1
|
Mishra A, Thakur A, Sharma R, Onuku R, Kaur C, Liou JP, Hsu SP, Nepali K. Scaffold hopping approaches for dual-target antitumor drug discovery: opportunities and challenges. Expert Opin Drug Discov 2024:1-27. [PMID: 39420580 DOI: 10.1080/17460441.2024.2409674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Scaffold hopping has emerged as a practical tactic to enrich the synthetic bank of small molecule antitumor agents. Specifically, it enables the chemist to refine the lead compound's pharmacodynamic, pharmacokinetic, and physiochemical properties. Scaffold hopping opens up fresh molecular territory beyond established patented chemical domains. AREA COVERED The authors present the scaffold hopping-based drug design strategies for dual inhibitory antitumor structural templates in this review. Minor modifications, structure rigidification and simplification (ring-closing and opening), and complete structural overhauls were the strategies employed by the medicinal chemist to generate a library of bifunctional inhibitors. In addition, the review presents an overview of the computational methods of scaffold hopping (software and programs) and organopalladium catalysis leveraged for the synthesis of templates designed via scaffold hopping. EXPERT OPINION The medicinal chemist has demonstrated remarkable prowess in furnishing dual inhibitory antitumor chemical architectures. Scaffold hopping-based drug design strategies have yielded a plethora of pharmacodynamically superior dual modulatory antitumor agents. An integrated approach involving computational advancements, synthetic methodology advancements, and conventional drug design strategies is required to increase the number of scaffold-hopping-assisted drug discovery campaigns.
Collapse
Affiliation(s)
- Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Raphael Onuku
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| |
Collapse
|
2
|
López-Pérez K, Kim TD, Miranda-Quintana RA. iSIM: instant similarity. DIGITAL DISCOVERY 2024; 3:1160-1171. [PMID: 38873032 PMCID: PMC11167700 DOI: 10.1039/d4dd00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
The quantification of molecular similarity has been present since the beginning of cheminformatics. Although several similarity indices and molecular representations have been reported, all of them ultimately reduce to the calculation of molecular similarities of only two objects at a time. Hence, to obtain the average similarity of a set of molecules, all the pairwise comparisons need to be computed, which demands a quadratic scaling in the number of computational resources. Here we propose an exact alternative to this problem: iSIM (instant similarity). iSIM performs comparisons of multiple molecules at the same time and yields the same value as the average pairwise comparisons of molecules represented by binary fingerprints and real-value descriptors. In this work, we introduce the mathematical framework and several applications of iSIM in chemical sampling, visualization, diversity selection, and clustering.
Collapse
Affiliation(s)
- Kenneth López-Pérez
- Department of Chemistry and Quantum Theory Project, University of Florida Gainesville Florida 32611 USA
| | - Taewon D Kim
- Department of Chemistry and Quantum Theory Project, University of Florida Gainesville Florida 32611 USA
| | | |
Collapse
|
3
|
Vogt M. Chemoinformatic approaches for navigating large chemical spaces. Expert Opin Drug Discov 2024; 19:403-414. [PMID: 38300511 DOI: 10.1080/17460441.2024.2313475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Large chemical spaces (CSs) include traditional large compound collections, combinatorial libraries covering billions to trillions of molecules, DNA-encoded chemical libraries comprising complete combinatorial CSs in a single mixture, and virtual CSs explored by generative models. The diverse nature of these types of CSs require different chemoinformatic approaches for navigation. AREAS COVERED An overview of different types of large CSs is provided. Molecular representations and similarity metrics suitable for large CS exploration are discussed. A summary of navigation of CSs in generative models is provided. Methods for characterizing and comparing CSs are discussed. EXPERT OPINION The size of large CSs might restrict navigation to specialized algorithms and limit it to considering neighborhoods of structurally similar molecules. Efficient navigation of large CSs not only requires methods that scale with size but also requires smart approaches that focus on better but not necessarily larger molecule selections. Deep generative models aim to provide such approaches by implicitly learning features relevant for targeted biological properties. It is unclear whether these models can fulfill this ideal as validation is difficult as long as the covered CSs remain mainly virtual without experimental verification.
