1
|
Zhang Y, Liu X, Wu J, Quan P, Liu C, Liu J, Liu M, Fang L. Dual modules-molecularly imprinted patch-enabled enantioselectively controlled release of racemic drugs for transdermal delivery. Int J Pharm 2024; 665:124707. [PMID: 39284425 DOI: 10.1016/j.ijpharm.2024.124707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/21/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024]
Abstract
Over 90 % of chiral drugs applied in transdermal drug delivery system (TDDS) are racemates, significantly increasing risks of side effects. Herein, we designed a chiral molecularly imprinted patch (CMIP) that achieved enantioselectively controlled release of S-enantiomers (eutomers) and inhibited the release of R-enantiomers (distomers) for transdermal drug delivery. It is composed of chiral pressure sensitive adhesive (PSA) and molecularly imprinted polymers (MIP), showing better transdermal delivery of S-enantiomers than that of R-enantiomers in vitro (1.86-fold) and in vivo (3.74-fold), significantly decreasing the intake of distomers. Additionally, synthesized fluorescent probe enantiomers visualized enantioselective process of CMIP. Furthermore, investigations of molecular mechanism indicated that dependence on spatial conformation was dominant. On one hand, imprinted cavity of MIP with D-isomer and stronger chiral interaction with R-enantiomers led to more specific adsorption. On the other hand, L-isomer of PSA controlled the release of S-enantiomers by multiple interaction including chiral H-bond, π-π interaction and Van der Waals force. Tthus, the innovatively designed transdermal patch with enantioselective ability released eutomers of racemate and simultaneously inhibited release of distomers, significantly improving therapeutical efficiency and avoiding overdose.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaowen Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxu Wu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Jie Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Mingzhe Liu
- Department of Organic Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Maloney R, Junod SL, Hagen KM, Lewis T, Cheng C, Shajan FJ, Zhao M, Moore TW, Truong TH, Yang W, Wang RE. Flexible fluorine-thiol displacement stapled peptides with enhanced membrane penetration for the estrogen receptor/coactivator interaction. J Biol Chem 2024; 300:107991. [PMID: 39547512 DOI: 10.1016/j.jbc.2024.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024] Open
Abstract
Understanding how natural and engineered peptides enter cells would facilitate the elucidation of biochemical mechanisms underlying cell biology and is pivotal for developing effective intracellular targeting strategies. In this study, we demonstrate that our peptide stapling technique, fluorine-thiol displacement reaction (FTDR), can produce flexibly constrained peptides with significantly improved cellular uptake, particularly into the nucleus. This platform confers enhanced flexibility, which is further amplified by the inclusion of a D-amino acid, while maintaining environment-dependent α helicity, resulting in highly permeable peptides without the need for additional cell-penetrating motifs. Targeting the estrogen receptor α (ERα)-coactivator interaction prevalent in estrogen receptor-positive (ER+) breast cancers, we showcased that FTDR-stapled peptides, notably SRC2-LD, achieved superior internalization, including cytoplasmic and enriched nuclear uptake, compared to peptides stapled by ring-closing metathesis. These FTDR-stapled peptides use different mechanisms of cellular uptake, including energy-dependent transport such as actin-mediated endocytosis and macropinocytosis. As a result, FTDR peptides exhibit enhanced antiproliferative effects despite their slightly decreased target affinity. Our findings challenge existing perceptions of cell permeability, emphasizing the possibly incomplete understanding of the structural determinants vital for cellular uptake of peptide-like macromolecules. Notably, while α helicity and lipophilicity are positive indicators, they alone are insufficient to determine high-cell permeability, as evidenced by our less helical, more flexible, and less lipophilic FTDR-stapled peptides.
Collapse
Affiliation(s)
- Robert Maloney
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Samuel L Junod
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | - Kyla M Hagen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd Lewis
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Changfeng Cheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Femil J Shajan
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Mi Zhao
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Thu H Truong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA.
