1
|
Waibl F, Casagrande F, Dey F, Riniker S. Validating Small-Molecule Force Fields for Macrocyclic Compounds Using NMR Data in Different Solvents. J Chem Inf Model 2024; 64:7938-7948. [PMID: 39405498 PMCID: PMC11523072 DOI: 10.1021/acs.jcim.4c01120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Macrocycles are a promising class of compounds as therapeutics for difficult drug targets due to a favorable combination of properties: They often exhibit improved binding affinity compared to their linear counterparts due to their reduced conformational flexibility, while still being able to adapt to environments of different polarity. To assist in the rational design of macrocyclic drugs, there is need for computational methods that can accurately predict conformational ensembles of macrocycles in different environments. Molecular dynamics (MD) simulations remain one of the most accurate methods to predict ensembles quantitatively, although the accuracy is governed by the underlying force field. In this work, we benchmark four different force fields for their application to macrocycles by performing replica exchange with solute tempering (REST2) simulations of 11 macrocyclic compounds and comparing the obtained conformational ensembles to nuclear Overhauser effect (NOE) upper distance bounds from NMR experiments. Especially, the modern force fields OpenFF 2.0 and XFF yield good results, outperforming force fields like GAFF2 and OPLS/AA. We conclude that REST2 in combination with modern force fields can often produce accurate ensembles of macrocyclic compounds. However, we also highlight examples for which all examined force fields fail to produce ensembles that fulfill the experimental constraints.
Collapse
Affiliation(s)
- Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Fabio Casagrande
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Fabian Dey
- Roche
Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
2
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Ly HM, Desgagné M, Nguyen DT, Comeau C, Froehlich U, Marsault É, Boudreault PL. Insights on Structure-Passive Permeability Relationship in Pyrrole and Furan-Containing Macrocycles. J Med Chem 2024; 67:3711-3726. [PMID: 38417040 PMCID: PMC10946398 DOI: 10.1021/acs.jmedchem.3c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Macrocycles have recognized therapeutic potential, but their limited cellular permeability can hinder their development as oral drugs. To better understand the structure-permeability relationship of heterocycle-containing, semipeptidic macrocycles, a library was synthesized. These compounds were created by developing two novel reactions described herein: the reduction of activated oximes by LiBH4 and the aqueous reductive mono-N-alkylation of aldehydes using catalytic SmI2 and stoichiometric Zn. The permeability of the macrocycles was evaluated through a parallel artificial membrane permeability assay (PAMPA), and the results indicated that macrocycles with a furan incorporated into the structure have better passive permeability than those with a pyrrole moiety. Compounds bearing a 2,5-disubstituted pyrrole (endo orientation) were shown to be implicated in intramolecular H-bonds, enhancing their permeability. This study highlighted the impact of heterocycles moieties in semipeptides, creating highly permeable macrocycles, thus showing promising avenues for passive diffusion of drugs beyond the rule-of-five chemical space.
Collapse
Affiliation(s)
- Huy M Ly
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Michael Desgagné
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Duc Tai Nguyen
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Christian Comeau
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Ulrike Froehlich
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Éric Marsault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e ave Nord, Sherbrooke, QC J1H5N4, Canada
| |
Collapse
|
4
|
L'Exact M, Comeau C, Bourhis A, Boisvert O, Fröhlich U, Létourneau D, Marsault É, Lavigne P, Grandbois M, Boudreault PL. Beyond Rule-of-five: Permeability Assessment of Semipeptidic Macrocycles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184196. [PMID: 37400050 DOI: 10.1016/j.bbamem.2023.184196] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Compounds beyond the rule-of-five are generating interest as they expand the molecular toolbox for modulating targets previously considered "undruggable". Macrocyclic peptides are an efficient class of molecules for modulating protein-protein interactions. However, predicting their permeability is difficult as they differ from small molecules. Although constrained by macrocyclization, they generally retain some conformational flexibility associated with an enhanced ability to cross biological membranes. In this study, we investigated the relationship between the structure of semi-peptidic macrocycles and their membrane permeability through structural modifications. Based on a scaffold of four amino acids and a linker, we synthesized 56 macrocycles incorporating modifications in either stereochemistry, N-methylation, or lipophilicity and assessed their passive permeability using the parallel artificial membrane permeability assay (PAMPA). Our results show that some semi-peptidic macrocycles have adequate passive permeability even with properties outside the Lipinski rule of five. We found that N-methylation in position 2 and the addition of lipophilic groups to the side chain of tyrosine led to an improvement in permeability with a decrease in tPSA and 3D-PSA. This enhancement could be attributed to the shielding effect of the lipophilic group on some regions of the macrocycle, which in turn, facilitates a favorable macrocycle conformation for permeability, suggesting some degree of chameleonic behavior.
