1
|
Siddiquee NH, Sujan MSI, Dremit TI, Rahat EH, Barman K, Karim M, Nandi C, Akter S, Talukder MEK, Hosen MS, Khaled M, Saha O. Natural Products in Precision Neurological Disease (Cryptococcal Meningitis): Structure-Based Phytochemical Screening of Glycyrrhiza glabra Plant Against Cryptococcus neoformans Farnesyltransferase (FTase). Chem Biodivers 2024:e202401987. [PMID: 39714914 DOI: 10.1002/cbdv.202401987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/01/2024] [Accepted: 12/23/2024] [Indexed: 12/24/2024]
Abstract
Cryptococcus neoformans causes cryptococcal meningitis, which is lethal to immune-compromised people, especially AIDS patients. This study employed diverse in silico techniques to find the best phytochemical to block farnesyltransferase (FTase). Based on molecular docking, the top two compounds selected from a screening of 5807 phytochemical compounds from 29 medicinal plants were CID_8299 (hydroxyacetone) and CID_71346280 (1,7-bis (4-hydroxyphenyl)-1,4,6-heptatrien-3-one), with docking scores of -5.786 and -0.078 kcal/mol, respectively, indicating stronger binding affinities than the control CID_3365 (fluconazole), which scored -4.2 kcal/mol. The control and lead compounds bind at the common active site of protein by interacting with common amino acid residues (HIS97, GLN408, PHE93, and TRP94). Post-docking MM-GBSA verified docking score where CID_8299 and CID_71346280 had negative binding free energies of -19.81 and -0.27 kcal/mol, respectively. These two lead compounds were reassessed through molecular dynamics simulation (100 ns), and several post-dynamics analyses were conducted. CID_71346280, 8299, and 3365 (control) showed average RSMD values of 3.17, 1.904, and 2.08; average root mean square fluctuation values of 1.167, 0.886, and 1.028 Å; average radius of gyration values of 5.13, 1.58, and 3.54 Å; average solvent accessible surface area values of 121.16, 3.51, and 183.81 Å2; average H-bond values of 466.05, 470.84, and 456.84 Å, respectively. The results revealed that CID_8299 had the highest stability and consistent interaction with the target protein throughout the simulation period. According to the toxicity analysis, CID_8299, which is found in the Glycyrrhiza glabra plant, can also cross the BBB, which makes it unbeatable in treating neuro-disease caused by C. neoformans and may potentially block FTase protein's activity inhibiting post-translational lipidation of essential signal transduction protein.
Collapse
Affiliation(s)
- Noimul Hasan Siddiquee
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md Shiful Islam Sujan
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Microbiology, Jahangirnagar University, Dhaka, Bangladesh
| | - Tasnuva Islam Dremit
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Botany, Jahangirnagar University, Dhaka, Bangladesh
| | - Ekramul Hasan Rahat
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh
| | - Kripa Barman
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Mathematics and Natural Sciences (MNS), BRAC University, Dhaka, Bangladesh
| | - Mahima Karim
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Botany, Govt. Titumir College, Dhaka, Bangladesh
| | - Chinmoy Nandi
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka, Bangladesh
| | - Sumi Akter
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Sapan Hosen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| | - Md Khaled
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Otun Saha
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
- Bioinformatics Laboratory (BioLab), Noakhali, Bangladesh
| |
Collapse
|
2
|
Oh H, Kim J, Park J, Choi Z, Hong J, Jeon BY, Ka H, Hong M. Structure-based molecular characterization of a putative aspartic proteinase from Bacteroides fragilis. Biochem Biophys Res Commun 2024; 738:150547. [PMID: 39178580 DOI: 10.1016/j.bbrc.2024.150547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Bacteroides fragilis resides in mammals and human intestines and secrete series of proteins and molecules outside that cause various diseases such as colon cancer and chronic colitis in the host. B. fragilis has been shown to produce numerous proteins to the infected cell surface which are involved in host colonization, microbial interactions, and pathogenicity. Among secreted proteins, a B. fragilis toxin (BFT) is a metalloprotease and disintegrates the epithelial cell layer and causes colon cancers. Except the BFT, information of secreted proteases from B. fragilis is limited and no structure is available. Aspartic proteinase cleaves a peptide bond using two aspartate residues in a catalytic site in acidic conditions, pH ranges from 3 to 6. Aspartic proteinase have been characterized mostly from eukaryotes and retroviruses but rare from bacteria including B. fragilis. A putative aspartic proteinase is identified from the B. fragilis genome and prepared recombinantly as a Bacteroides aspartic proteinase (BAPtase). The crystal structure of BAPtase was determined at 2.6 Å. Structure-based comparative and endopeptidase analyses demonstrated that BAPtase presents a two-domain structure and is a functional aspartic proteinase in unusually weak basic pHs, which would propose to be a critical in bacterial pathogenesis and in host immunity. Our observations on the distinct structural and catalytic properties of BAPtase would benefit the future development of B. fragilis-specific drugs or preventatives.
