1
|
Chanda A, Salvi NC, Shelke PV, Kalita B, Patra A, Puzari U, Khadilkar MV, Mukherjee AK. Supplementation of polyclonal antibodies, developed against epitope-string toxin-specific peptide immunogens, to commercial polyvalent antivenom, shows improved neutralization of Indian Big Four and Naja kaouthia snake venoms. Toxicon X 2024; 24:100210. [PMID: 39398349 PMCID: PMC11471238 DOI: 10.1016/j.toxcx.2024.100210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024] Open
Abstract
Snakebites profoundly impact the rural population of tropical nations, leading to significant socio-economic repercussions. Polyvalent antivenom (PAV) therapy faces several limitations, including intra-specific variations and poor efficacy against some major toxins and low molecular mass, poorly immunogenic toxins, which contribute to increased mortality and morbidity rates. Innovative strategies for developing novel antivenoms are continuously explored to address these challenges. The present study focuses on designing of 17 epitope-string toxin-specific peptide immunogens from pharmacologically active major and/or poorly immunogenic toxins (snake venom metalloprotease, Kunitz-type serine protease inhibitor, phospholipase A2, three-finger toxin) from the venom of the 'Big Four' venomous snakes and Naja kaouthia (NK) in India. These custom peptide antibodies demonstrated robust immuno-reactivity against the venoms 'Big Four' and NK. When these antibodies were supplemented with commercial PAV at a defined ratio (formulated polyvalent antivenom or FPAV), it significantly enhanced the neutralization of snake venom enzymes and in vivo neutralization of lethality and pharmacological activities such as haemorrhage, necrosis, pro-coagulant, defibrinogenation, and myotoxicity of 'Big Four' and NK venoms compared to PAV in mice. The present study highlights a promising strategy for developing next-generation antivenoms using synthetic peptide-based immunogens, offering a targeted approach to address the limitations of current antivenom therapy.
Collapse
Affiliation(s)
- Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, 97331, Oregon, USA
| | - Nitin C. Salvi
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, 410504, Maharashtra, India
| | - Pravin V. Shelke
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, 410504, Maharashtra, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Amrita Research Centre, Amrita Vishwa Vidyapeetham, Faridabad, Haryana, 121002, India
| | - Upasana Puzari
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Milind V. Khadilkar
- Premium Serums and Vaccines Pvt. Ltd, Narayangaon, Pune, 410504, Maharashtra, India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati, 781035, Assam, India
| |
Collapse
|
2
|
Yusuf AJ, Bugaje AI, Sadiq M, Salihu M, Adamu HW, Abdulrahman M. Exploring the inhibitory potential of phytochemicals from Vernonia glaberrima leaves against snake venom toxins through computational simulation and experimental validation. Toxicon 2024; 247:107838. [PMID: 38971473 DOI: 10.1016/j.toxicon.2024.107838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/08/2024]
Abstract
Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-β-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.
Collapse
Affiliation(s)
- A J Yusuf
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria.
| | - A I Bugaje
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - M Sadiq
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - M Salihu
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - H W Adamu
- Department of Biology, Shehu Shagari College of Education, Sokoto, Nigeria
| | - M Abdulrahman
- Department of Pharmaceutical and Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
3
|
Borri J, Gutiérrez JM, Knudsen C, Habib AG, Goldstein M, Tuttle A. Landscape of toxin-neutralizing therapeutics for snakebite envenoming (2015-2022): Setting the stage for an R&D agenda. PLoS Negl Trop Dis 2024; 18:e0012052. [PMID: 38530781 PMCID: PMC10965046 DOI: 10.1371/journal.pntd.0012052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Progress in snakebite envenoming (SBE) therapeutics has suffered from a critical lack of data on the research and development (R&D) landscape. A database characterising this information would be a powerful tool for coordinating and accelerating SBE R&D. To address this need, we aimed to identify and categorise all active investigational candidates in development for SBE and all available or marketed products. METHODOLOGY/PRINCIPAL FINDINGS In this landscape study, publicly available data and literature were reviewed to canvas the state of the SBE therapeutics market and research pipeline by identifying, characterising, and validating all investigational drug and biologic candidates with direct action on snake venom toxins, and all products available or marketed from 2015 to 2022. We identified 127 marketed products and 196 candidates in the pipeline, describing a very homogenous market of similar but geographically bespoke products and a diverse but immature pipeline, as most investigational candidates are at an early stage of development, with only eight candidates in clinical development. CONCLUSIONS/SIGNIFICANCE Further investment and research is needed to address the shortfalls in products already on the market and to accelerate R&D for new therapeutics. This should be accompanied by efforts to converge on shared priorities and reshape the current SBE R&D ecosystem to ensure translation of innovation and access.
