1
|
Jiang S, Li Y, Zhang J, Jia W, Zheng Y, Jia Z, Yu C, Kong Y. Dual Inhibition of Factor XIIa and Factor XIa Produces a Synergistic Anticoagulant Effect. J Cardiovasc Pharmacol 2024; 84:71-80. [PMID: 38922574 DOI: 10.1097/fjc.0000000000001573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT Clinical practice shows that a critical unmet need in the field of thrombosis prevention is the availability of anticoagulant therapy without bleeding risk. Inhibitors against FXIa or FXIIa have been extensively studied because of their low bleeding risk. However, whether these compounds produce synergistic effects has not yet been explored. In this study, analyses of activated partial thromboplastin time in combination with the FXIa inhibitor PN2KPI and the FXIIa inhibitor Infestin4 at different proportions were performed using the SynergyFinder tool identifying synergistic anticoagulation effects. Both an FeCl 3 -induced carotid artery thrombosis mouse model and a transient occlusion of the middle cerebral artery mouse model showed that the combination of PN2KPI and Infestin4, which are 28.57% and 6.25% of the effective dose, respectively, significantly prevents coagulation, and furthermore, dual inhibition does not cause bleeding risk.
Collapse
Affiliation(s)
- Shuai Jiang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| | - Yitong Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| | - Jiali Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| | - Wenhui Jia
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| | - Yizheng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| | - Zhiping Jia
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| | - Chenming Yu
- Department of Intervention Radiology, Lishui District People's Hospital, Nanjing, China
| | - Yi Kong
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China ; and
| |
Collapse
|
2
|
Xie Z, Meng Z, Yang X, Duan Y, Wang Q, Liao C. Factor XIa Inhibitors in Anticoagulation Therapy: Recent Advances and Perspectives. J Med Chem 2023; 66:5332-5363. [PMID: 37037122 DOI: 10.1021/acs.jmedchem.2c02130] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Collapse
Affiliation(s)
- Zhouling Xie
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zhiwei Meng
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xiaoxiao Yang
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Duan
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Chenzhong Liao
- Department of Pharmaceutical Sciences and Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
3
|
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023; 62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
4
|
Short KM, Estiarte MA, Pham SM, Williams DC, Igoudin L, Dash S, Sandoval N, Datta A, Pozzi N, Di Cera E, Kita DB. Discovery of novel N-acylpyrazoles as potent and selective thrombin inhibitors. Eur J Med Chem 2023; 246:114855. [PMID: 36462436 DOI: 10.1016/j.ejmech.2022.114855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/08/2022] [Accepted: 10/08/2022] [Indexed: 01/04/2023]
Abstract
Direct oral anticoagulants (DOACs), which includes thrombin and factor Xa inhibitors, have emerged as the preferred therapeutics for thrombotic disorders, penetrating a market previously dominated by warfarin and heparin. This article describes the discovery and profiling of a novel series of N-acylpyrazoles, which act as selective, covalent, reversible, non-competitive inhibitors of thrombin. We describe in vitro stability issues associated with this chemotype and, importantly, demonstrate that N-acylpyrazoles successfully act in vivo as anticoagulants in basic thrombotic animal models. Crucially, this anticoagulant nature is unaccompanied by the higher bleeding risk profile that has become an undesirable characteristic of the DTIs and factor Xa inhibitors. We propose that the N-acylpyrazole chemotype shows intriguing promise as next-generation oral anticoagulants.
Collapse
Affiliation(s)
- Kevin M Short
- Verseon, 47071 Bayside Parkway, Fremont, CA, 94538, USA.