Collapse
Affiliation(s)
- Hansol Oh
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Junghun Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jaewan Park
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Zion Choi
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Jongkwang Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Bo-Young Jeon
- Department of Biomedical Laboratory Science, Yonsei University, Wonju, 26493, Republic of Korea
| | - Hakhyun Ka
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minsun Hong
- Division of Biological Science and Technology, Yonsei University, Wonju, 26493, Republic of Korea.
| |
Collapse
|
3
|
Ngece K, Ntondini TL, Khwaza V, Paca AM, Aderibigbe BA. Polyene-Based Derivatives with Antifungal Activities. Pharmaceutics 2024; 16:1065. [PMID: 39204411 PMCID: PMC11360744 DOI: 10.3390/pharmaceutics16081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Polyenes are a class of organic compounds well known for their potent antifungal properties. They are effective due to their ability to target and disrupt fungal cell membranes by binding to ergosterol and forming pores. Despite their effectiveness as antifungal drugs, polyenes have several limitations, such as high toxicity to the host cell and poor solubility in water. This has prompted ongoing research to develop safer and more efficient derivatives to overcome such limitations while enhancing their antifungal activity. In this review article, we present a thorough analysis of polyene derivatives, their structural modifications, and their influence on their therapeutic effects against various fungal strains. Key studies are discussed, illustrating how structural modifications have led to improved antifungal properties. By evaluating the latest advancements in the synthesis of polyene derivatives, we highlight that incorporating amide linkers at the carboxylic moiety of polyene molecules notably improves their antifungal properties, as evidenced by derivatives 4, 5, 6G, and 18. This review can help in the design and development of novel polyene-based compounds with potent antifungal activities.
Collapse
Affiliation(s)
| | | | - Vuyolwethu Khwaza
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| | | | - Blessing A. Aderibigbe
- Department of Chemistry, University of Fort Hare, Alice 5700, Eastern Cape, South Africa; (K.N.); (T.L.N.); (A.M.P.)
| |
Collapse
|
4
|
Shestakova A, Fatkulin A, Surkova D, Osmolovskiy A, Popova E. First Insight into the Degradome of Aspergillus ochraceus: Novel Secreted Peptidases and Their Inhibitors. Int J Mol Sci 2024; 25:7121. [PMID: 39000228 PMCID: PMC11241649 DOI: 10.3390/ijms25137121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Aspergillus fungi constitute a pivotal element within ecosystems, serving as both contributors of biologically active compounds and harboring the potential to cause various diseases across living organisms. The organism's proteolytic enzyme complex, termed the degradome, acts as an intermediary in its dynamic interaction with the surrounding environment. Using techniques such as genome and transcriptome sequencing, alongside protein prediction methodologies, we identified putative extracellular peptidases within Aspergillus ochraceus VKM-F4104D. Following manual annotation procedures, a total of 11 aspartic, 2 cysteine, 2 glutamic, 21 serine, 1 threonine, and 21 metallopeptidases were attributed to the extracellular degradome of A. ochraceus VKM-F4104D. Among them are enzymes with promising applications in biotechnology, potential targets and agents for antifungal therapy, and microbial antagonism factors. Thus, additional functionalities of the extracellular degradome, extending beyond mere protein substrate digestion for nutritional purposes, were demonstrated.
