1
|
Toh Y, Wu L, Tu J, Liang Z, Aldana AM, Li L, Wen JJ, Pan S, Julie RH, Hensel ME, Hodo CL, Finch RA, Carmon KS, Liu QJ. Anti-tumor activity of camptothecin analog conjugate of a RSPO4-based peptibody targeting LGR4/5/6 in preclinical models of colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.616548. [PMID: 39415992 PMCID: PMC11482909 DOI: 10.1101/2024.10.08.616548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Antibody-drug conjugates (ADCs) have emerged as a major modality of targeted cancer therapy, yet no ADC has been approved for colorectal cancer (CRC). LGR4/5/6 (leucine-rich repeat containing, G protein-coupled receptor 4, 5, 6) are three related receptors that are expressed at high levels together or alternately in nearly all cases of CRC. ADCs targeting LGR5 have been shown to have robust anti-tumor potency, but not all CRC cells express LGR5 and LGR5-positive tumor cells may lose LGR5 expression due to cancer cell plasticity. R-spondin 4 (RSPO4) is a natural protein ligand of LGR4/5/6 with high affinity for all three receptors. We fused a mutant form of RSPO4 that retains high affinity binding to LGR4/5/6 to IgG1 Fc to create a peptibody designated R462. Conjugation of R462 with a camptothecin analog (CPT2) at eight drugs per peptibody led to the synthesis of R462-CPT2 that showed highly potent cytotoxic activity in vitro in CRC cell lines expressing any of LG4/5/6. In cell line xenograft and PDX models of CRC, R462-CPT2 demonstrated robust anti-tumor effect. Importantly, R462-CPT2 showed no major adverse effect at therapeutically effective dose levels. These results strongly support the use of RSPO ligand drug-conjugates that target LGR4/5/6 simultaneously for the treatment of CRC.
Collapse
|
2
|
Faizo NL. The intestinal stem cell as a target: A review. Medicine (Baltimore) 2024; 103:e39456. [PMID: 39183418 PMCID: PMC11346866 DOI: 10.1097/md.0000000000039456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human intestinal epithelium handles several events that may affect health. It is composed of villi and crypts, which contain different types of cells. Each cell type plays an essential role in intestinal functions, including absorption, defense, self-renewal, and regeneration. Intestinal stem cells (ISCs), located at the base of intestinal crypts, play an important role in intestinal homeostasis and renewal. Any disruption in intestinal homeostasis, in which ISCs alter their function, may result in tumor growth. As Wnt and Notch signaling pathways are essential for ISCs homeostasis and for maintaining self-renewal, any defects in these pathways could increase the risk of developing colorectal cancer (CRC). Lgr5+ cells have been identified as intestinal stem cells expressing a leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), which is involved in the regulation of Wnt signaling. Several studies have reported upregulated expression of LGR5 in CRC. Hence, in this review, we discuss the relationship between LGR5, Wnt signaling, and Notch signaling and the development of CRC, as well as recent therapeutic strategies targeting LGR5, cancer stem cells (CSCs), and the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
4
|
Tu J, Toh Y, Aldana AM, Wen JJ, Wu L, Jacob J, Li L, Pan S, Carmon KS, Liu QJ. Antitumor Activity of a Pyrrolobenzodiazepine Antibody-Drug Conjugate Targeting LGR5 in Preclinical Models of Neuroblastoma. Pharmaceutics 2024; 16:943. [PMID: 39065640 PMCID: PMC11279891 DOI: 10.3390/pharmaceutics16070943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Neuroblastoma (NB) is a cancer of the peripheral nervous system found in children under 15 years of age. It is the most frequently diagnosed cancer during infancy, accounting for ~12% of all cancer-related deaths in children. Leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) is a membrane receptor that is associated with the primary tumor formation and metastasis of cancers in the gastrointestinal system. Remarkably, high levels of LGR5 are found in NB tumor cells, and high LGR5 expression is strongly correlated with poor survival. Antibody-drug conjugates (ADCs) are monoclonal antibodies that are covalently linked to cell-killing cytotoxins to deliver the payloads into cancer cells. We generated an ADC with an anti-LGR5 antibody and pyrrolobenzodiazepine (PBD) dimer-based payload SG3199 using a chemoenzymatic conjugation method. The resulting anti-LGR5 ADC was able to inhibit the growth of NB cells expressing LGR5 with high potency and specificity. Importantly, the ADC was able to completely inhibit the growth of NB xenograft tumors in vivo at a clinically relevant dose for the PBD class of ADCs. The findings support the potential of targeting LGR5 using the PBD class of payload for the treatment of high-risk NBs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Qingyun J. Liu
