtual Screening Directly Identifies New Fragment-Sized Inhibitors of Carboxylesterase Notum with Nanomolar Activity. J Med Chem 2022; 65:562-578. [PMID: 34939789 DOI: 10.1021/acs.jmedchem.1c01735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Notum is a negative regulator of Wnt signaling acting through the hydrolysis of a palmitoleoylate ester, which is required for Wnt activity. Inhibitors of Notum could be of use in diseases where dysfunctional Notum activity is an underlying cause. A docking-based virtual screen (VS) of a large commercial library was used to shortlist 952 compounds for experimental validation as inhibitors of Notum. The VS was successful with 31 compounds having an IC50 < 500 nM. A critical selection process was then applied with two clusters and two singletons (1-4d) selected for hit validation. Optimization of 4d guided by structural biology identified potent inhibitors of Notum activity that restored Wnt/β-catenin signaling in cell-based models. The [1,2,4]triazolo[4,3-b]pyradizin-3(2H)-one series 4 represent a new chemical class of Notum inhibitors and the first to be discovered by a VS campaign. These results demonstrate the value of VS with well-designed docking models based on X-ray structures.
Collapse
Affiliation(s)
- David Steadman
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Benjamin N Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, OxfordOX3 7BN, U.K
| | - Nicky J Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Sarah Frew
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Amy Monaghan
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Chandni Patel
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Emma Armstrong
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Kathryn Costelloe
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Magda Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, OxfordOX3 7BN, U.K
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, LondonWC1E 6BT, U.K
| |
Collapse
|
26
|
Atkinson BN, Willis NJ, Smith J, Gill R, Ali J, Xu Z, Lai PS, Fish PV. Large-scale synthesis of Notum inhibitor 1-(2,4-dichloro-3-(trifluoromethyl)-phenyl)-1 H-1,2,3-triazole (ARUK3001185) employing a modified Sakai reaction as the key step. RSC Adv 2022; 12:26497-26503. [PMID: 36275171 PMCID: PMC9478995 DOI: 10.1039/d2ra05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022] Open
Abstract
1-Phenyl-1H-1,2,3-triazole 1 (ARUK3001185) was prepared on large scale from aniline 4 by application of both (1) a copper catalyzed azide–alkyne cycloaddition (CuAAC) with (trimethylsilyl)acetylene, and (2) a Clark modification of the Sakai reaction. The one-pot Sakai–Clark method with (MeO)2CHCH
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
NNHTos (2b) proved to be superior as it was operationally simple, metal-free, and avoided the use of aryl azide 7. The Sakai–Clark method has been reliably performed on large scale to produce >100 g of 1 in good efficiency and high purity. 1-Phenyl-1H-1,2,3-triazole 1 was prepared on large scale from aniline 4 by application of a one-pot Sakai–Clark reaction in good efficiency and high purity.![]()
Collapse
Affiliation(s)
- Benjamin N. Atkinson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Nicky J. Willis
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Jennifer Smith
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall, PL32 9RA, UK
| | - Rebecca Gill
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall, PL32 9RA, UK
| | - Jody Ali
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, Cornwall, PL32 9RA, UK
| | - Zhou Xu
- WuXi AppTec (Tianjin) Co., Ltd., 168 Nanhai Road, 10th Avenue, Tianjin Economic-Technological Development Area (TEDA), Tianjin 300457, P.R. China
| | - Ping-Shan Lai
- WuXi AppTec (Tianjin) Co., Ltd., 168 Nanhai Road, 10th Avenue, Tianjin Economic-Technological Development Area (TEDA), Tianjin 300457, P.R. China
| | - Paul V. Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
27
|
Zhao Y, Svensson F, Steadman D, Frew S, Monaghan A, Bictash M, Moreira T, Chalk R, Lu W, Fish PV, Jones EY. Structural Insights into Notum Covalent Inhibition. J Med Chem 2021; 64:11354-11363. [PMID: 34292747 PMCID: PMC8365597 DOI: 10.1021/acs.jmedchem.1c00701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Indexed: 12/28/2022]
Abstract
The carboxylesterase Notum hydrolyzes a palmitoleate moiety from Wingless/Integrated(Wnt) ligands and deactivates Wnt signaling. Notum inhibitors can restore Wnt signaling which may be of therapeutic benefit for pathologies such as osteoporosis and Alzheimer's disease. We report the identification of a novel class of covalent Notum inhibitors, 4-(indolin-1-yl)-4-oxobutanoate esters. High-resolution crystal structures of the Notum inhibitor complexes reveal a common covalent adduct formed between the nucleophile serine-232 and hydrolyzed butyric esters. The covalent interaction in solution was confirmed by mass spectrometry analysis. Inhibitory potencies vary depending on the warheads used. Mechanistically, the resulting acyl-enzyme intermediate carbonyl atom is positioned at an unfavorable angle for the approach of the active site water, which, combined with strong hydrophobic interactions with the enzyme pocket residues, hinders the intermediate from being further processed and results in covalent inhibition. These insights into Notum catalytic inhibition may guide development of more potent Notum inhibitors.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Fredrik Svensson
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - David Steadman
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Sarah Frew
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Amy Monaghan
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Magda Bictash
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - Tiago Moreira
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Rod Chalk
- Centre
for Medicines Discovery, University of Oxford, Oxford OX3 7DQ, U.K.
| | - Weixian Lu
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| | - Paul V. Fish
- Alzheimer’s
Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London WC1E 6BT, U.K.
| | - E. Yvonne Jones
- Division
of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, U.K.
| |
Collapse
|
28
|
Zhao Y, Jolly S, Benvegnu S, Jones EY, Fish PV. Small-molecule inhibitors of carboxylesterase Notum. Future Med Chem 2021; 13:1001-1015. [PMID: 33882714 PMCID: PMC8130783 DOI: 10.4155/fmc-2021-0036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
Notum has recently been identified as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group from Wnt proteins. There are emerging reports that Notum plays a role in human disease, with published data suggesting that targeting Notum could represent a new therapeutic approach for treating cancer, osteoporosis and neurodegenerative disorders. Complementary hit-finding strategies have been applied with successful approaches that include high-throughput screening, activity-based protein profiling, screening of fragment libraries and virtual screening campaigns. Structural studies are accelerating the discovery of new inhibitors of Notum. Three fit-for-purpose examples are LP-922056, ABC99 and ARUK3001185. The application of these small-molecule inhibitors is helping to further advance an understanding of the role Notum plays in human disease.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sarah Jolly
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Stefano Benvegnu
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Paul V Fish
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
29
|
Lai KKY, Kahn M. Pharmacologically Targeting the WNT/β-Catenin Signaling Cascade: Avoiding the Sword of Damocles. Handb Exp Pharmacol 2021; 269:383-422. [PMID: 34463849 DOI: 10.1007/164_2021_523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
WNT/β-catenin signaling plays fundamental roles in numerous developmental processes and in adult tissue homeostasis and repair after injury, by controlling cellular self-renewal, activation, division, differentiation, movement, genetic stability, and apoptosis. As such, it comes as no surprise that dysregulation of WNT/β-catenin signaling is associated with various diseases, including cancer, fibrosis, neurodegeneration, etc. Although multiple agents that specifically target the WNT/β-catenin signaling pathway have been studied preclinically and a number have entered clinical trials, none has been approved by the FDA to date. In this chapter, we provide our insights as to the reason(s) it has been so difficult to safely pharmacologically target the WNT/β-catenin signaling pathway and discuss the significant efforts undertaken towards this goal.
Collapse
Affiliation(s)
- Keane K Y Lai
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Michael Kahn
- Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|