| | | | - Son M Pham
- Verseon, 47071 Bayside Parkway, Fremont, CA, 94538, USA
| | | | - Lev Igoudin
- Verseon, 47071 Bayside Parkway, Fremont, CA, 94538, USA
| | - Subhadra Dash
- Verseon, 47071 Bayside Parkway, Fremont, CA, 94538, USA
| | | | - Anirban Datta
- Verseon, 47071 Bayside Parkway, Fremont, CA, 94538, USA
| | - Nicola Pozzi
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Department of Biochemistry and Molecular Biology, Edward A. Doisy Research Center, Saint Louis University School of Medicine, 1100 South Grand Blvd., St. Louis, MO, 63104, USA
| | - David B Kita
- Verseon, 47071 Bayside Parkway, Fremont, CA, 94538, USA
| |
Collapse
|
5
|
Jing H, Zuo N, Novakovic VA, Shi J. The Central Role of Extracellular Vesicles in the Mechanisms of Thrombosis in COVID-19 Patients With Cancer and Therapeutic Strategies. Front Cell Dev Biol 2022; 9:792335. [PMID: 35096822 PMCID: PMC8790316 DOI: 10.3389/fcell.2021.792335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer patients have increased SARS-CoV-2 susceptibility and are prone to developing severe COVID-19 infections. The incidence of venous thrombosis is approximately 20% in COVID-19 patients with cancer. It has been suggested that thrombus formation has been suggested to correlate with severe clinical manifestations, mortality, and sequelae. In this review, we primarily elaborate on the pathophysiological mechanisms of thrombosis in COVID-19 patients with cancer, emphasize the role of microparticles (MPs) and phosphatidylserine (PS) in coagulation, and propose an antithrombotic strategy. The coagulation mechanisms of COVID-19 and cancer synergistically amplify the coagulation cascade, and collectively promotes pulmonary microvascular occlusion. During systemic coagulation, the virus activates immune cells to release abundant proinflammatory cytokines, referred to as cytokine storm, resulting in the apoptosis of tumor and blood cells and subsequent MPs release. Additionally, we highlight that tumor cells contribute to MPs and coagulation by apoptosis owing to insufficient blood supply. A positive feedback loop of cytokines storm and MPs storm promotes microvascular coagulation storm, leading to microthrombi formation and inadequate blood perfusion. Microthrombi-damaged endothelial cells (ECs), tumor, and blood cells further aggravate the apoptosis of the cells and facilitate MPs storm. PS, especially on MPs, plays a pivotal role in the blood coagulation process, contributing to clot initiation, amplification, and propagation. Since coagulation is a common pathway of COVID-19 and cancer, and associated with mortality, patients would benefit from antithrombotic therapy. The above results lead us to assert that early stage antithrombotic therapy is optimal. This strategy is likely to maintain blood flow patency contributing to viral clearance, attenuating the formation of cytokines and MPs storm, maintaining oxygen saturation, and avoiding the progress of the disease.
Collapse
Affiliation(s)
- Haijiao Jing
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Nan Zuo
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China
| | - Valerie A Novakovic
- Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States
| | - Jialan Shi
- Department of Hematology, The First Hospital, Harbin Medical University, Harbin, China.,Department of Research, VA Boston Healthcare System, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
6
|
Carle V, Kong XD, Comberlato A, Edwards C, Díaz-Perlas C, Heinis C. Generation of a 100-billion cyclic peptide phage display library having a high skeletal diversity. Protein Eng Des Sel 2021; 34:6333815. [PMID: 34341825 DOI: 10.1093/protein/gzab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Phage display is a powerful technique routinely used for the generation of peptide- or protein-based ligands. The success of phage display selections critically depends on the size and structural diversity of the libraries, but the generation of large libraries remains challenging. In this work, we have succeeded in developing a phage display library comprising around 100 billion different (bi)cyclic peptides and thus more structures than any previously reported cyclic peptide phage display library. Building such a high diversity was achieved by combining a recently reported library cloning technique, based on whole plasmid PCR, with a small plasmid that facilitated bacterial transformation. The library cloned is based on 273 different peptide backbones and thus has a large skeletal diversity. Panning of the peptide repertoire against the important thrombosis target coagulation factor XI enriched high-affinity peptides with long consensus sequences that can only be found if the library diversity is large.
Collapse
Affiliation(s)
- Vanessa Carle
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Xu-Dong Kong
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Alice Comberlato
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Chelsea Edwards
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Cristina Díaz-Perlas
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|