1
|
Xu Y, Pang Y, Luo L, Sharma A, Yang J, Li C, Liu S, Zhan J, Sun Y. De Novo Designed Ru(II) Metallacycle as a Microenvironment-Adaptive Sonosensitizer and Sonocatalyst for Multidrug-Resistant Biofilms Eradication. Angew Chem Int Ed Engl 2024; 63:e202319966. [PMID: 38327168 DOI: 10.1002/anie.202319966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Albeit sonodynamic therapy (SDT) has achieved encouraging progress in microbial sterilization, the scarcity of guidelines for designing highly effective sonosensitizers and the intricate biofilm microenvironment (BME), substantially hamper the therapeutic efficacy against biofilm infections. To address the bottlenecks, we innovatively design a Ru(II) metallacycle-based sonosensitizer/sonocatalyst (named Ru-A3-TTD) to enhance the potency of sonotherapy by employing molecular engineering strategies tailored to BME. Our approach involves augmenting Ru-A3-TTD's production of ultrasonic-triggered reactive oxygen species (ROS), surpassing the performance of commercial sonosensitizers, through a straightforward but potent π-expansion approach. Within the BME, Ru-A3-TTD synergistically amplifies sonotherapeutic efficacy via triple-modulated approaches: (i) effective alleviation of hypoxia, leading to increased ROS generation, (ii) disruption of the antioxidant defense system, which shields ROS from glutathione consumption, and (iii) enhanced biofilm penetration, enabling ROS production in deep sites. Notably, Ru-A3-TTD sono-catalytically oxidizes NADPH, a critical coenzyme involved in antioxidant defenses. Consequently, Ru-A3-TTD demonstrates superior biofilm eradication potency against multidrug-resistant Escherichia coli compared to conventional clinical antibiotics, both in vitro and in vivo. To our knowledge, this study represents the pioneering instance of a supramolecular sonosensitizer/sonocatalyst. It provides valuable insights into the structure-activity relationship of sonosensitizers and paves a promising pathway for the treatment of biofilm infections.
Collapse
Affiliation(s)
- Yuling Xu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yida Pang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Lishi Luo
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, China
| | - Amit Sharma
- Amity School of Chemical Sciences, Amity University Punjab, Mohali, 140 306, India
| | - Jingfang Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianbo Zhan
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, 430070, China
| | - Yao Sun
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
2
|
Cao N, Jiang Y, Song ZB, Chen D, Wu D, Chen ZL, Yan YJ. Synthesis and evaluation of novel meso-substitutedphenyl dithieno[3,2-b]thiophene-fused BODIPY derivatives as efficient photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 264:116012. [PMID: 38056302 DOI: 10.1016/j.ejmech.2023.116012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The discovery of new photosensitizer drugs with long wavelength Uv-vis absorption, high efficiency and low side-effects is still a challenge in photodynamic therapy. Here a series of novel meso-substitutedphenyl thieno[3,2-b]thiophene-fused BODIPY derivatives were designed, synthesized and characterized. All these compounds have strong absorption at 640-680 nm and obvious fluorescence emission at 650-760 nm. They exhibited high singlet oxygen generation ability and significant photodynamic efficiency against Eca-109 cancer cells. Compounds II4, II6, II9, II10 and II13 could generate intracellular ROS and induce cell apoptosis after laser irradiation, which displayed superior photodynamic efficiency against Eca-109 cells than Temoporfin in vitro and in vivo. Among them, compound II4 specifically exhibited excellent anti-tumor efficacy, and could be selected as a new drug candidate for PDT.
Collapse
Affiliation(s)
- Ning Cao
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Ying Jiang
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Zhi-Bing Song
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China
| | - Danye Chen
- Department of Chemistry, Imperial College of London, London, SW72AZ, UK
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons, 123 St Stephen's Green, Dublin, 2, Ireland
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, Donghua University, Shanghai, 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai, 201620, China.