Collapse
Affiliation(s)
- Martin Vogt
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| |
Collapse
|
4
|
Yu Z, Wu Z, Zhou M, Cao K, Li W, Liu G, Tang Y. EDC-Predictor: A Novel Strategy for Prediction of Endocrine-Disrupting Chemicals by Integrating Pharmacological and Toxicological Profiles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18013-18025. [PMID: 37053516 DOI: 10.1021/acs.est.2c08558] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Identification of endocrine-disrupting chemicals (EDCs) is crucial in the reduction of human health risks. However, it is hard to do so because of the complex mechanisms of the EDCs. In this study, we propose a novel strategy named EDC-Predictor to integrate pharmacological and toxicological profiles for the prediction of EDCs. Different from conventional methods that only focus on a few nuclear receptors (NRs), EDC-Predictor considers more targets. It uses computational target profiles from network-based and machine learning-based methods to characterize compounds, including both EDCs and non-EDCs. The best model constructed by these target profiles outperformed those models by molecular fingerprints. In a case study to predict NR-related EDCs, EDC-Predictor showed a wider applicability domain and higher accuracy than four previous tools. Another case study further demonstrated that EDC-Predictor could predict EDCs targeting other proteins rather than NRs. Finally, a free web server was developed to make EDC prediction easier (http://lmmd.ecust.edu.cn/edcpred/). In summary, EDC-Predictor would be a powerful tool in EDC prediction and drug safety assessment.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kangjia Cao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Zhang Y, Xie L, Zhang D, Xu X, Xu L. Application of Machine Learning Methods to Predict the Air Half-Lives of Persistent Organic Pollutants. Molecules 2023; 28:7457. [PMID: 38005179 PMCID: PMC10673120 DOI: 10.3390/molecules28227457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Persistent organic pollutants (POPs) are ubiquitous and bioaccumulative, posing potential and long-term threats to human health and the ecological environment. Quantitative structure-activity relationship (QSAR) studies play a guiding role in analyzing the toxicity and environmental fate of different organic pollutants. In the current work, five molecular descriptors are utilized to construct QSAR models for predicting the mean and maximum air half-lives of POPs, including specifically the energy of the highest occupied molecular orbital (HOMO_Energy_DMol3), a component of the dipole moment along the z-axis (Dipole_Z), fragment contribution to SAscore (SAscore_Fragments), subgraph counts (SC_3_P), and structural information content (SIC). The QSAR models were achieved through the application of three machine learning methods: partial least squares (PLS), multiple linear regression (MLR), and genetic function approximation (GFA). The determination coefficients (R2) and relative errors (RE) for the mean air half-life of each model are 0.916 and 3.489% (PLS), 0.939 and 5.048% (MLR), 0.938 and 5.131% (GFA), respectively. Similarly, the determination coefficients (R2) and RE for the maximum air half-life of each model are 0.915 and 5.629% (PLS), 0.940 and 10.090% (MLR), 0.939 and 11.172% (GFA), respectively. Furthermore, the mechanisms that elucidate the significant factors impacting the air half-lives of POPs have been explored. The three regression models show good predictive and extrapolation abilities for POPs within the application domain.
Collapse
Affiliation(s)
| | | | | | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China; (Y.Z.); (D.Z.)
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, China; (Y.Z.); (D.Z.)