| | - Rongsheng E Wang
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Li Y, Cotham WE, Eliasof A, Bland K, Walla M, Pellechia PJ, Chen C, Fan D, McLaughlin JP, Liu-Chen LY. Conformational Plasticity Enhances the Brain Penetration of a Metabolically Stable, Dual-Functional Opioid-Peptide CycloAnt. Int J Mol Sci 2024; 25:11389. [PMID: 39518941 PMCID: PMC11546339 DOI: 10.3390/ijms252111389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
CycloAnt is an opioid peptide that produces potent and efficacious antinociception with significantly reduced side effects upon systemic administration in mice. To verify its CNS-mediated antinociception, we determined its binding affinity at the opioid receptors, its proteolytic stability in mouse serum, metabolic stability in mouse liver microsomes, and pharmacokinetics in mice. CycloAnt exhibited stability toward proteolytic degradation in serum and resistance against metabolism mediated by cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyl transferases (UGTs) in mouse liver microsomes. A pharmacokinetic study of CycloAnt in mice confirmed that CycloAnt crossed the blood-brain barrier (BBB) with a brain-to-plasma ratio of 11.5%, a high extent of BBB transport for a peptide. To elucidate the structural basis underlying its BBB penetration, we investigated its conformation in water and DMSO using 1H NMR spectroscopy. The results show that CycloAnt displays an extended conformation in water with most amide NHs being exposed, while in less polar DMSO, it adopts a compact conformation with all amide NHs locked in intramolecular hydrogen bonds. The chameleonic property helps CycloAnt permeate the BBB.
Collapse
Affiliation(s)
- Yangmei Li
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - William E. Cotham
- Mass Spectrometry Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Abbe Eliasof
- College of Pharmacy, University of South Carolina, Columbia, SC 29208, USA
| | - Kathryn Bland
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| | - Michael Walla
- Mass Spectrometry Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Perry J. Pellechia
- Nuclear Magnetic Resonance Facility, University of South Carolina, Columbia, SC 29208, USA
| | - Chongguang Chen
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| | - Daping Fan
- School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | - Jay P. McLaughlin
- College of Pharmacy, University of Florida, Gainesville, FL 32610, USA;
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University, Philadelphia, PA 19140, USA (L.-Y.L.-C.)
| |
Collapse
|
4
|
Tan X, Liu Q, Fang Y, Zhu Y, Chen F, Zeng W, Ouyang D, Dong J. Predicting Peptide Permeability Across Diverse Barriers: A Systematic Investigation. Mol Pharm 2024; 21:4116-4127. [PMID: 39031123 DOI: 10.1021/acs.molpharmaceut.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Peptide-based therapeutics hold immense promise for the treatment of various diseases. However, their effectiveness is often hampered by poor cell membrane permeability, hindering targeted intracellular delivery and oral drug development. This study addressed this challenge by introducing a novel graph neural network (GNN) framework and advanced machine learning algorithms to build predictive models for peptide permeability. Our models offer systematic evaluation across diverse peptides (natural, modified, linear and cyclic) and cell lines [Caco-2, Ralph Russ canine kidney (RRCK) and parallel artificial membrane permeability assay (PAMPA)]. The predictive models for linear and cyclic peptides in Caco-2 and RRCK cell lines were constructed for the first time, with an impressive coefficient of determination (R2) of 0.708, 0.484, 0.553, and 0.528 in the test set, respectively. Notably, the GNN framework behaved better in permeability prediction with larger data sets and improved the accuracy of cyclic peptide prediction in the PAMPA cell line. The R2 increased by about 0.32 compared with the reported models. Furthermore, the important molecular structural features that contribute to good permeability were interpreted; the influence of cell lines, peptide modification, and cyclization on permeability were successfully revealed. To facilitate broader use, we deployed these models on the user-friendly KNIME platform (https://github.com/ifyoungnet/PharmPapp). This work provides a rapid and reliable strategy for systematically assessing peptide permeability, aiding researchers in drug delivery optimization, peptide preselection during drug discovery, and potentially the design of targeted peptide-based materials.
Collapse
Affiliation(s)
- Xiaorong Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Qianhui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Yanpeng Fang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Yingli Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences (ICMS), State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau 999078, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Nielsen AL, Bognar Z, Mothukuri GK, Zarda A, Schüttel M, Merz ML, Ji X, Will EJ, Chinellato M, Bartling CRO, Strømgaard K, Cendron L, Angelini A, Heinis C. Large Libraries of Structurally Diverse Macrocycles Suitable for Membrane Permeation. Angew Chem Int Ed Engl 2024; 63:e202400350. [PMID: 38602024 DOI: 10.1002/anie.202400350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/12/2024]
Abstract
Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinatorial libraries of small cyclic peptides were developed, many of them using thiol groups for efficient peptide macrocyclization. However, a weakness of these libraries is that invariant thiol-containing building blocks such as cysteine are used, resulting in a region that does not contribute to library diversity but increases molecule size. Herein, we synthesized a series of structurally diverse thiol-containing elements and used them for the combinatorial synthesis of a 2,688-member library of small, structurally diverse peptidic macrocycles with unprecedented skeletal complexity. We then used this library to discover potent thrombin and plasma kallikrein inhibitors, some also demonstrating favorable membrane permeability. X-ray structure analysis of macrocycle-target complexes showed that the size and shape of the newly developed thiol elements are key for binding. The strategy and library format presented in this work significantly enhance structural diversity by allowing combinatorial modifications to a previously invariant region of peptide macrocycles, which may be broadly applied in the development of membrane permeable therapeutics.