- The Brown Foundation Institute of Molecular Medicine, Center for Translational Cancer Research, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
5
|
High P, Carmon KS. G protein-coupled receptor-targeting antibody-drug conjugates: Current status and future directions. Cancer Lett 2023; 564:216191. [PMID: 37100113 PMCID: PMC11270908 DOI: 10.1016/j.canlet.2023.216191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
In recent years, antibody-drug conjugates (ADCs) have emerged as promising anti-cancer therapeutic agents with several having already received market approval for the treatment of solid tumor and hematological malignancies. As ADC technology continues to improve and the range of indications treatable by ADCs increases, the repertoire of target antigens has expanded and will undoubtedly continue to grow. G protein-coupled receptors (GPCRs) are well-characterized therapeutic targets implicated in many human pathologies, including cancer, and represent a promising emerging target of ADCs. In this review, we will discuss the past and present therapeutic targeting of GPCRs and describe ADCs as therapeutic modalities. Moreover, we will summarize the status of existing preclinical and clinical GPCR-targeted ADCs and address the potential of GPCRs as novel targets for future ADC development.
Collapse
Affiliation(s)
- Peyton High
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Kendra S Carmon
- Center for Translational Cancer Research, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Wong C, Mulero MC, Barth EI, Wang K, Shang X, Tikle S, Rice C, Gately D, Howell SB. Exploiting the Receptor-Binding Domains of R-Spondin 1 to Target Leucine-Rich Repeat-Containin G-Coupled Protein Receptor 5-Expressing Stem Cells in Ovarian Cancer. J Pharmacol Exp Ther 2023; 385:95-105. [PMID: 36849411 PMCID: PMC10108443 DOI: 10.1124/jpet.122.001495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
Leucine-rich repeat-containing G-protein-coupled receptor (LGR5) and LGR6 mark epithelial stem cells in normal tissues and tumors. They are expressed by stem cells in the ovarian surface and fallopian tube epithelia from which ovarian cancer arises. High-grade serous ovarian cancer is unique in expressing unusually high levels of LGR5 and LGR6 mRNA. R-spondins are the natural ligands for LGR5 and LGR6 to which they bind with nanomolar affinity. To target stem cells in ovarian cancer, we used the sortase reaction to site-specifically conjugate the potent cytotoxin monomethyl auristatin E (MMAE) via a protease sensitive linker to the two furin-like domains of RSPO1 (Fu1-Fu2) that mediate its binding to LGR5 and LGR6 and their co-receptors Zinc And Ring Finger 3 and Ring Finger Protein 43 via a protease-cleavable linker. An immunoglobulin Fc domain added to the N-terminal end served to dimerize the receptor-binding domains so that each molecule carries two MMAE. The resulting molecule, FcF2-MMAE, demonstrated: 1) selective LGR5-dependent low nanomolar cytotoxicity against ovarian cancer cells in vitro; 2) selectivity that was dependent on binding to both the LGR receptors and ubiquitin ligase co-receptors; 3) favorable stability and plasma pharmacokinetic properties when administered intravenously with an elimination half-life of 29.7 hours; 4) selective inhibition of LGR5-rich as opposed to isogenic LGR5-poor tumors in vivo; and, 5) therapeutic efficacy in three aggressive wild-type human ovarian cancer xenograft models. These results demonstrate the successful use of the Fu1-Fu2 domain of RSPO1 as a drug carrier and the ability of FcF2-MMAE to target cells in tumors that express stem cell markers. SIGNIFICANCE STATEMENT: FcF2-MMAE is a novel cancer therapeutic that exploits the high-affinity binding domains of RSPO1 to target monomethyl auristatin E to tumor stem cells that express LGR5. FcF2-MMAE has low nanomolar LGR5-dependent cytotoxicity in vitro, favorable pharmacokinetics, and differential efficacy in an isogenic LGR5-poor versus LGR5-rich ovarian cancer xenograft model when given on a weekly schedule.