Collapse
Affiliation(s)
- Anna Shestakova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | - Artem Fatkulin
- Laboratory of Molecular Physiology, HSE University, Moscow 101000, Russia
| | - Daria Surkova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| | | | - Elizaveta Popova
- Department of Microbiology, Lomonosov MSU, Moscow 119234, Russia; (A.S.); (A.O.)
| |
Collapse
|
5
|
Li Y, Chadwick B, Pham T, Xie X, Lin X. Aspartyl peptidase May1 induces host inflammatory response by altering cell wall composition in the fungal pathogen Cryptococcus neoformans. mBio 2024; 15:e0092024. [PMID: 38742885 PMCID: PMC11237595 DOI: 10.1128/mbio.00920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Cryptococcus neoformans causes cryptococcal meningoencephalitis, a disease that kills more than 180,000 people annually. Contributing to its success as a fungal pathogen is its cell wall surrounded by a capsule. When the cryptococcal cell wall is compromised, exposed pathogen-associated molecular pattern molecules (PAMPs) could trigger host recognition and initiate attack against this fungus. Thus, cell wall composition and structure are tightly regulated. The cryptococcal cell wall is unusual in that chitosan, the acetylated form of chitin, is predominant over chitin and is essential for virulence. Recently, it was shown that acidic pH weakens the cell wall and increases exposure of PAMPs partly due to decreased chitosan levels. However, the molecular mechanism responsible for the cell wall remodeling in acidic pH is unknown. In this study, by screening for genes involved in cryptococcal tolerance to high levels of CO2, we serendipitously discovered that the aspartyl peptidase May1 contributes to cryptococcal sensitivity to high levels of CO2 due to acidification of unbuffered media. Overexpression of MAY1 increases the cryptococcal cell size and elevates PAMP exposure, causing a hyper-inflammatory response in the host while MAY1 deletion does the opposite. We discovered that May1 weakens the cell wall and reduces the chitosan level, partly due to its involvement in the degradation of Chs3, the sole chitin synthase that supplies chitin to be converted to chitosan. Consistently, overexpression of CHS3 largely rescues the phenotype of MAY1oe in acidic media. Collectively, we demonstrate that May1 remodels the cryptococcal cell wall in acidic pH by reducing chitosan levels through its influence on Chs3. IMPORTANCE The fungal cell wall is a dynamic structure, monitoring and responding to internal and external stimuli. It provides a formidable armor to the fungus. However, in a weakened state, the cell wall also triggers host immune attack when PAMPs, including glucan, chitin, and mannoproteins, are exposed. In this work, we found that the aspartyl peptidase May1 impairs the cell wall of Cryptococcus neoformans and increases the exposure of PAMPs in the acidic environment by reducing the chitosan level. Under acidic conditions, May1 is involved in the degradation of the chitin synthase Chs3, which supplies chitin to be deacetylated to chitosan. Consistently, the severe deficiency of chitosan in acidic pH can be rescued by overexpressing CHS3. These findings improve our understanding of cell wall remodeling and reveal a potential target to compromise the cell wall integrity in this important fungal pathogen.
Collapse
Affiliation(s)
- Yeqi Li
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Benjamin Chadwick
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Tuyetnhu Pham
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Department of Plant Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Herman RA, Ayepa E, Zhang WX, Li ZN, Zhu X, Ackah M, Yuan SS, You S, Wang J. Molecular modification and biotechnological applications of microbial aspartic proteases. Crit Rev Biotechnol 2024; 44:388-413. [PMID: 36842994 DOI: 10.1080/07388551.2023.2171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 02/28/2023]
Abstract
The growing preference for incorporating microbial aspartic proteases in industries is due to their high catalytic function and high degree of substrate selectivity. These properties, however, are attributable to molecular alterations in their structure and a variety of other characteristics. Molecular tools, functional genomics, and genome editing technologies coupled with other biotechnological approaches have aided in improving the potential of industrially important microbial proteases by addressing some of their major limitations, such as: low catalytic efficiency, low conversion rates, low thermostability, and less enzyme yield. However, the native folding within their full domain is dependent on a surrounding structure which challenges their functionality in substrate conversion, mainly due to their mutual interactions in the context of complex systems. Hence, manipulating their structure and controlling their expression systems could potentially produce enzymes with high selectivity and catalytic functions. The proteins produced by microbial aspartic proteases are industrially capable and far-reaching in regulating certain harmful distinctive industrial processes and the benefits of being eco-friendly. This review provides: an update on current trends and gaps in microbial protease biotechnology, exploring the relevant recombinant strategies and molecular technologies widely used in expression platforms for engineering microbial aspartic proteases, as well as their potential industrial and biotechnological applications.
