1
|
Mao Z, Yu Y, Ba G, Zhao H, Shi Q, Cao Y, Xie W, Zhang J, Sun H, Chen F. Non-cytochrome P450 enzyme aldehyde oxidase is involved in the oxidative metabolic pathway of diquat and its detoxification effect. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105805. [PMID: 38458670 DOI: 10.1016/j.pestbp.2024.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Diquat (DQ) poisoning has garnered attention in recent years, primarily due to the rising incidence of cases worldwide, coupled with the absence of a viable antidote for its treatment. Despite the fact that diquat monopyridone (DQ-M) has been identified as a significant metabolite of DQ, the enzyme responsible for its formation remains unknown. In this study, we have identified aldehyde oxidase (AOX) as a vital enzyme involved in DQ oxidative metabolism. The metabolism of DQ to DQ-M was significantly inhibited by AOX inhibitors including raloxifene and hydralazine. The source of oxygen incorporated into DQ-M was proved to be from water through a H218O incubation experiment which further corroborated DQ-M formation via AOX metabolism. The product of DQ-M in vitro generated by fresh rat tissues co-incubation was consistent with its AOX expression. The result of the molecular docking analysis of DQ and AOX protein showed that DQ is capable of binding to AOX. Furthermore, the cytotoxicity of DQ was significantly higher than DQ-M at the same concentration tested in six cell types. This work is the first to uncover the involvement of aldehyde oxidase, a non-cytochrome P450 enzyme, in the oxidative metabolic pathway of diquat, thus providing a potential target for the development of detoxification treatment.
Collapse
Affiliation(s)
- Zhengsheng Mao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Gen Ba
- Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Department of Emergency, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongmei Zhao
- Department of Emergency Medicine, Huaian First People's Hospital, Huaian, PR China
| | - Qifang Shi
- Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Department of Emergency, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Cao
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Weiran Xie
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Jinsong Zhang
- Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Department of Emergency, Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Hao Sun
- Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing, PR China; Key Laboratory of Modern Toxicology of Ministry of Education, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Institute of poisoning, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China.
| |
Collapse
|
2
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
3
|
Occurrence, analysis and removal of pesticides, hormones, pharmaceuticals, and other contaminants in soil and water streams for the past two decades: a review. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04778-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|