Collapse
Affiliation(s)
- Juliette Borri
- Policy Cures Research, Sydney, New South Wales, Australia
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - Abdulrazaq G. Habib
- Infectious and Tropical Diseases Unit, Department of Medicine, Bayero University, Kano, Nigeria
| | - Maya Goldstein
- Policy Cures Research, Sydney, New South Wales, Australia
| | - Andrew Tuttle
- Policy Cures Research, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Yap MKK, Modahl CM, Hall SR. Editorial: Experimental and computational aspects of bioactive proteins from animal venoms: an insight into pharmacological properties and drug discovery. Front Pharmacol 2024; 15:1380193. [PMID: 38434707 PMCID: PMC10904634 DOI: 10.3389/fphar.2024.1380193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Affiliation(s)
| | - Cassandra M. Modahl
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Steven R. Hall
- Lancaster Medical School and Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
5
|
de Oliveira ALN, Lacerda MT, Ramos MJ, Fernandes PA. Viper Venom Phospholipase A2 Database: The Structural and Functional Anatomy of a Primary Toxin in Envenomation. Toxins (Basel) 2024; 16:71. [PMID: 38393149 PMCID: PMC10893444 DOI: 10.3390/toxins16020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 02/25/2024] Open
Abstract
Viper venom phospholipase A2 enzymes (vvPLA2s) and phospholipase A2-like (PLA2-like) proteins are two of the principal toxins in viper venom that are responsible for the severe myotoxic and neurotoxic effects caused by snakebite envenoming, among other pathologies. As snakebite envenoming is the deadliest neglected tropical disease, a complete understanding of these proteins' properties and their mechanisms of action is urgently needed. Therefore, we created a database comprising information on the holo-form, cofactor-bound 3D structure of 217 vvPLA2 and PLA2-like proteins in their physiologic environment, as well as 79 membrane-bound viper species from 24 genera, which we have made available to the scientific community to accelerate the development of new anti-snakebite drugs. In addition, the analysis of the sequenced, 3D structure of the database proteins reveals essential aspects of the anatomy of the proteins, their toxicity mechanisms, and the conserved binding site areas that may anchor universal interspecific inhibitors. Moreover, it pinpoints hypotheses for the molecular origin of the myotoxicity of the PLA2-like proteins. Altogether, this study provides an understanding of the diversity of these toxins and how they are conserved, and it indicates how to develop broad, interspecies, efficient small-molecule inhibitors to target the toxin's many mechanisms of action.
Collapse
Affiliation(s)
| | | | | | - Pedro A. Fernandes
- Requimte-Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-000 Porto, Portugal; (A.L.N.d.O.); (M.T.L.); (M.J.R.)
| |
Collapse
|
6
|
Thumtecho S, Burlet NJ, Ljungars A, Laustsen AH. Towards better antivenoms: navigating the road to new types of snakebite envenoming therapies. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230057. [PMID: 38116472 PMCID: PMC10729942 DOI: 10.1590/1678-9199-jvatitd-2023-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023] Open
Abstract
Snakebite envenoming is a significant global health challenge, and for over a century, traditional plasma-derived antivenoms from hyperimmunized animals have been the primary treatment against this infliction. However, these antivenoms have several inherent limitations, including the risk of causing adverse reactions when administered to patients, batch-to-batch variation, and high production costs. To address these issues and improve treatment outcomes, the development of new types of antivenoms is crucial. During this development, key aspects such as improved clinical efficacy, enhanced safety profiles, and greater affordability should be in focus. To achieve these goals, modern biotechnological methods can be applied to the discovery and development of therapeutic agents that can neutralize medically important toxins from multiple snake species. This review highlights some of these agents, including monoclonal antibodies, nanobodies, and selected small molecules, that can achieve broad toxin neutralization, have favorable safety profiles, and can be produced on a large scale with standardized manufacturing processes. Considering the inherent strengths and limitations related to the pharmacokinetics of these different agents, a combination of them might be beneficial in the development of new types of antivenom products with improved therapeutic properties. While the implementation of new therapies requires time, it is foreseeable that the application of biotechnological advancements represents a promising trajectory toward the development of improved therapies for snakebite envenoming. As research and development continue to advance, these new products could emerge as the mainstay treatment in the future.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nick J. Burlet
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
7
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
8
|