Collapse
Affiliation(s)
- Marion L'Exact
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Christian Comeau
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alix Bourhis
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Olivier Boisvert
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Ulrike Fröhlich
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Danny Létourneau
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre Lavigne
- Institut de Pharmacologie de Sherbrooke, Département de Biochimie Et Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Grandbois
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Ghosh P, Raj N, Verma H, Patel M, Chakraborti S, Khatri B, Doreswamy CM, Anandakumar SR, Seekallu S, Dinesh MB, Jadhav G, Yadav PN, Chatterjee J. An amide to thioamide substitution improves the permeability and bioavailability of macrocyclic peptides. Nat Commun 2023; 14:6050. [PMID: 37770425 PMCID: PMC10539501 DOI: 10.1038/s41467-023-41748-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.
Collapse
Affiliation(s)
- Pritha Ghosh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Nishant Raj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Hitesh Verma
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Monika Patel
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sohini Chakraborti
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Bhavesh Khatri
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Chandrashekar M Doreswamy
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - S R Anandakumar
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - Srinivas Seekallu
- Department of Pre-clinical Research, Anthem Biosciences Pvt. Ltd., Bangalore, 560099, Karnataka, India
| | - M B Dinesh
- Central Animal Facility, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Gajanan Jadhav
- Eurofins Advinus Biopharma Services India Pvt. Ltd., Bangalore, 560058, Karnataka, India
| | - Prem Narayan Yadav
- Neuroscience & Ageing Biology, CSIR-CDRI, Lucknow, 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jayanta Chatterjee
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
6
|
Tosh D, Fisher CL, Salmaso V, Wan TC, Campbell RG, Chen E, Gao ZG, Auchampach JA, Jacobson KA. First Potent Macrocyclic A 3 Adenosine Receptor Agonists Reveal G-Protein and β-Arrestin2 Signaling Preferences. ACS Pharmacol Transl Sci 2023; 6:1288-1305. [PMID: 37705595 PMCID: PMC10496144 DOI: 10.1021/acsptsci.3c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 09/15/2023]
Abstract
(N)-Methanocarba adenosine derivatives (A3 adenosine receptor (AR) agonists containing bicyclo[3.1.0]hexane replacing furanose) were chain-extended at N6 and C2 positions with terminal alkenes for ring closure. The resulting macrocycles of 17-20 atoms retained affinity, indicating a spatially proximal orientation of these receptor-bound chains, consistent with molecular modeling of 12. C2-Arylethynyl-linked macrocycle 19 was more A3AR-selective than 2-ether-linked macrocycle 12 (both 5'-methylamides, human (h) A3AR affinities (Ki): 22.1 and 25.8 nM, respectively), with lower mouse A3AR affinities. Functional hA3AR comparison of two sets of open/closed analogues in β-arrestin2 and Gi/o protein assays showed certain signaling preferences divergent from reference agonist Cl-IB-MECA 1. The potencies of 1 at all three Gαi isoforms were slightly less than its hA3AR binding affinity (Ki: 1.4 nM), while the Gαi1 and Gαi2 potencies of macrocycle 12 were roughly an order of magnitude higher than its radioligand binding affinity. Gαi2-coupling was enhanced in macrocycle 12 (EC50 2.56 nM, ∼40% greater maximal efficacy than 1). Di-O-allyl precursor 18 cyclized to form 19, increasing the Gαi1 potency by 7.5-fold. The macrocycles 12 and 19 and their open precursors 11 and 18 potently stimulated β-arrestin2 recruitment, with EC50 values (nM) of 5.17, 4.36, 1.30, and 4.35, respectively, and with nearly 50% greater efficacy compared to 1. This example of macrocyclization altering the coupling pathways of small-molecule (nonpeptide) GPCR agonists is the first for potent and selective macrocyclic AR agonists. These initial macrocyclic derivatives can serve as a guide for the future design of macrocyclic AR agonists displaying unanticipated pharmacology.