Collapse
Affiliation(s)
- Richard Ansah Herman
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, P. R. China
| | - Ellen Ayepa
- Oil Palm Research Institute, Council for Scientific and Industrial Research, Kusi, Ghana
| | - Wen-Xin Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Zong-Nan Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Xuan Zhu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuang-Shuang Yuan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
| | - Shuai You
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| | - Jun Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, P.R. China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, P.R. China
| |
Collapse
|
7
|
Mpamhanga CD, Kounatidis I. The utility of Drosophila melanogaster as a fungal infection model. Front Immunol 2024; 15:1349027. [PMID: 38550600 PMCID: PMC10973011 DOI: 10.3389/fimmu.2024.1349027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
Invasive fungal diseases have profound effects upon human health and are on increase globally. The World Health Organization (WHO) in 2022 published the fungal priority list calling for improved public health interventions and advance research. Drosophila melanogaster presents an excellent model system to dissect host-pathogen interactions and has been proved valuable to study immunopathogenesis of fungal diseases. In this review we highlight the recent advances in fungal-Drosophila interplay with an emphasis on the recently published WHO's fungal priority list and we focus on available tools and technologies.
Collapse
Affiliation(s)
| | - Ilias Kounatidis
- School of Life Health and Chemical Sciences, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
8
|
Gutierrez-Gongora D, Woods M, Prosser RS, Geddes-McAlister J. Natural compounds from freshwater mussels disrupt fungal virulence determinants and influence fluconazole susceptibility in the presence of macrophages in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0284123. [PMID: 38329361 PMCID: PMC10913472 DOI: 10.1128/spectrum.02841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.
Collapse
Affiliation(s)
| | - Michael Woods
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S. Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
9
|
Kulshrestha A, Gupta P. Secreted aspartyl proteases family: a perspective review on the regulation of fungal pathogenesis. Future Microbiol 2023; 18:295-309. [PMID: 37097060 DOI: 10.2217/fmb-2022-0143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Secreted aspartyl proteases (SAPs) are important enzymes for fungal pathogenicity, playing a significant role in infection and survival. This article provides insight into how SAPs facilitate the transformation of yeast cells into hyphae and engage in biofilm formation, invasion and degradation of host cells and proteins. SAPs and their isoenzymes are prevalent during fungal infections, making them a potential target for antifungal and antibiofilm therapies. By targeting SAPs, critical stages of fungal pathogenesis such as adhesion, hyphal development, biofilm formation, host invasion and immune evasion can potentially be disrupted. Developing therapies that target SAPs could provide an effective treatment option for a wide range of fungal infections.
Collapse
Affiliation(s)
- Anmol Kulshrestha
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| | - Pratima Gupta
- Department of Biotechnology, National Institute of Technology, Raipur, 492010, India
| |
Collapse
|
10
|
Yu J, Lai J, Neal BM, White BJ, Banik MT, Dai SY. Genomic Diversity and Phenotypic Variation in Fungal Decomposers Involved in Bioremediation of Persistent Organic Pollutants. J Fungi (Basel) 2023; 9:418. [PMID: 37108874 PMCID: PMC10145412 DOI: 10.3390/jof9040418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Fungi work as decomposers to break down organic carbon, deposit recalcitrant carbon, and transform other elements such as nitrogen. The decomposition of biomass is a key function of wood-decaying basidiomycetes and ascomycetes, which have the potential for the bioremediation of hazardous chemicals present in the environment. Due to their adaptation to different environments, fungal strains have a diverse set of phenotypic traits. This study evaluated 320 basidiomycetes isolates across 74 species for their rate and efficiency of degrading organic dye. We found that dye-decolorization capacity varies among and within species. Among the top rapid dye-decolorizing fungi isolates, we further performed genome-wide gene family analysis and investigated the genomic mechanism for their most capable dye-degradation capacity. Class II peroxidase and DyP-type peroxidase were enriched in the fast-decomposer genomes. Gene families including lignin decomposition genes, reduction-oxidation genes, hydrophobin, and secreted peptidases were expanded in the fast-decomposer species. This work provides new insights into persistent organic pollutant removal by fungal isolates at both phenotypic and genotypic levels.