Couceiro FYGM, Demico PJ, Dias SR, Oliveira IN, Pacagnelli FL, Silva EO, Sant'Anna SS, Grego KF, Morais-Zani K, Torres-Bonilla KA, Hyslop S, Floriano RS. Involvement of phospholipase A 2 in the neuromuscular blockade caused by coralsnake (Micrurus spp.) venoms in mouse phrenic nerve-diaphragm preparations in vitro. Toxicon 2023; 234:107263. [PMID: 37659667 DOI: 10.1016/j.toxicon.2023.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/04/2023]
Abstract
In this work, we examined the neuromuscular blockade caused by venoms from four South-American coralsnakes (Micrurus altirostris - MA, M. corallinus - MC, M. spixii - MS, and M. dumerilii carinicauda - MDC) and the ability of varespladib (VPL), a phospholipase A2 (PLA2) inhibitor, to attenuate this blockade. PLA2 activity was determined using a colorimetric assay and a fixed amount of venom (10 μg). Neurotoxicity was assayed using a single concentration of venom (10 μg/ml) in mouse phrenic nerve-diaphragm (PND) preparations mounted for myographic recordings and then subjected to histological analysis. All venoms showed PLA2 activity, with MS and MA venoms having the highest (15.53 ± 1.9 A425 nm/min) and lowest (0.23 ± 0.14 A425 nm/min) activities, respectively. VPL (292 and 438 μM) inhibited the PLA2 activity of all venoms, although that of MA venom was least affected. All venoms caused neuromuscular blockade, with MS and MDC venoms causing the fastest and slowest 100% blockade [in 40 ± 3 min and 120 ± 6 min (n = 4), respectively]; MA and MC produced complete blockade within 90-100 min. Preincubation of venoms with 292 μM VPL attenuated the blockade to varying degrees: the greatest inhibition was seen with MDC venom and blockade by MS venom was unaffected by this inhibitor. These results indicate that PLA2 has a variable contribution to coralsnake venom-induced neuromuscular blockade in vitro, with the insensitivity of MS venom to VPL suggesting that blockade by this venom is mediated predominantly by post-synaptically-active α-neurotoxins.
Collapse
Affiliation(s)
- Fernanda Y G M Couceiro
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Poliana J Demico
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Samuel R Dias
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Isabele N Oliveira
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Francis L Pacagnelli
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Laboratory of Pathological Anatomy, Veterinary Hospital, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Sávio S Sant'Anna
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Kathleen F Grego
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Karen Morais-Zani
- Laboratory of Herpetology, Butantan Institute (IB), São Paulo, SP, Brazil
| | - Kristian A Torres-Bonilla
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil.
| |
Collapse
|
9
|
Das B, Madhubala D, Mahanta S, Patra A, Puzari U, Khan MR, Mukherjee AK. A Novel Therapeutic Formulation for the Improved Treatment of Indian Red Scorpion ( Mesobuthus tamulus) Venom-Induced Toxicity-Tested in Caenorhabditis elegans and Rodent Models. Toxins (Basel) 2023; 15:504. [PMID: 37624261 PMCID: PMC10467153 DOI: 10.3390/toxins15080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Indian Red Scorpion (Mesobuthus tamulus) stings are a neglected public health problem in tropical and sub-tropical countries, including India. The drawbacks of conventional therapies using commercial anti-scorpion antivenom (ASA) and α1-adrenoreceptor antagonists (AAA) have prompted us to search for an adequate formulation to improve treatment against M. tamulus stings. Novel therapeutic drug formulations (TDF) of low doses of commercial ASA, AAA, and ascorbic acid have remarkably improved in neutralising the in vivo toxic effects of M. tamulus venom (MTV) tested in Caenorhabditis elegans and Wistar strain albino rats in vivo models. The neutralisation of MTV-induced production of free radicals, alteration of the mitochondrial transmembrane potential, and upregulated expression of genes involved in apoptosis, detoxification, and stress response in C. elegans by TDF surpassed the same effect shown by individual components of the TDF. Further, TDF efficiently neutralized the MTV-induced increase in blood glucose level within 30 to 60 min post-treatment, organ tissue damage, necrosis, and pulmonary oedema in Wistar rats, indicating its clinical application for effecting treating M. tamulus envenomation. This study demonstrates for the first time that C. elegans can be a model organism for screening the neutralization potency of the drug molecules against a neurotoxic scorpion venom.
Collapse
Affiliation(s)
- Bhabana Das
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; (B.D.); (D.M.); (U.P.)
| | - Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; (B.D.); (D.M.); (U.P.)
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India; (A.P.); (M.R.K.)
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati 781008, Assam, India;
| | - Aparup Patra
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India; (A.P.); (M.R.K.)
| | - Upasana Puzari
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; (B.D.); (D.M.); (U.P.)
| | - Mojibur R. Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India; (A.P.); (M.R.K.)
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; (B.D.); (D.M.); (U.P.)