Collapse
Affiliation(s)
- Dilip
K. Tosh
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Courtney L. Fisher
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Veronica Salmaso
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
- Molecular
Modeling Section, Department of Pharmaceutical and Pharmacological
Sciences, University of Padua, Padua 35131, Italy
| | - Tina C. Wan
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Ryan G. Campbell
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Eric Chen
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| | - John A. Auchampach
- Department
of Pharmacology & Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Kenneth A. Jacobson
- Laboratory
of Bioorganic Chemistry, National Institute of Diabetes and Digestive
and Kidney Disease, National Institutes
of Health, 9000 Rockville
Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
7
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
8
|
Ai Y, Sakamuru S, Imler G, Xia M, Xue F. Improving the solubility and antileukemia activity of Wnt/β-catenin signaling inhibitors by disrupting molecular planarity. Bioorg Med Chem 2022; 69:116890. [PMID: 35777269 PMCID: PMC9390976 DOI: 10.1016/j.bmc.2022.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Leukemia cells depend on the Wnt/β-catenin signaling pathway for their growth. Pyrvinium, a known Wnt signaling inhibitor, has demonstrated promising efficacy in the treatment of the aggressive blast phase chronic myeloid leukemia (BP-CML). We previously developed potent inhibitors 1-2 for the Wnt/β-catenin signaling pathway. However, the further application of these compounds as anti-leukemia agents is limited by their modest anti-leukemia activity in cells and poor aqueous solubility, due to the high molecular planarity of the chemical scaffold. Here, we reported our efforts in the synthesis and in vitro evaluation of 18 new compounds (4a-r) that have been designed to disrupt the molecular planarity of the chemical scaffold. Several compounds of the series showed significantly improved anti-leukemia activity and aqueous solubility. As a highlight, compounds 4c not only maintained excellent inhibitory potency (IC50 = 1.3 nM) for Wnt signaling but also demonstrated good anti-leukemia potency (IC50 = 0.9 µM) in the CML K562 cells. Moreover, compound 4c had an aqueous solubility of 5.9 µg/mL, which is over 50-fold enhanced compared to its parents 1-2.
Collapse
Affiliation(s)
- Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States
| | - Srilatha Sakamuru
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Greg Imler
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, D.C. 20375, United States
| | - Menghang Xia
- 9800 Medical Center Drive, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States.
| |
Collapse
|
9
|
Shimizu H, Renslo A. Systematic Exploration of Passive Permeability in Tetrapeptides with Hydrogen---Bond Accepting Amino Acid Side Chains. ChemMedChem 2022; 17:e202200204. [PMID: 35696654 DOI: 10.1002/cmdc.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/10/2022] [Indexed: 11/08/2022]
Abstract
We synthesized and experimentally tested the passive permeability of more than thirty tetrapeptides mimicking the N -terminus of the pro-apoptotic protein Smac (Second mitochondria-derived activator of caspases). Each peptide bore one or two unnatural Hydrogen Bond Acceptor-bearing Amino Acid (HBA-AA) residues, such that intramolecular hydrogen bonding with proximal backbone amide N-H donors is feasible. Passive permeability of the synthetic peptides was determined using the parallel artificial membrane permeability assay (PAMPA). Experimental permeability values were found to span three orders of magnitude, providing useful empirical guidance for the design of more permeable Smac mimetics specifically, and peptidic ligands generally.
