1
|
Qu HQ, Kao C, Hakonarson H. Implications of the non-neuronal cholinergic system for therapeutic interventions of inflammatory skin diseases. Exp Dermatol 2024; 33:e15181. [PMID: 39422283 DOI: 10.1111/exd.15181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/19/2024]
Abstract
The pivotal roles of acetylcholine (ACh) in physiological processes encompass both the nervous and non-neuronal cholinergic systems (NNCS). This review delineates the synthesis, release, receptor interactions, and degradation of ACh within the nervous system, and explores the NNCS in depth within skin cells including keratinocytes, endothelial cells, fibroblasts, macrophages, and other immune cells. We highlight the NNCS's essential functions in maintaining epidermal barrier integrity, promoting wound healing, regulating microcirculation, and modulating inflammatory responses. The potential of the NNCS as a therapeutic target for localized ACh regulation in the skin is discussed, though the translation of these findings into clinical practice remains uncertain due to the complexity of cholinergic signalling and the lack of comprehensive human studies. The review progresses to therapeutic modulation strategies of the NNCS, including AChE inhibitors, nicotinic and muscarinic receptor agonists and antagonists, choline uptake enhancers, and botulinum toxin, highlighting their relevance in dermatology. We highlight the impact of the NNCS on prevalent skin diseases such as psoriasis, atopic dermatitis, rosacea, acne, bullous diseases, hyperhidrosis and hypohidrosis, illustrating its significance in disease pathogenesis and therapy. This comprehensive overview aims to enhance understanding of the NNCS's role in skin health and disease, offering a foundation for future research and therapeutic innovation.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Rizzi A, Amari G, Pivetti F, Delcanale M, Amadei F, Pappani A, Fornasari L, Villetti G, Marchini G, Pisano AR, Pitozzi V, Pittelli MG, Trevisani M, Salvadori M, Cenacchi V, Fioni A, Puccini P, Civelli M, Patacchini R, Baker-Glenn C, Van de Poël H, Blackaby W, Nash K, Armani E. Optimization of M 3 Antagonist-PDE4 Inhibitor (MAPI) Dual Pharmacology Molecules for the Treatment of COPD. J Med Chem 2023; 66:11476-11497. [PMID: 37561958 DOI: 10.1021/acs.jmedchem.3c01012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Aiming at the inhaled treatment of pulmonary diseases, the optimization process of the previously reported MAPI compound 92a is herein described. The project was focused on overcoming the chemical stability issue and achieving a balanced bronchodilator/anti-inflammatory profile in rats in order to be confident in a clinical effect without having to overdose at one of the biological targets. The chemical strategy was based on fine-tuning of the substitution pattern in the muscarinic and PDE4 structural portions of the dual pharmacology compounds, also making use of the analysis of a proprietary crystal structure in the PDE4 catalytic site. Compound 10f was identified as a chemically stable, potent, and in vivo balanced MAPI lead compound, as assessed in bronchoconstriction and inflammation assays in rats after intratracheal administration. After the in-depth investigation of the pharmacological and solid-state profile, 10f proved to be safe and suitable for development.
Collapse
Affiliation(s)
- Andrea Rizzi
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gabriele Amari
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Fausto Pivetti
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Delcanale
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Francesco Amadei
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alice Pappani
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Luca Fornasari
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gino Villetti
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Gessica Marchini
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Anna Rita Pisano
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Vanessa Pitozzi
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | | | - Marcello Trevisani
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Michela Salvadori
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Valentina Cenacchi
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Alessandro Fioni
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Maurizio Civelli
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Riccardo Patacchini
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| | - Charles Baker-Glenn
- Charles River Discovery Research Services UK Ltd., Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Hervé Van de Poël
- Charles River Discovery Research Services UK Ltd., Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Wesley Blackaby
- Charles River Discovery Research Services UK Ltd., Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Kevin Nash
- Charles River Discovery Research Services UK Ltd., Chesterford Research Park, Saffron Walden CB10 1XL, United Kingdom
| | - Elisabetta Armani
- Chiesi Farmaceutici S.p.A., Centro Ricerche, Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
3
|
Jin J, Mazzacuva F, Crocetti L, Giovannoni MP, Cilibrizzi A. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. Int J Mol Sci 2023; 24:11518. [PMID: 37511275 PMCID: PMC10380597 DOI: 10.3390/ijms241411518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic nucleotide phosphodiesterases 4 (PDE4) are a family of enzymes which specifically promote the hydrolysis and degradation of cAMP. The inhibition of PDE4 enzymes has been widely investigated as a possible alternative strategy for the treatment of a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma, as well as psoriasis and other autoimmune disorders. In this context, the identification of new molecules as PDE4 inhibitors continues to be an active field of investigation within drug discovery. This review summarizes the medicinal chemistry journey in the design and development of effective PDE4 inhibitors, analyzed through chemical classes and taking into consideration structural aspects and binding properties, as well as inhibitory efficacy, PDE4 selectivity and the potential as therapeutic agents.