Collapse
Affiliation(s)
- Alexander L Nielsen
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Zsolt Bognar
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Ganesh K Mothukuri
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anne Zarda
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Mischa Schüttel
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Manuel L Merz
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Xinjian Ji
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Edward J Will
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | | | - Christian R O Bartling
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Laura Cendron
- Department of Biology, University of Padova, 35131, Padova, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, Venezia Mestre, Venice, 30172, Italy
- European Centre for Living Technologies (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, Venice, 30124, Italy
| | - Christian Heinis
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| |
Collapse
|
6
|
Limbach M, Lindberg ET, Olivos HJ, van Tetering L, Steren CA, Martens J, Ngo VA, Oomens J, Do TD. Taming Conformational Heterogeneity on Ion Racetrack to Unveil Principles that Drive Membrane Permeation of Cyclosporines. JACS AU 2024; 4:1458-1470. [PMID: 38665661 PMCID: PMC11040698 DOI: 10.1021/jacsau.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024]
Abstract
Our study reveals the underlying principles governing the passive membrane permeability in three large N-methylated macrocyclic peptides (N-MeMPs): cyclosporine A (CycA), Alisporivir (ALI), and cyclosporine H (CycH). We determine a series of conformers required for robust passive membrane diffusion and those relevant to other functions, such as binding to protein targets or intermediates, in the presence of solvent additives. We investigate the conformational interconversions and establish correlations with the membrane permeability. Nuclear magnetic resonance (NMR) and cyclic ion-mobility spectrometry-mass spectrometry (cIMS-MS) are employed to characterize conformational heterogeneity and identify cis-amides relevant for good membrane permeability. In addition, ion mobility selected cIMS-MS and infrared (IR) multiple-photon dissociation (IRMPD) spectroscopy experiments are conducted to evaluate the energy barriers between conformations. We observe that CycA and ALI, both cyclosporines with favorable membrane permeabilities, display multiple stable and well-defined conformers. In contrast, CycH, an epimer of CycA with limited permeability, exhibits fewer and fewer stable conformers. We demonstrate the essential role of the conformational shift from the aqueous cis MeVal11-MeBmt1 state (A1) to the closed conformation featuring cis MeLeu9-MeLeu10 (C1) in facilitating membrane permeation. Additionally, we highlight that the transition from A1 to the all-trans open conformation (O1) is specifically triggered by the presence of CaCl2. We also capture a set of conformers with cis Sar3-MeLeu4, MeLeu9-MeLeu10, denoted as I. Conformationally selected cIMS-MS and IRMPD data of [CycA+Ca]2+ show immediate repopulation of the original population distribution, suggesting that CaCl2 smooths out the energy barriers. Finally, our work presents an improved sampling molecular dynamics approach based on a refined force field that not only consistently and accurately captures established conformers of cyclosporines but also exhibits strong predictive capabilities for novel conformers.
Collapse
Affiliation(s)
- Miranda
N. Limbach
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Edward T. Lindberg
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | - Lara van Tetering
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Carlos A. Steren
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jonathan Martens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Van A. Ngo
- Advanced
Computing for Life Sciences and Engineering Group, Science Engagement
Section, National Center for Computational Sciences, Computing and
Computational Sciences Directorate, Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, Nijmegen 6525 ED, The Netherlands
| | - Thanh D. Do
- Department
of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
8
|
Zhao X, Zhao X, Di W, Wang C. Inhibitors of Cyclophilin A: Current and Anticipated Pharmaceutical Agents for Inflammatory Diseases and Cancers. Molecules 2024; 29:1235. [PMID: 38542872 PMCID: PMC10974348 DOI: 10.3390/molecules29061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/07/2024] Open
Abstract
Cyclophilin A, a widely prevalent cellular protein, exhibits peptidyl-prolyl cis-trans isomerase activity. This protein is predominantly located in the cytosol; additionally, it can be secreted by the cells in response to inflammatory stimuli. Cyclophilin A has been identified to be a key player in many of the biological events and is therefore involved in several diseases, including vascular and inflammatory diseases, immune disorders, aging, and cancers. It represents an attractive target for therapeutic intervention with small molecule inhibitors such as cyclosporin A. Recently, a number of novel inhibitors of cyclophilin A have emerged. However, it remains elusive whether and how many cyclophilin A inhibitors function in the inflammatory diseases and cancers. In this review, we discuss current available data about cyclophilin A inhibitors, including cyclosporin A and its derivatives, quinoxaline derivatives, and peptide analogues, and outline the most recent advances in clinical trials of these agents. Inhibitors of cyclophilin A are poised to enhance our comprehension of the molecular mechanisms that underpin inflammatory diseases and cancers associated with cyclophilin A. This advancement will aid in the development of innovative pharmaceutical treatments in the future.