| |
Collapse
|
6
|
Mohiuddin A, Mondal S. Advancement of Computational Design Drug Delivery System in COVID-19: Current Updates and Future Crosstalk- A Critical update. Infect Disord Drug Targets 2023; 23:IDDT-EPUB-133706. [PMID: 37584349 PMCID: PMC11348471 DOI: 10.2174/1871526523666230816151614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/17/2023]
Abstract
Positive strides have been achieved in developing vaccines to combat the coronavirus-2019 infection (COVID-19) pandemic. Still, the outline of variations, particularly the most current delta divergent, has posed significant health encounters for people. Therefore, developing strong treatment strategies, such as an anti-COVID-19 medicine plan, may help deal with the pandemic more effectively. During the COVID-19 pandemic, some drug design techniques were effectively used to develop and substantiate relevant critical medications. Extensive research, both experimental and computational, has been dedicated to comprehending and characterizing the devastating COVID-19 disease. The urgency of the situation has led to the publication of over 130,000 COVID-19-related research papers in peer-reviewed journals and preprint servers. A significant focus of these efforts has been the identification of novel drug candidates and the repurposing of existing drugs to combat the virus. Many projects have utilized computational or computer-aided approaches to facilitate their studies. In this overview, we will explore the key computational methods and their applications in the discovery of small-molecule therapeutics for COVID-19, as reported in the research literature. We believe that the true effectiveness of computational tools lies in their ability to provide actionable and experimentally testable hypotheses, which in turn facilitate the discovery of new drugs and combinations thereof. Additionally, we recognize that open science and the rapid sharing of research findings are vital in expediting the development of much-needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Abu Mohiuddin
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| | - Sumanta Mondal
- Department of Pharmaceutical Science, GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam-530045, A.P., India
| |
Collapse
|
7
|
Shahwan M, Hassan N, Ashames A, Alrouji M, Alhumaydhi F, Al Abdulmonem W, Muhsinah AB, Furkan M, Khan RH, Shamsi A, Atiya A. PF543-like compound, a promising sphingosine kinase 1 inhibitor: Structure-based virtual screening and molecular dynamic simulation approaches. Int J Biol Macromol 2023; 245:125466. [PMID: 37348582 DOI: 10.1016/j.ijbiomac.2023.125466] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Sphingosine kinase 1 (SphK1) has been widely recognized as a significant contributor to various types of cancer, including breast, lung, prostate, and hematological cancers. This research aimed to find a potential SphK1 inhibitor through a step-by-step virtual screening of PF543 (a known SphK1 inhibitor)-like compounds obtained from the PubChem library with the Tanimoto threshold of 80 %. The virtual screening process included several steps, namely physicochemical and ADMET evaluation, PAINS filtering, and molecular docking, followed by molecular dynamics (MD) simulation and principal component analysis (PCA). The results showed that compound CID:58293960 ((3R)-1,1-dioxo-2-[[3-[(4-phenylphenoxy)methyl]phenyl]methyl]-1,2-thiazolidine-3-carboxylic acid) demonstrated high potential as SphK1 inhibitor. All-atom MD simulations were performed for 100 ns to evaluate the stability and structural changes of the docked complexes in an aqueous environment. The analysis of the time evolution data of structural deviations, compactness, PCA, and free energy landscape (FEL) indicated that the binding of CID:58293960 with SphK1 is relatively stable throughout the simulation. The results of this study provide a platform for the discovery and development of new anticancer therapeutics targeting SphK1.
Collapse
Affiliation(s)
- Moyad Shahwan
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Nageeb Hassan
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Akram Ashames
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Mohammed Alrouji
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia.
| | - Fahad Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Saudi Arabia
| | - Abdullatif Bin Muhsinah
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia; Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia
| | - Mohammad Furkan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, P.O. Box 346, United Arab Emirates.
| | - Akhtar Atiya
- Complementary and Alternative Medicine Unit, King Khalid University (KKU), Guraiger St., Abha 62529, Saudi Arabia.
| |
Collapse
|
8
|
Jiang D, Ye Z, Hsieh CY, Yang Z, Zhang X, Kang Y, Du H, Wu Z, Wang J, Zeng Y, Zhang H, Wang X, Wang M, Yao X, Zhang S, Wu J, Hou T. MetalProGNet: a structure-based deep graph model for metalloprotein-ligand interaction predictions. Chem Sci 2023; 14:2054-2069. [PMID: 36845922 PMCID: PMC9945430 DOI: 10.1039/d2sc06576b] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Metalloproteins play indispensable roles in various biological processes ranging from reaction catalysis to free radical scavenging, and they are also pertinent to numerous pathologies including cancer, HIV infection, neurodegeneration, and inflammation. Discovery of high-affinity ligands for metalloproteins powers the treatment of these pathologies. Extensive efforts have been made to develop in silico approaches, such as molecular docking and machine learning (ML)-based models, for fast identification of ligands binding to heterogeneous proteins, but few of them have exclusively concentrated on metalloproteins. In this study, we first compiled the largest metalloprotein-ligand complex dataset containing 3079 high-quality structures, and systematically evaluated the scoring and docking powers of three competitive docking tools (i.e., PLANTS, AutoDock Vina and Glide SP) for metalloproteins. Then, a structure-based deep graph model called MetalProGNet was developed to predict metalloprotein-ligand interactions. In the model, the coordination interactions between metal ions and protein atoms and the interactions between metal ions and ligand atoms were explicitly modelled through graph convolution. The binding features were then predicted by the informative molecular binding vector learned from a noncovalent atom-atom interaction network. The evaluation on the internal metalloprotein test set, the independent ChEMBL dataset towards 22 different metalloproteins and the virtual screening dataset indicated that MetalProGNet outperformed various baselines. Finally, a noncovalent atom-atom interaction masking technique was employed to interpret MetalProGNet, and the learned knowledge accords with our understanding of physics.