| |
Collapse
|
3
|
Pandurang TP, Cacaccio J, Durrani FA, Dukh M, Alsaleh AZ, Sajjad M, D'Souza F, Kumar D, Pandey RK. A Remarkable Difference in Pharmacokinetics of Fluorinated Versus Iodinated Photosensitizers Derived from Chlorophyll-a and a Direct Correlation between the Tumor Uptake and Anti-Cancer Activity. Molecules 2023; 28:molecules28093782. [PMID: 37175191 PMCID: PMC10180080 DOI: 10.3390/molecules28093782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate and compare the pharmacokinetic profile and anti-cancer activity of fluorinated and iodinated photosensitizers (PSs), the 3-(1'-(o-fluorobenzyloxy)ethyl pyropheophorbide and the corresponding meta-(m-) and para (p-) fluorinated analogs (methyl esters and carboxylic acids) were synthesized. Replacing iodine with fluorine in PSs did not make any significant difference in fluorescence and singlet oxygen (a key cytotoxic agent) production. The nature of the delivery vehicle and tumor types showed a significant difference in uptake and long-term cure by photodynamic therapy (PDT), especially in the iodinated PS. An unexpected difference in the pharmacokinetic profiles of fluorinated vs. iodinated PSs was observed. At the same imaging parameters, the fluorinated PSs showed maximal tumor uptake at 2 h post injection of the PS, whereas the iodinated PS gave the highest uptake at 24 h post injection. Among all isomers, the m-fluoro PS showed the best in vivo anti-cancer activity in mice bearing U87 (brain) or bladder (UMUC3) tumors. A direct correlation between the tumor uptake and PDT efficacy was observed. The higher tumor uptake of m-fluoro PS at two hours post injection provides a solid rationale for developing the corresponding 18F-agent (half-life 110 min only) for positron imaging tomography (PET) of those cancers (e.g., bladder, prostate, kidney, pancreas, and brain) where 18F-FDG-PET shows limitations.
Collapse
Affiliation(s)
- Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph Cacaccio
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Farukh A Durrani
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mykhaylo Dukh
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Ajyal Z Alsaleh
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Munawwar Sajjad
- Department of Nuclear Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14221, USA
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Ravindra K Pandey
- Photodynamic Therapy Center, Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
4
|
Conjugates of Tetrapyrrolic Macrocycles as Potential Anticancer Target-Oriented Photosensitizers. Top Curr Chem (Cham) 2023; 381:10. [PMID: 36826755 DOI: 10.1007/s41061-023-00421-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/28/2023] [Indexed: 02/25/2023]
Abstract
Photodynamic therapy is a minimally invasive treatment of tumors using photosensitizers, light, and reactive oxygen species, which can destroy cellular structures. With the development of photodynamic therapy, significant efforts have been made to create new efficient photosensitizers with improved delivery to cells, stability, and selectivity against cancer tissues. Naturally occurring tetrapyrrolic macrocycles, such as porphyrins and chlorins, are very attractive as photosensitizers, and their structural modification and conjugation with other biologically active molecules are promising approaches for creating new photosensitizers specifically targeting cancer cells. The present review aims to highlight recent developments in the design, preparation, and investigation of complex conjugates of tetrapyrrolic macrocycles, which can potentially be used as sensitizers for target-oriented photodynamic therapy of cancer. In this review, we discuss the structure, photodynamic effect, and anticancer activity of the following conjugates of tetrapyrrolic macrocycles: (1) conjugates obtained by modifying peripheral substituents in porphyrins and chlorins; (2) conjugates of porphyrins and chlorins with lipids, carbohydrates, steroids, and peptides; (3) conjugates of porphyrins and chlorins with anticancer drugs and some other biologically active molecules; (4) metal-containing conjugates. The question of how the conjugate structure affects its specificity, internalization, localization, and photoinduced toxicity within cancer cells is the focus of this review.
Collapse
|
5
|
Tu L, Li C, Xiong X, Hyeon Kim J, Li Q, Mei L, Li J, Liu S, Seung Kim J, Sun Y. Engineered Metallacycle-Based Supramolecular Photosensitizers for Effective Photodynamic Therapy. Angew Chem Int Ed Engl 2023; 62:e202301560. [PMID: 36786535 DOI: 10.1002/anie.202301560] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Although metallacycle-based supramolecular photosensitizers (PSs) have attracted increasing attention in biomedicine, their clinical translation is still hindered by their inherent dark toxicity. Herein, we report what to our knowledge is the first example of a molecular engineering approach to building blocks of metallacycles for constructing a series of supramolecular PSs (RuA-RuD), with the aim of simultaneously reducing dark toxicity and enhancing phototoxicity, and consequently obtaining high phototoxicity indexes (PI). Detailed in vitro investigations demonstrate that RuA-RuD display high cancer cellular uptake and remarkable antitumor activity even under hypoxic conditions. Notably, RuD exhibited no dark toxicity and displayed the highest PI value (≈406). Theoretical calculations verified that RuD has the largest steric hindrance and the lowest singlet-triplet energy gap (ΔEST , 0.61 eV). Further in vivo studies confirmed that RuD allows safe and effective phototherapy against A549 tumors.