Collapse
Affiliation(s)
- Xuemei Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Xin Zhao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Weihua Di
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
| | - Chang Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China; (X.Z.); (W.D.)
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250000, China
| |
Collapse
|
9
|
Zhang Z, Zhang Q, Zhang Y, Lou Y, Ge L, Zhang W, Zhang W, Song F, Huang P. Role of sodium taurocholate cotransporting polypeptide (NTCP) in HBV-induced hepatitis: Opportunities for developing novel therapeutics. Biochem Pharmacol 2024; 219:115956. [PMID: 38049009 DOI: 10.1016/j.bcp.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
Hepatitis B is an infectious disease caused by the HBV virus. It presents a significant challenge for treatment due to its chronic nature and the potential for developing severe complications, including hepatocirrhosis and hepatocellular carcinoma. These complications not only cause physical and psychological distress to patients but also impose substantial economic and social burdens on both individuals and society as a whole. The internalization of HBV relies on endocytosis and necessitates the involvement of various proteins, including heparin sulfate proteoglycans, epidermal growth factor receptors, and NTCP. Among these proteins, NTCP is pivotal in HBV internalization and is primarily located in the liver's basement membrane. As a transporter of bile acids, NTCP also serves as a receptor facilitating HBV entry into cells. Numerous molecules have been identified to thwart HBV infection by stifling NTCP activity, although only a handful exhibit low IC50 values. In this systematic review, our primary focus dwells on the structure and regulation of NTCP, as well as the mechanism involved in HBV internalization. We underscore recent drug breakthroughs that specifically target NTCP to combat HBV infection. By shedding light on these advances, this review contributes novel insights into developing effective anti-HBV medications.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Qi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yutao Lou
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Luqi Ge
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wanli Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Wen Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Feifeng Song
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
10
|
Lee D, Choi J, Yang MJ, Park CJ, Seo J. Controlling the Chameleonic Behavior and Membrane Permeability of Cyclosporine Derivatives via Backbone and Side Chain Modifications. J Med Chem 2023; 66:13189-13204. [PMID: 37718494 DOI: 10.1021/acs.jmedchem.3c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Some macrocycles exhibit enhanced membrane permeability through conformational switching in different environmental polarities, a trait known as chameleonic behavior. In this study, we demonstrate specific backbone and side chain modifications that can control chameleonic behavior and passive membrane permeability using a cyclosporin O (CsO) scaffold. To quantify chameleonic behavior, we used a ratio of the population of the closed conformation obtained in polar solvent and nonpolar solvent for each CsO derivative. We found that β-hydroxylation at position 1 (1 and 3) can encode chameleonicity and improve permeability. However, the conformational stabilization induced by adding an additional transannular H-bond (2 and 5) leads to a much slower rate of membrane permeation. Our CsO scaffold provides a platform for the systematic study of the relationship among conformation, membrane permeability, solubility, and protein binding. This knowledge contributes to the discovery of potent beyond the rule of five (bRo5) macrocycles capable of targeting undruggable targets.