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India; (A.P.); (M.R.K.)
| |
Collapse
|
10
|
Castro-Amorim J, Oliveira A, Mukherjee AK, Ramos MJ, Fernandes PA. Unraveling the Reaction Mechanism of Russell's Viper Venom Factor X Activator: A Paradigm for the Reactivity of Zinc Metalloproteinases? J Chem Inf Model 2023; 63:4056-4069. [PMID: 37092784 PMCID: PMC10336966 DOI: 10.1021/acs.jcim.2c01156] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 04/25/2023]
Abstract
Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ana Oliveira
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Ashis K. Mukherjee
- Institute
of Advanced Study in Science and Technology, Vigyan Path Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria J. Ramos
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| | - Pedro A. Fernandes
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, Porto 4169-007, Portugal
| |
Collapse
|
11
|
Kannan MP, Sreeraman S, Somala CS, Kushwah RB, Mani SK, Sundaram V, Thirunavukarasou A. Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets. Future Med Chem 2023; 15:867-883. [PMID: 37254917 DOI: 10.4155/fmc-2023-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Targeted protein degradation (TPD) aids in developing novel bifunctional small-molecule degraders and eliminates proteins of interest. The TPD approach shows promising results in oncological, neurogenerative, cardiovascular and gynecological drug development. We provide an overview of technology advancements in TPD, including molecular glues, proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimeras, antibody-based PROTAC, GlueBody PROTAC, autophagy-targeting chimera, autophagosome-tethering compound, autophagy-targeting chimera and chaperone-mediated autophagy-based degraders. Here we discuss the development and evolution of the TPD field, the variety of proteins that PROTACs target and the biological repercussions of their degradation. We particularly highlight the recent improvements in TPD research that utilize autophagy or the endolysosomal pathway, which enables the targeting of undruggable targets.
Collapse
Affiliation(s)
- Mayuri P Kannan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Sarojini Sreeraman
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| | - Chaitanya S Somala
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Raja Bs Kushwah
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Saravanan K Mani
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Anand Thirunavukarasou
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| |
Collapse
|
12
|
Castro-Amorim J, Novo de Oliveira A, Da Silva SL, Soares AM, Mukherjee AK, Ramos MJ, Fernandes PA. Catalytically Active Snake Venom PLA 2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J Med Chem 2023; 66:5364-5376. [PMID: 37018514 PMCID: PMC10150362 DOI: 10.1021/acs.jmedchem.3c00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Novo de Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Saulo Luís Da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Andreimar M Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Rondônia 76812-245, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Rondônia 76805-846, Brazil
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
13
|
Puzari U, Fernandes PA, Mukherjee AK. Pharmacological re-assessment of traditional medicinal plants-derived inhibitors as antidotes against snakebite envenoming: A critical review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115208. [PMID: 35314419 DOI: 10.1016/j.jep.2022.115208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional healers have used medicinal plants to treat snakebite envenomation worldwide; however, mostly without scientific validation. There have been many studies on the therapeutic potential of the natural products against snake envenomation. AIM OF THE STUDY This review has highlighted snake venom inhibitory activity of bioactive compounds and peptides from plants that have found a traditional use in treating snakebite envenomation. We have systematically reviewed the scenario of different phases of natural snake venom inhibitors characterization covering a period from 1994 until the present and critically analysed the lacuna of the studies if any, and further scope for their translation from bench to bedside. MATERIALS AND METHODS The medicinal plant-derived compounds used against snakebite therapy were reviewed from the available literature in public databases (Scopus, MEDLINE) from 1994 till 2020. The search words used were 'natural inhibitors against snakebite,' 'natural products as therapeutics against snakebite,' 'natural products as antidote against snake envenomation,' ' snake venom toxin natural inhibitors,' 'snake venom herbal inhibitors'. However, the scope of this review does not include computational (in silico) predictions without any wet laboratory validation and snake venom inhibitory activity of the crude plant extracts. In addition, we have also predicted the ADMET properties of the identified snake venom inhibitors to highlight their valuable pharmacokinetics for future clinical studies. RESULTS The therapeutic application of plant-derived natural inhibitors to treat snakebite envenomation as an auxiliary to antivenom therapy has been gaining significant momentum. Pharmacological reassessment of the natural compounds derived from traditional medicinal plants has demonstrated inhibition of the principal toxic enzymes of snake venoms at various extents to curb the lethal and/or deleterious effects of venomous snakebite. Nevertheless, such molecules are yet to be commercialized for clinical application in the treatment of snakebite. There are many obstacles in the marketability of the plant-derived natural products as snake envenomation antidote and strategies must be explored for the translation of these compounds from drug candidates to their clinical application. CONCLUSION In order to minimize the adverse implications of snake envenomation, strategies must be developed for the smooth transition of these plant-derived small molecule inhibitors from bench to bedside. In this article we have presented an inclusive review and have critically analysed natural products for their therapeutic potential against snake envenomation, and have proposed a road map for use of natural products as antidote against snakebite.
Collapse
Affiliation(s)
- Upasana Puzari
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Pedro Alexandrino Fernandes
- LAQV@REQUIMTE, Departamento de Química e Bioquímica, Faculdade De Ciências, Universidade do Porto, Rua Do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India; Institute of Advanced Study in Science and Technology, Guwahati, 781035, Assam, India.
| |
Collapse
|