Collapse
Affiliation(s)
- Jiali Yu
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jingru Lai
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Brian M. Neal
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Bert J. White
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
| | - Mark T. Banik
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI 53726, USA
| | - Susie Y. Dai
- Systems and Synthetic Biology Innovation Hub, Texas A&M University, College Station, TX 77843, USA; (J.Y.)
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
The human pathobiont Malassezia furfur secreted protease Mfsap1 regulates cell dispersal and exacerbates skin inflammation. Proc Natl Acad Sci U S A 2022; 119:e2212533119. [PMID: 36442106 PMCID: PMC9894114 DOI: 10.1073/pnas.2212533119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Malassezia form the dominant eukaryotic microbial community on the human skin. The Malassezia genus possesses a repertoire of secretory hydrolytic enzymes involved in protein and lipid metabolism which alter the external cutaneous environment. The exact role of most Malassezia secreted enzymes, including those in interaction with the epithelial surface, is not well characterized. In this study, we compared the expression level of secreted proteases, lipases, phospholipases, and sphingomyelinases of Malassezia globosa in healthy subjects and seborrheic dermatitis or atopic dermatitis patients. We observed upregulated gene expression of the previously characterized secretory aspartyl protease MGSAP1 in both diseased groups, in lesional and non-lesional skin sites, as compared to healthy subjects. To explore the functional roles of MGSAP1 in skin disease, we generated a knockout mutant of the homologous protease MFSAP1 in the genetically tractable Malassezia furfur. We observed the loss of MFSAP1 resulted in dramatic changes in the cell adhesion and dispersal in both culture and a human 3D reconstituted epidermis model. In a murine model of Malassezia colonization, we further demonstrated Mfsap1 contributes to inflammation as observed by reduced edema and inflammatory cell infiltration with the knockout mutant versus wildtype. Taken together, we show that this dominant secretory Malassezia aspartyl protease has an important role in enabling a planktonic cellular state that can potentially aid in colonization and additionally as a virulence factor in barrier-compromised skin, further highlighting the importance of considering the contextual relevance when evaluating the functions of secreted microbial enzymes.
Collapse
|
12
|
Li W, Yun Z, Ji C, Tu J, Yang W, Li J, Liu N, Sheng C. Discovery of Novel Sertraline Derivatives as Potent Anti- Cryptococcus Agents. J Med Chem 2022; 65:6541-6554. [DOI: 10.1021/acs.jmedchem.1c01845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhaolin Yun
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Changjin Ji
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wanzhen Yang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jian Li
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
13
|
Cryptococcal Protease(s) and the Activation of SARS-CoV-2 Spike (S) Protein. Cells 2022; 11:cells11030437. [PMID: 35159253 PMCID: PMC8834071 DOI: 10.3390/cells11030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
In this contribution, we report on the possibility that cryptococcal protease(s) could activate the SARS-CoV-2 spike (S) protein. The S protein is documented to have a unique four-amino-acid sequence (underlined, SPRRAR↓S) at the interface between the S1 and S2 sites, that serves as a cleavage site for the human protease, furin. We compared the biochemical efficiency of cryptococcal protease(s) and furin to mediate the proteolytic cleavage of the S1/S2 site in a fluorogenic peptide. We show that cryptococcal protease(s) processes this site in a manner comparable to the efficiency of furin (p > 0.581). We conclude the paper by discussing the impact of these findings in the context of a SARS-CoV-2 disease manifesting while there is an underlying cryptococcal infection.