Collapse
Affiliation(s)
- Dongjae Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jieun Choi
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
11
|
Kosugi T, Ohue M. Design of Cyclic Peptides Targeting Protein-Protein Interactions Using AlphaFold. Int J Mol Sci 2023; 24:13257. [PMID: 37686057 PMCID: PMC10487914 DOI: 10.3390/ijms241713257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
More than 930,000 protein-protein interactions (PPIs) have been identified in recent years, but their physicochemical properties differ from conventional drug targets, complicating the use of conventional small molecules as modalities. Cyclic peptides are a promising modality for targeting PPIs, but it is difficult to predict the structure of a target protein-cyclic peptide complex or to design a cyclic peptide sequence that binds to the target protein using computational methods. Recently, AlphaFold with a cyclic offset has enabled predicting the structure of cyclic peptides, thereby enabling de novo cyclic peptide designs. We developed a cyclic peptide complex offset to enable the structural prediction of target proteins and cyclic peptide complexes and found AlphaFold2 with a cyclic peptide complex offset can predict structures with high accuracy. We also applied the cyclic peptide complex offset to the binder hallucination protocol of AfDesign, a de novo protein design method using AlphaFold, and we could design a high predicted local-distance difference test and lower separated binding energy per unit interface area than the native MDM2/p53 structure. Furthermore, the method was applied to 12 other protein-peptide complexes and one protein-protein complex. Our approach shows that it is possible to design putative cyclic peptide sequences targeting PPI.
Collapse
Affiliation(s)
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, G3-56-4259 Nagatsutacho, Midori-ku, Yokohama City 226-8501, Kanagawa, Japan;
| |
Collapse
|
12
|
Tanada M, Tamiya M, Matsuo A, Chiyoda A, Takano K, Ito T, Irie M, Kotake T, Takeyama R, Kawada H, Hayashi R, Ishikawa S, Nomura K, Furuichi N, Morita Y, Kage M, Hashimoto S, Nii K, Sase H, Ohara K, Ohta A, Kuramoto S, Nishimura Y, Iikura H, Shiraishi T. Development of Orally Bioavailable Peptides Targeting an Intracellular Protein: From a Hit to a Clinical KRAS Inhibitor. J Am Chem Soc 2023. [PMID: 37463267 DOI: 10.1021/jacs.3c03886] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cyclic peptides as a therapeutic modality are attracting a lot of attention due to their potential for oral absorption and accessibility to intracellular tough targets. Here, starting with a drug-like hit discovered using an mRNA display library, we describe a chemical optimization that led to the orally available clinical compound known as LUNA18, an 11-mer cyclic peptide inhibitor for the intracellular tough target RAS. The key findings are as follows: (i) two peptide side chains were identified that each increase RAS affinity over 10-fold; (ii) physico-chemical properties (PCP) including Clog P can be adjusted by side-chain modification to increase membrane permeability; (iii) restriction of cyclic peptide conformation works effectively to adjust PCP and improve bio-activity; (iv) cellular efficacy was observed in peptides with a permeability of around 0.4 × 10-6 cm/s or more in a Caco-2 permeability assay; and (v) while keeping the cyclic peptide's main-chain conformation, we found one example where the RAS protein structure was changed dramatically through induced-fit to our peptide side chain. This study demonstrates how the chemical optimization of bio-active peptides can be achieved without scaffold hopping, much like the processes for small molecule drug discovery that are guided by Lipinski's rule of five. Our approach provides a versatile new strategy for generating peptide drugs starting from drug-like hits.
Collapse
Affiliation(s)
- Mikimasa Tanada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Minoru Tamiya
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Matsuo
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Aya Chiyoda
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Koji Takano
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Toshiya Ito
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Machiko Irie
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Tomoya Kotake
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuuichi Takeyama
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hatsuo Kawada
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Ryuji Hayashi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shiho Ishikawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kenichi Nomura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Noriyuki Furuichi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yuya Morita
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Mirai Kage
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Satoshi Hashimoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Keiji Nii
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Kazuhiro Ohara
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Atsushi Ohta
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Shino Kuramoto
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Yoshikazu Nishimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Hitoshi Iikura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| | - Takuya Shiraishi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216, Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa 244-8602, Japan
| |
Collapse
|
13
|
Hickey J, Sindhikara D, Zultanski SL, Schultz DM. Beyond 20 in the 21st Century: Prospects and Challenges of Non-canonical Amino Acids in Peptide Drug Discovery. ACS Med Chem Lett 2023; 14:557-565. [PMID: 37197469 PMCID: PMC10184154 DOI: 10.1021/acsmedchemlett.3c00037] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/29/2023] [Indexed: 05/19/2023] Open
Abstract
Life is constructed primarily using a toolbox of 20 canonical amino acids-relying upon these building blocks for the assembly of proteins and peptides that regulate nearly every cellular task, including cell structure, function, and maintenance. While Nature continues to be a source of inspiration for drug discovery, medicinal chemists are not beholden to only 20 canonical amino acids and have begun to explore non-canonical amino acids (ncAAs) for the construction of designer peptides with improved drug-like properties. However, as our toolbox of ncAAs expands, drug hunters are encountering new challenges in approaching the iterative peptide design-make-test-analyze cycle with a seemingly boundless set of building blocks. This Microperspective focuses on new technologies that are accelerating ncAA interrogation in peptide drug discovery (including HELM notation, late-stage functionalization, and biocatalysis) while shedding light on areas where further investment could not only accelerate the discovery of new medicines but also improve downstream development.