Collapse
Affiliation(s)
- Le Tu
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Chonglu Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Qian Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Qingdao University of Science & Technology, Qingdao, 266100, China
| | - Longcan Mei
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Junrong Li
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Korea
| | - Yao Sun
- National Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
6
|
Ramzi NI, Mishiro K, Munekane M, Fuchigami T, Hu X, Jastrząb R, Kitamura Y, Kinuya S, Ogawa K. Synthesis and evaluation of radiolabeled porphyrin derivatives for cancer diagnoses and their nonradioactive counterparts for photodynamic therapy. RSC Med Chem 2022; 13:1565-1574. [PMID: 36561065 PMCID: PMC9749959 DOI: 10.1039/d2md00234e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/19/2022] [Indexed: 12/25/2022] Open
Abstract
Radioiodinated porphyrin derivatives and the corresponding nonradioactive iodine introduced compounds, [125I]I-TPPOH ([125I]3), [125I]I-l-tyrosine-TPP ([125I]9), I-TPPOH (3), and I-l-tyrosine-TPP (9) were designed, synthesized, and evaluated by in vitro and in vivo experiments. In cytotoxicity assays, 3 and 9 exhibited significant cytotoxicity under light conditions but did not show significant cytotoxicity without light irradiation. Biodistribution experiments with [125I]3 and [125I]9 showed similar distribution patterns with high retention in tumors. In photodynamic therapeutic (PDT) experiments, 3 and 9 at a dose of 13.6 μmol kg-1 weight with 50 W single light irradiation onto the tumor area significantly inhibited tumor growth. These results indicate that the iodinated porphyrin derivatives [123/natI]3 and [123/natI]9 are promising cancer theranostic agents.
Collapse
Affiliation(s)
- Nur Izni Ramzi
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Kenji Mishiro
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Masayuki Munekane
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Takeshi Fuchigami
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| | - Xiaojun Hu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University Shanghai 200444 China
| | - Renata Jastrząb
- Faculty of Chemistry, Adam Mickiewicz University of Poznan Uniwersytetu Poznanskiego 8 Poznan 61-614 Poland
| | - Yoji Kitamura
- Research Center for Experimental Modeling of Human Disease, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8640 Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa University Takara-machi 13-1 Kanazawa Ishikawa 920-8641 Japan
| | - Kazuma Ogawa
- Graduate School of Pharmaceutical Sciences, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
- Institute for Frontier Science Initiative, Kanazawa University Kakuma-machi Kanazawa Ishikawa 920-1192 Japan
| |
Collapse
|
7
|
Tumor Cell-Specific Retention and Photodynamic Action of Erlotinib-Pyropheophorbide Conjugates. Int J Mol Sci 2022; 23:ijms231911081. [PMID: 36232384 PMCID: PMC9569946 DOI: 10.3390/ijms231911081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
To enhance uptake of photosensitizers by epithelial tumor cells by targeting these to EGFR, pyropheophorbide derivatives were synthesized that had erlotinib attached to different positions on the macrocycle. Although the addition of erlotinib reduced cellular uptake, several compounds showed prolonged cellular retention and maintained photodynamic efficacy. The aim of this study was to identify whether erlotinib moiety assists in tumor targeting through interaction with EGFR and whether this interaction inhibits EGFR kinase activity. The activity of the conjugates was analyzed in primary cultures of human head and neck tumor cells with high-level expression of EGFR, and in human carcinomas grown as xenografts in mice. Uptake of erlotinib conjugates did not correlate with cellular expression of EGFR and none of the compounds exerted EGFR-inhibitory activity. One derivative with erlotinib at position 3, PS-10, displayed enhanced tumor cell-specific retention in mitochondria/ER and improved PDT efficacy in a subset of tumor cases. Moreover, upon treatment of the conjugates with therapeutic light, EGFR-inhibitory activity was recovered that attenuated EGFR signal-dependent tumor cell proliferation. This finding suggests that tumor cell-specific deposition of erlotinib-pyropheophorbides, followed by light triggered release of EGFR-inhibitory activity, may improve photodynamic therapy by attenuating tumor growth that is dependent on EGFR-derived signals.
Collapse
|