Collapse
Affiliation(s)
- Clara Wong
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Maria Carmen Mulero
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Erika I Barth
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Katherine Wang
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Xiying Shang
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Sanika Tikle
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Catherine Rice
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Dennis Gately
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| | - Stephen B Howell
- Moores Cancer Center and Department of Medicine, University of California, San Diego, 3855 Health Sciences Drive, Mail Code 0819, La Jolla, California
| |
Collapse
|
7
|
van Kerkhof P, Kralj T, Spanevello F, van Bloois L, Jordens I, van der Vaart J, Jamieson C, Merenda A, Mastrobattista E, Maurice MM. RSPO3 Furin domain-conjugated liposomes for selective drug delivery to LGR5-high cells. J Control Release 2023; 356:72-83. [PMID: 36813038 DOI: 10.1016/j.jconrel.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The transmembrane receptor LGR5 potentiates Wnt/β-catenin signaling by binding both secreted R-spondin (RSPOs) and the Wnt tumor suppressors RNF43/ZNRF3, directing clearance of RNF43/ZNRF3 from the cell surface. Besides being widely used as a stem cell marker in various tissues, LGR5 is overexpressed in many types of malignancies, including colorectal cancer. Its expression characterizes a subpopulation of cancer cells that play a crucial role in tumor initiation, progression and cancer relapse, known as cancer stem cells (CSCs). For this reason, ongoing efforts are aimed at eradicating LGR5-positive CSCs. Here, we engineered liposomes decorated with different RSPO proteins to specifically detect and target LGR5-positive cells. Using fluorescence-loaded liposomes, we show that conjugation of full-length RSPO1 to the liposomal surface mediates aspecific, LGR5-independent cellular uptake, largely mediated by heparan sulfate proteoglycan binding. By contrast, liposomes decorated only with the Furin (FuFu) domains of RSPO3 are taken up by cells in a highly specific, LGR5-dependent manner. Moreover, encapsulating doxorubicin in FuFuRSPO3 liposomes allowed us to selectively inhibit the growth of LGR5-high cells. Thus, FuFuRSPO3-coated liposomes allow for the selective detection and ablation of LGR5-high cells, providing a potential drug delivery system for LGR5-targeted anti-cancer strategies.
Collapse
Affiliation(s)
- Peter van Kerkhof
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Tomica Kralj
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Francesca Spanevello
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Louis van Bloois
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Ingrid Jordens
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Jelte van der Vaart
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Cara Jamieson
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Alessandra Merenda
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Enrico Mastrobattista
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands.
| | - Madelon M Maurice
- Oncode Institute and Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Lee H, Sun R, Niehrs C. Uncoupling the BMP receptor antagonist function from the WNT agonist function of R-spondin 2 using the inhibitory peptide dendrimer RW d. J Biol Chem 2022; 298:101586. [PMID: 35032551 PMCID: PMC8842081 DOI: 10.1016/j.jbc.2022.101586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/28/2022] Open
Abstract
Signaling by bone morphogenetic proteins (BMPs) plays pivotal roles in embryogenesis, adult tissue homeostasis, and disease. Recent studies revealed that the well-established WNT agonist R-spondin 2 (RSPO2) is also a BMP receptor (BMP receptor type 1A) antagonist, with roles in early Xenopus embryogenesis and human acute myeloid leukemia (AML). To uncouple the BMP antagonist function from the WNT agonist function and to promote development of AML therapeutics, here we identified a 10-mer peptide (RW) derived from the thrombospondin 1 domain of RSPO2, which specifically prevents binding between RSPO2 and BMP receptor type 1A without altering WNT signaling. We also show that a corresponding RW dendrimer (RWd) exhibiting improved half-life relieves inhibition of BMP receptor signaling by RSPO2 in human AML cells, reduces cell growth, and induces differentiation. Moreover, microinjection of RWd in Xenopus embryos ventralizes the dorsoventral embryonic patterning by upregulating BMP signaling without affecting WNT signaling. Our study corroborates the function of RSPO2 as a BMP receptor antagonist and provides a proof of concept for pharmacologically uncoupling BMP antagonist from WNT agonist functions of RSPO2 using the inhibitor peptide RWd with enhanced target selectivity and limited side effects.
Collapse
Affiliation(s)
- Hyeyoon Lee
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Rui Sun
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany; Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|