Collapse
Affiliation(s)
- Jian Jin
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
| | - Francesca Mazzacuva
- School of Health, Sport and Bioscience, University of East London, London E15 4LZ, UK
| | - Letizia Crocetti
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Maria Paola Giovannoni
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, Via Ugo Schiff 6, Sesto Fiorentino, University of Florence, 50019 Florence, Italy
| | - Agostino Cilibrizzi
- Institute of Pharmaceutical Science, King's College London, Stamford Street, London SE1 9NH, UK
- Centre for Therapeutic Innovation, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
4
|
Du B, Luo M, Ren C, Zhang J. PDE4 inhibitors for disease therapy: advances and future perspective. Future Med Chem 2023; 15:1185-1207. [PMID: 37470147 DOI: 10.4155/fmc-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
The PDE4 enzyme family is specifically responsible for hydrolyzing cAMP and plays a vital role in regulating the balance of second messengers. As a crucial regulator in signal transduction, PDE4 has displayed promising pharmacological targets in a variety of diseases, for which its inhibitors have been used as a therapeutic strategy. This review provides a comprehensive summary of the development of PDE4 inhibitors in the past few years, along with the structure, clinical and research progress of multiple inhibitors of PDE4, focusing on the research and development strategies of PDE4 inhibitors. We hope our analysis will provide a significant reference for the future development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Baochan Du
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Min Luo
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan, 611130, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Galvani F, Pala D, Cuzzolin A, Scalvini L, Lodola A, Mor M, Rizzi A. Unbinding Kinetics of Muscarinic M3 Receptor Antagonists Explained by Metadynamics Simulations. J Chem Inf Model 2023; 63:2842-2856. [PMID: 37053454 PMCID: PMC10170513 DOI: 10.1021/acs.jcim.3c00042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 04/15/2023]
Abstract
The residence time (RT), the time for which a drug remains bound to its biological target, is a critical parameter for drug design. The prediction of this key kinetic property has been proven to be challenging and computationally demanding in the framework of atomistic simulations. In the present work, we setup and applied two distinct metadynamics protocols to estimate the RTs of muscarinic M3 receptor antagonists. In the first method, derived from the conformational flooding approach, the kinetics of unbinding is retrieved from a physics-based parameter known as the acceleration factor α (i.e., the running average over time of the potential deposited in the bound state). Such an approach is expected to recover the absolute RT value for a compound of interest. In the second method, known as the tMETA-D approach, a qualitative estimation of the RT is given by the time of simulation required to drive the ligand from the binding site to the solvent bulk. This approach has been developed to reproduce the change of experimental RTs for compounds targeting the same target. Our analysis shows that both computational protocols are able to rank compounds in agreement with their experimental RTs. Quantitative structure-kinetics relationship (SKR) models can be identified and employed to predict the impact of a chemical modification on the experimental RT once a calibration study has been performed.
Collapse
Affiliation(s)
- Francesca Galvani
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Daniele Pala
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Alberto Cuzzolin
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| | - Laura Scalvini
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
| | - Marco Mor
- Dipartimento
di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I-43124 Parma, Italy
- Microbiome
Research Hub, University of Parma, Parco Area delle Scienze 11/A, I-43124 Parma, Italy
| | - Andrea Rizzi
- Chemistry
Research and Drug Design Department, Chiesi
Farmaceutici S.p.A., Largo F. Belloli 11/A, 43122 Parma, Italy
| |
Collapse
|
6
|
Li G, He D, Cai X, Guan W, Zhang Y, Wu JQ, Yao H. Advances in the development of phosphodiesterase-4 inhibitors. Eur J Med Chem 2023; 250:115195. [PMID: 36809706 DOI: 10.1016/j.ejmech.2023.115195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Phosphodiesterase 4 (PDE4) hydrolyzes cyclic adenosine monophosphate (cAMP) and plays a vital roles in many biological processes. PDE4 inhibitors have been widely studied as therapeutics for the treatment of various diseases, including asthma, chronic obstructive pulmonary disease (COPD) and psoriasis. Many PDE4 inhibitors have progressed to clinical trials and some have been approved as therapeutic drugs. Although many PDE4 inhibitors have been approved to enter clinical trials, however, the development of PDE4 inhibitors for the treatment of COPD or psoriasis has been hampered by their side effects of emesis. Herein, this review summarizes advances in the development of PDE4 inhibitors over the last ten years, focusing on PDE4 sub-family selectivity, dual target drugs, and therapeutic potential. Hopefully, this review will contribute to the development of novel PDE4 inhibitors as potential drugs.
Collapse
Affiliation(s)
- Gang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Dengqin He
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Xiaojia Cai
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Wen Guan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Yali Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China
| | - Jia-Qiang Wu
- School of Biotechnology and Health Sciences, Wuyi University, 22 Dongchengcun, Jianmen, 529020, China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China.
| |
Collapse
|
7
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Pasqua E, Hamblin N, Edwards C, Baker-Glenn C, Hurley C. Developing inhaled drugs for respiratory diseases: A medicinal chemistry perspective. Drug Discov Today 2021; 27:134-150. [PMID: 34547449 DOI: 10.1016/j.drudis.2021.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 07/11/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Despite the devastating impact of many lung diseases on human health, there is still a significant unmet medical need in respiratory diseases, for which inhaled delivery represents a crucial strategy. More guidance on how to design and carry out multidisciplinary inhaled projects is needed. When designing inhaled drugs, the medicinal chemist must carefully balance the physicochemical properties of the molecule to achieve optimal target engagement in the lung. Although the medicinal chemistry strategy is unique for each project, and will change depending on multiple factors, such as the disease, target, systemic risk, delivery device, and formulation, general guidelines aiding inhaled drug design can be applied and are summarised in this review.
Collapse
Affiliation(s)
- Elisa Pasqua
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK.
| | - Nicole Hamblin
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK; Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Christine Edwards
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| | - Charles Baker-Glenn
- Charles River Laboratories, Chesterford Research Park, Saffron Waldon CB10 1XL, UK
| | - Chris Hurley
- Charles River Laboratories, 8-9 Spire Green Centre, Harlow CM19 5TR, UK
| |
Collapse
|