Collapse
|
14
|
Gutierrez-Gongora D, Geddes-McAlister J. Peptidases: promising antifungal targets of the human fungal pathogen, Cryptococcus neoformans. Facets (Ott) 2022. [DOI: 10.1139/facets-2021-0157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cryptococcus neoformans is a globally important fungal pathogen, primarily inflicting disease on immunocompromised individuals. The widespread use of antifungal agents in medicine and agriculture supports the development of antifungal resistance through evolution, and the emergence of new strains with intrinsic resistance drives the need for new therapeutics. For C. neoformans, the production of virulence factors, including extracellular peptidases (e.g., CnMpr-1 and May1) with mechanistic roles in tissue invasion and fungal survival, constitute approximately 2% of the fungal proteome and cover five classes of enzymes. Given their role in fungal virulence, peptidases represent promising targets for anti-virulence discovery in the development of new approaches against C. neoformans. Additionally, intracellular peptidases, which are involved in resistance mechanisms against current treatment options (e.g., azole drugs), as well as capsule biosynthesis and elaboration of virulence factors, present additional opportunities to combat the pathogen. In this review, we highlight key cryptococcal peptidases with defined or predicted roles in fungal virulence and assess sequence alignments against their human homologs. With this information, we define the feasibility of the select peptidases as “druggable” targets for inhibition, representing prospective therapeutic options against the deadly fungus.
Collapse
Affiliation(s)
- Davier Gutierrez-Gongora
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, La Habana, Cuba
| | - Jennifer Geddes-McAlister
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian Proteomics and Artificial Intelligence Research and Training Consortium
| |
Collapse
|
15
|
Bouz G, Doležal M. Advances in Antifungal Drug Development: An Up-To-Date Mini Review. Pharmaceuticals (Basel) 2021; 14:1312. [PMID: 34959712 PMCID: PMC8706862 DOI: 10.3390/ph14121312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
The utility of clinically available antifungals is limited by their narrow spectrum of activity, high toxicity, and emerging resistance. Antifungal drug discovery has always been a challenging area, since fungi and their human host are eukaryotes, making it difficult to identify unique targets for antifungals. Novel antifungals in clinical development include first-in-class agents, new structures for an established target, and formulation modifications to marketed antifungals, in addition to repurposed agents. Membrane interacting peptides and aromatherapy are gaining increased attention in the field. Immunotherapy is another promising treatment option, with antifungal antibodies advancing into clinical trials. Novel targets for antifungal therapy are also being discovered, allowing the design of new promising agents that may overcome the resistance issue. In this mini review, we will summarize the current status of antifungal drug pipelines in clinical stages, and the most recent advancements in preclinical antifungal drug development, with special focus on their chemistry.
Collapse
Affiliation(s)
- Ghada Bouz
- Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic
| | - Martin Doležal
- Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic
| |
Collapse
|
16
|
From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021; 7:jof7121016. [PMID: 34946998 PMCID: PMC8704869 DOI: 10.3390/jof7121016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Proteases are involved in a broad range of physiological processes, including host invasion by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs of these inhibitory molecules with improved efficacy and target range has been underscored by recent protease characterization related to infection and antimicrobial resistance. In this regard, naturally-sourced inhibitors show promise for application in diverse biological systems due to high stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants, invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized bioactive molecules involved in host defense against predators and pathogens. In this Review, we highlight discoveries of protease inhibitors from environmental sources, propose new opportunities for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant fungal diseases with in vivo and clinical purpose.
Collapse
|
17
|
The Possible Role of Microbial Proteases in Facilitating SARS-CoV-2 Brain Invasion. BIOLOGY 2021; 10:biology10100966. [PMID: 34681064 PMCID: PMC8533249 DOI: 10.3390/biology10100966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
SARS-CoV-2 has been shown to display proclivity towards organs bearing angiotensin-converting enzyme (ACE2) expression cells. Of interest herein is the ability of the virus to exhibit neurotropism. However, there is limited information on how this virus invades the brain. With this contribution, we explore how, in the context of a microbial co-infection using a cryptococcal co-infection as a model, SARS-CoV-2 could reach the brain. We theorise that the secretion of proteases by disseminated fungal cells might also activate the S2 domain of the viral spike glycoprotein for membrane fusion with brain endothelial cells leading to endocytosis. Understanding this potential invasion mechanism could lead to better SARS-CoV-2 intervention measures, which may also be applicable in instances of co-infection, especially with protease-secreting pathogens.
Collapse
|