Collapse
Affiliation(s)
- Dejun Jiang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China .,Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China .,College of Computer Science and Technology, Zhejiang University Hangzhou 310006 Zhejiang China
| | - Zhaofeng Ye
- Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Ziyi Yang
- Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Hongyan Du
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Zhenxing Wu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Yundian Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Haotian Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiaorui Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and TechnologyMacao
| | - Mingyang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and TechnologyMacao
| | - Shengyu Zhang
- Tencent Quantum Laboratory, Tencent Shenzhen 518057 Guangdong China
| | - Jian Wu
- College of Computer Science and Technology, Zhejiang University Hangzhou 310006 Zhejiang China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China
| |
Collapse
|
9
|
Pinel P, Guichaoua G, Najm M, Labouille S, Drizard N, Gaston-Mathé Y, Hoffmann B, Stoven V. Exploring isofunctional molecules: Design of a benchmark and evaluation of prediction performance. Mol Inform 2023; 42:e2200216. [PMID: 36633361 DOI: 10.1002/minf.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Identification of novel chemotypes with biological activity similar to a known active molecule is an important challenge in drug discovery called 'scaffold hopping'. Small-, medium-, and large-step scaffold hopping efforts may lead to increasing degrees of chemical structure novelty with respect to the parent compound. In the present paper, we focus on the problem of large-step scaffold hopping. We assembled a high quality and well characterized dataset of scaffold hopping examples comprising pairs of active molecules and including a variety of protein targets. This dataset was used to build a benchmark corresponding to the setting of real-life applications: one active molecule is known, and the second active is searched among a set of decoys chosen in a way to avoid statistical bias. This allowed us to evaluate the performance of computational methods for solving large-step scaffold hopping problems. In particular, we assessed how difficult these problems are, particularly for classical 2D and 3D ligand-based methods. We also showed that a machine-learning chemogenomic algorithm outperforms classical methods and we provided some useful hints for future improvements.
Collapse
Affiliation(s)
- Philippe Pinel
- Center for Computational Biology, Mines Paris-PSL, PSL Research University, 75006, Paris, France.,Institut Curie, 75248, Paris, France.,INSERM U900, 75428, Paris, France.,Iktos SAS, 75017, Paris, France
| | - Gwenn Guichaoua
- Center for Computational Biology, Mines Paris-PSL, PSL Research University, 75006, Paris, France.,Institut Curie, 75248, Paris, France.,INSERM U900, 75428, Paris, France
| | - Matthieu Najm
- Center for Computational Biology, Mines Paris-PSL, PSL Research University, 75006, Paris, France.,Institut Curie, 75248, Paris, France.,INSERM U900, 75428, Paris, France
| | | | | | | | | | - Véronique Stoven
- Center for Computational Biology, Mines Paris-PSL, PSL Research University, 75006, Paris, France.,Institut Curie, 75248, Paris, France.,INSERM U900, 75428, Paris, France
| |
Collapse
|
10
|
Using chemical and biological data to predict drug toxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:53-64. [PMID: 36639032 DOI: 10.1016/j.slasd.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/31/2022] [Indexed: 01/12/2023]
Abstract
Various sources of information can be used to better understand and predict compound activity and safety-related endpoints, including biological data such as gene expression and cell morphology. In this review, we first introduce types of chemical, in vitro and in vivo information that can be used to describe compounds and adverse effects. We then explore how compound descriptors based on chemical structure or biological perturbation response can be used to predict safety-related endpoints, and how especially biological data can help us to better understand adverse effects mechanistically. Overall, the described applications demonstrate how large-scale biological information presents new opportunities to anticipate and understand the biological effects of compounds, and how this can support predictive toxicology and drug discovery projects.