Collapse
Affiliation(s)
- Jennifer
L. Hickey
- Department
of Medicinal Chemistry, Merck & Co.,
Inc., Kenilworth, New Jersey 07033, United States
| | - Dan Sindhikara
- Department
of Modeling and Informatics, Merck &
Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L. Zultanski
- Department
of Process Research & Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Danielle M. Schultz
- Department
of Process Research & Development, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
14
|
Li J, Yanagisawa K, Sugita M, Fujie T, Ohue M, Akiyama Y. CycPeptMPDB: A Comprehensive Database of Membrane Permeability of Cyclic Peptides. J Chem Inf Model 2023; 63:2240-2250. [PMID: 36930969 PMCID: PMC10091415 DOI: 10.1021/acs.jcim.2c01573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Recently, cyclic peptides have been considered breakthrough drugs because they can interact with "undruggable" targets such as intracellular protein-protein interactions. Membrane permeability is an essential indicator of oral bioavailability and intracellular targeting, and the development of membrane-permeable peptides is a bottleneck in cyclic peptide drug discovery. Although many experimental data on membrane permeability of cyclic peptides have been reported, a comprehensive database is not yet available. A comprehensive membrane permeability database is essential for developing computational methods for cyclic peptide drug design. In this study, we constructed CycPeptMPDB, the first web-accessible database of cyclic peptide membrane permeability. We collected information on a total of 7334 cyclic peptides, including the structure and experimentally measured membrane permeability, from 45 published papers and 2 patents from pharmaceutical companies. To unambiguously represent cyclic peptides larger than small molecules, we used the hierarchical editing language for macromolecules notation to generate a uniform sequence representation of peptides. In addition to data storage, CycPeptMPDB provides several supporting functions such as online data visualization, data analysis, and downloading. CycPeptMPDB is expected to be a valuable platform to support membrane permeability research on cyclic peptides. CycPeptMPDB can be freely accessed at http://cycpeptmpdb.com.
Collapse
Affiliation(s)
- Jianan Li
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Keisuke Yanagisawa
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Masatake Sugita
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Takuya Fujie
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yutaka Akiyama
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan.,Middle-Molecule IT-based Drug Discovery Laboratory (MIDL), Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
15
|
Ono T, Tabata KV, Noji H, Morimoto J, Sando S. Each side chain of cyclosporin A is not essential for high passive permeability across lipid bilayers. RSC Adv 2023; 13:8394-8397. [PMID: 36922944 PMCID: PMC10010161 DOI: 10.1039/d3ra01358h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
We compared the passive permeability of cyclosporin A (CsA) derivatives with side chain deletions across lipid bilayers. CsA maintained passive permeability after losing any one of the side chains, which suggests that the propensity of the backbone of CsA is an important component for high passive permeability.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
16
|
Linker S, Schellhaas C, Kamenik AS, Veldhuizen MM, Waibl F, Roth HJ, Fouché M, Rodde S, Riniker S. Lessons for Oral Bioavailability: How Conformationally Flexible Cyclic Peptides Enter and Cross Lipid Membranes. J Med Chem 2023; 66:2773-2788. [PMID: 36762908 PMCID: PMC9969412 DOI: 10.1021/acs.jmedchem.2c01837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 02/11/2023]
Abstract
Cyclic peptides extend the druggable target space due to their size, flexibility, and hydrogen-bonding capacity. However, these properties impact also their passive membrane permeability. As the "journey" through membranes cannot be monitored experimentally, little is known about the underlying process, which hinders rational design. Here, we use molecular simulations to uncover how cyclic peptides permeate a membrane. We show that side chains can act as "molecular anchors", establishing the first contact with the membrane and enabling insertion. Once inside, the peptides are positioned between headgroups and lipid tails─a unique polar/apolar interface. Only one of two distinct orientations at this interface allows for the formation of the permeable "closed" conformation. In the closed conformation, the peptide crosses to the lower leaflet via another "anchoring" and flipping mechanism. Our findings provide atomistic insights into the permeation process of flexible cyclic peptides and reveal design considerations for each step of the process.