Collapse
Affiliation(s)
- Hiroki Shimizu
- Daiichi Sankyo Pharma Development, Medicinal Chemistry, JAPAN
| | - Adam Renslo
- University of California San Francisco School of Pharmacy, Pharmaceutical Chemistry, 600 16th Street, Genentech Hall N572B, 94143, San Francisco, UNITED STATES
| |
Collapse
|
10
|
Linker SM, Schellhaas C, Ries B, Roth HJ, Fouché M, Rodde S, Riniker S. Polar/apolar interfaces modulate the conformational behavior of cyclic peptides with impact on their passive membrane permeability. RSC Adv 2022; 12:5782-5796. [PMID: 35424539 PMCID: PMC8981571 DOI: 10.1039/d1ra09025a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Cyclic peptides have the potential to vastly extend the scope of druggable proteins and lead to new therapeutics for currently untreatable diseases. However, cyclic peptides often suffer from poor bioavailability. To uncover design principles for permeable cyclic peptides, a promising strategy is to analyze the conformational dynamics of the peptides using molecular dynamics (MD) and Markov state models (MSMs). Previous MD studies have focused on the conformational dynamics in pure aqueous or apolar environments to rationalize membrane permeability. However, during the key steps of the permeation through the membrane, cyclic peptides are exposed to interfaces between polar and apolar regions. Recent studies revealed that these interfaces constitute the free energy minima of the permeation process. Thus, a deeper understanding of the behavior of cyclic peptides at polar/apolar interfaces is desired. Here, we investigate the conformational and kinetic behavior of cyclic decapeptides at a water/chloroform interface using unbiased MD simulations and MSMs. The distinct environments at the interface alter the conformational equilibrium as well as the interconversion kinetics of cyclic peptide conformations. For peptides with low population of the permeable conformation in aqueous solution, the polar/apolar interface facilitates the interconversion to the closed conformation, which is required for membrane permeation. Comparison to unbiased MD simulations with a POPC bilayer reveals that not only the conformations but also the orientations are relevant in a membrane system. These findings allow us to propose a permeability model that includes both 'prefolding' and 'non-prefolding' cyclic peptides - an extension that can lead to new design considerations for permeable cyclic peptides.
Collapse
Affiliation(s)
- Stephanie M Linker
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Christian Schellhaas
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Benjamin Ries
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Hans-Jörg Roth
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus 4056 Basel Switzerland
| | - Marianne Fouché
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus 4056 Basel Switzerland
| | - Stephane Rodde
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus 4056 Basel Switzerland
| | - Sereina Riniker
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| |
Collapse
|
11
|
Wang S, König G, Roth HJ, Fouché M, Rodde S, Riniker S. Effect of Flexibility, Lipophilicity, and the Location of Polar Residues on the Passive Membrane Permeability of a Series of Cyclic Decapeptides. J Med Chem 2021; 64:12761-12773. [PMID: 34406766 DOI: 10.1021/acs.jmedchem.1c00775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyclic peptides have received increasing attention over the recent years as potential therapeutics for "undruggable" targets. One major obstacle is, however, their often relatively poor bioavailability. Here, we investigate the structure-permeability relationship of 24 cyclic decapeptides that share the same backbone N-methylation pattern but differ in their side chains. The peptides cover a large range of values for passive membrane permeability as well as lipophilicity and solubility. To rationalize the observed differences in permeability, we extracted for each peptide the population of the membrane-permeable conformation in water from extensive explicit-solvent molecular dynamics simulations and used this as a metric for conformational rigidity or "prefolding." The insights from the simulations together with lipophilicity measurements highlight the intricate interplay between polarity/lipophilicity and flexibility/rigidity and the possible compensating effects on permeability. The findings allow us to better understand the structure-permeability relationship of cyclic peptides and extract general guiding principles.
Collapse
Affiliation(s)
- Shuzhe Wang
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Gerhard König
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
12
|
Sarret P. Éric Marsault (1971-2021): A Legacy through the Prism of Relationship Chemistry. J Med Chem 2021; 64:5221-5224. [PMID: 33760613 DOI: 10.1021/acs.jmedchem.1c00481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|