Collapse
|
11
|
Sun L, Zhang M, Xie L, Gao Q, Xu X, Xu L. In silico prediction of boiling point, octanol-water partition coefficient, and retention time index of polycyclic aromatic hydrocarbons through machine learning. Chem Biol Drug Des 2023; 101:52-68. [PMID: 35852446 DOI: 10.1111/cbdd.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 12/15/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), a special class of persistent organic pollutants (POPs) with two or more aromatic rings, have received extensive attention owing to their carcinogenic, mutagenic, and teratogenic effects. Quantitative structure-property relationship (QSPR) is powerful chemometric method to correlate structural descriptors of PAHs with their physicochemical properties. In this manuscript, a QSPR study of PAHs was performed to predict their boiling point (bp), octanol-water partition coefficient (LogKow ), and retention time index (RI). In addition to traditional molecular descriptors, structural fingerprints play an important role in the correlation of the above properties. Three regression methods, partial least squares (PLS), multiple linear regression (MLR), and genetic function approximation (GFA), were used to establish QSPR models for each property of PAHs. The correlation coefficient (R2 test ) and root mean square error (RMSE) of best model were 0.980 and 24.39% (PLS), 0.979 and 35.80% (GFA), 0.926 and 22.90% (MLR) for bp, LogKow, and RI, respectively. The model proposed here can be used to estimate physicochemical properties and inform toxicity prediction of environmental chemicals.
Collapse
Affiliation(s)
- Linkang Sun
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Min Zhang
- School of Computer Engineering, Jiangsu University of Technology, Changzhou, China
| | - Liangxu Xie
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Qian Gao
- School of Computer Engineering, Jiangsu University of Technology, Changzhou, China
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, China
| |
Collapse
|
12
|
Discovery of novel DprE1 inhibitors via computational bioactivity fingerprints and structure-based virtual screening. Acta Pharmacol Sin 2022; 43:1605-1615. [PMID: 34667293 PMCID: PMC9160271 DOI: 10.1038/s41401-021-00779-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
Decaprenylphosphoryl-β-D-ribose oxidase (DprE1) plays important roles in the biosynthesis of mycobacterium cell wall. DprE1 inhibitors have shown great potentials in the development of new regimens for tuberculosis (TB) treatment. In this study, an integrated molecular modeling strategy, which combined computational bioactivity fingerprints and structure-based virtual screening, was employed to identify potential DprE1 inhibitors. Two lead compounds (B2 and H3) that could inhibit DprE1 and thus kill Mycobacterium smegmatis in vitro were identified. Moreover, compound H3 showed potent inhibitory activity against Mycobacterium tuberculosis in vitro (MICMtb = 1.25 μM) and low cytotoxicity against mouse embryo fibroblast NIH-3T3 cells. Our research provided an effective strategy to discover novel anti-TB lead compounds.
Collapse
|
13
|
Wang J, Zhang Y, Nie W, Luo Y, Deng L. Computational anti-COVID-19 drug design: progress and challenges. Brief Bioinform 2022; 23:bbab484. [PMID: 34850817 PMCID: PMC8690229 DOI: 10.1093/bib/bbab484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Vaccines have made gratifying progress in preventing the 2019 coronavirus disease (COVID-19) pandemic. However, the emergence of variants, especially the latest delta variant, has brought considerable challenges to human health. Hence, the development of robust therapeutic approaches, such as anti-COVID-19 drug design, could aid in managing the pandemic more efficiently. Some drug design strategies have been successfully applied during the COVID-19 pandemic to create and validate related lead drugs. The computational drug design methods used for COVID-19 can be roughly divided into (i) structure-based approaches and (ii) artificial intelligence (AI)-based approaches. Structure-based approaches investigate different molecular fragments and functional groups through lead drugs and apply relevant tools to produce antiviral drugs. AI-based approaches usually use end-to-end learning to explore a larger biochemical space to design antiviral drugs. This review provides an overview of the two design strategies of anti-COVID-19 drugs, the advantages and disadvantages of these strategies and discussions of future developments.
Collapse
Affiliation(s)
- Jinxian Wang
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, 150001, Harbin, China
| | - Wenjuan Nie
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| | - Yi Luo
- School of Science, The University of Auckland,Auckland 1010, Auckland, New Zealand
| | - Lei Deng
- School of Computer Science and Engineering, Central South University,410075, Changsha, China
| |
Collapse
|