Collapse
Affiliation(s)
- Stephanie
M. Linker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Christian Schellhaas
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Anna S. Kamenik
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Mac M. Veldhuizen
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Franz Waibl
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans-Jörg Roth
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Marianne Fouché
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Stephane Rodde
- Novartis
Institutes for BioMedical Research, Novartis
Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Sereina Riniker
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
17
|
Ono T, Tabata KV, Goto Y, Saito Y, Suga H, Noji H, Morimoto J, Sando S. Label-free quantification of passive membrane permeability of cyclic peptides across lipid bilayers: penetration speed of cyclosporin A across lipid bilayers. Chem Sci 2023; 14:345-349. [PMID: 36687349 PMCID: PMC9811578 DOI: 10.1039/d2sc05785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cyclic peptides that passively penetrate cell membranes are under active investigation in drug discovery research. PAMPA (Parallel Artificial Membrane Permeability Assay) and Caco-2 assay are mainly used for permeability measurements in these studies. However, permeability rates across the artificial membrane and the cell monolayer used for these assays are intrinsically different from the ones across pure lipid bilayers. There are also membrane permeability assays for peptides using reconstructed lipid bilayers, but they require labeling for detection, and the absolute membrane permeability of the natural peptides themselves could not be determined. Here, we constructed a lipid bilayer permeability assay and realized the first label-free measurements of the lipid bilayer permeability of cyclic peptides. Quantitative permeability values across lipid bilayers were determined for model cyclic hexapeptides and an important natural product, cyclosporin A (CsA). The obtained quantitative permeability values will provide new and advanced knowledge about the passive permeability of cyclic peptides.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of TokyoBunkyo-kuTokyo 113-0033Japan
| | - Yutaro Saito
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of TokyoBunkyo-kuTokyo 113-0033Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| |
Collapse
|
18
|
Blanco MJ, Gardinier KM, Namchuk MN. Advancing New Chemical Modalities into Clinical Studies. ACS Med Chem Lett 2022; 13:1691-1698. [PMID: 36385931 PMCID: PMC9661701 DOI: 10.1021/acsmedchemlett.2c00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Drug discovery and development has experienced an incredible paradigm shift in the past two decades. What once was considered a predominant R&D landscape of small molecules within a prescribed properties and mechanism space now includes an innovative wave of new chemical modalities. Scientists in the pharmaceutical industry can now strategize across a variety of modalities to find the best option to modulate a given target and provide treatment for a specific disease. We have witnessed a remarkable change not only in molecular design but also in creative approaches to drug delivery that have enabled advancement of novel modalities to clinical studies. In this Microperspective, we evaluate the critical differences between traditional small molecules and beyond rule of 5 compounds, peptides, oligonucleotides, and biologics for advancing into development, particularly their pharmacokinetic profiles and drug delivery strategies.
Collapse
Affiliation(s)
- Maria-Jesus Blanco
- Chemical
Sciences, Atavistik Bio, 75 Sidney Street, Cambridge Massachusetts 02139, United States
| | - Kevin M. Gardinier
- Discovery
Research, Karuna Therapeutics, 99 High Street Boston, Massachusetts 02110, United States
| | - Mark N. Namchuk
- Department
of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 25 Shattuck Street Boston, Massachusetts 02115, United States
| |
Collapse
|
19
|
Entry inhibition of hepatitis B virus using cyclosporin O derivatives with peptoid side chain incorporation. Bioorg Med Chem 2022; 68:116862. [PMID: 35691131 DOI: 10.1016/j.bmc.2022.116862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022]
Abstract
Hepatitis B virus (HBV) infection is a serious worldwide health problem causing liver cirrhosis and hepatocellular carcinoma. The development of novel therapeutics targeting distinct steps of the HBV life cycle and combination therapy with approved drugs (i.e., nucleot(s)ides, interferon-α) are considered effective strategies for curing HBV. Among these strategies is the development of entry inhibitors that interfere with the host entry step of HBV to prevent viral infection and transmission. Herein, we generated a novel library of cyclosporin O (CsO) derivatives that incorporate peptoid side chains. Twenty-two CsO derivatives were evaluated for membrane permeability, cytotoxicity, and in vitro HBV entry inhibitory activity. The lead compound (i.e., compound 21) showed the greatest potency in the in vitro HBV entry inhibition assay (IC50 = 0.36 ± 0.01 μM) with minimal cytotoxicity. Our peptide-peptoid hybrid CsO scaffold can readily expand chemical diversity and is applicable for screening various targets requiring macrocyclic chemical entities.
Collapse
|
20
|
Limbach MN, Antevska A, Oluwatoba DS, Gray ALH, Carroll XB, Hoffmann CM, Wang X, Voehler MW, Steren CA, Do TD. Atomic View of Aqueous Cyclosporine A: Unpacking a Decades-Old Mystery. J Am Chem Soc 2022; 144:12602-12607. [PMID: 35786958 DOI: 10.1021/jacs.2c01743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An atomic view of a main aqueous conformation of cyclosporine A (CycA), an important 11-amino-acid macrocyclic immunosuppressant, is reported. For decades, it has been a grand challenge to determine the conformation of free CycA in an aqueous-like solution given its poor water solubility. Using a combination of X-ray and single-crystal neutron diffraction, we unambiguously resolve a unique conformer (A1) with a novel cis-amide between residues 11 and 1 and two water ligands that stabilize hydrogen bond networks. NMR spectroscopy and titration experiments indicate that the novel conformer is as abundant as the closed conformer in 90/10 (v/v) methanol/water and is the main conformer at 10/90 methanol/water. Five other conformers were also detected in 90/10 methanol/water, one in slow exchange with A1, another one in slow exchange with the closed form and three minor ones, one of which contains two cis amides Abu2-Sar3 and MeBmt1-MeVal11. These conformers help better understand the wide spectrum of membrane permeability observed for CycA analogues and, to some extent, the binding of CycA to protein targets.
Collapse
Affiliation(s)
- Miranda N Limbach
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Aleksandra Antevska
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Damilola S Oluwatoba
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Amber L H Gray
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xian B Carroll
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Christina M Hoffmann
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Xiaoping Wang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Carlos A Steren
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Thanh D Do
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
21
|
Erckes V, Steuer C. A story of peptides, lipophilicity and chromatography - back and forth in time. RSC Med Chem 2022; 13:676-687. [PMID: 35800203 PMCID: PMC9215158 DOI: 10.1039/d2md00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022] Open
Abstract
Peptides, as part of the beyond the rule of 5 (bRo5) chemical space, represent a unique class of pharmaceutical compounds. Because of their exceptional position in the chemical space between traditional small molecules (molecular weight (MW) < 500 Da) and large therapeutic proteins (MW > 5000 Da), peptides became promising candidates for targeting challenging binding sites, including even targets traditionally considered as undruggable - e.g. intracellular protein-protein interactions. However, basic knowledge about physicochemical properties that are important for a drug to be membrane permeable is missing but would enhance the drug discovery process of bRo5 molecules. Consequently, there is a demand for quick and simple lipophilicity determination methods for peptides. In comparison to the traditional lipophilicity determination methods via shake flask and in silico prediction, chromatography-based methods could have multiple benefits such as the requirement of low analyte amount, insensitivity to impurities and high throughput. Herein we elucidate the role of peptide lipophilicity and different lipophilicity values. Further, we summarize peptide analysis via common chromatographic techniques, in specific reversed phase liquid chromatography, hydrophilic interaction liquid chromatography and supercritical fluid chromatography and their role in drug discovery and development process.
Collapse
Affiliation(s)
- Vanessa Erckes
- Pharmaceutical Analytics, Institute of Pharmaceutical Sciences, Federal Institute of Technology Zurich 8093 Zurich Switzerland
| | - Christian Steuer
- Pharmaceutical Analytics, Institute of Pharmaceutical Sciences, Federal Institute of Technology Zurich 8093 Zurich Switzerland
| |
Collapse
|
22
|
Corbett KM, Ford L, Warren DB, Pouton CW, Chalmers DK. Cyclosporin Structure and Permeability: From A to Z and Beyond. J Med Chem 2021; 64:13131-13151. [PMID: 34478303 DOI: 10.1021/acs.jmedchem.1c00580] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclosporins are natural or synthetic undecapeptides with a wide range of actual and potential pharmaceutical applications. Several members of the cyclosporin compound family have remarkably high passive membrane permeabilities that are not well-described by simple structural metrics. Here we review experimental studies of cyclosporin structure and permeability, including cyclosporin-metal complexes. We also discuss models for the conformation-dependent permeability of cyclosporins and similar compounds. Finally, we identify current knowledge gaps in the literature and provide recommendations regarding future avenues of exploration.
Collapse
Affiliation(s)
- Karen M Corbett
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Leigh Ford
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Dallas B Warren
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David K Chalmers
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|