1
|
Pandkar MR, Shukla S. Epigenetics and alternative splicing in cancer: old enemies, new perspectives. Biochem J 2024; 481:1497-1518. [PMID: 39422322 DOI: 10.1042/bcj20240221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
In recent years, significant strides in both conceptual understanding and technological capabilities have bolstered our comprehension of the factors underpinning cancer initiation and progression. While substantial insights have unraveled the molecular mechanisms driving carcinogenesis, there has been an overshadowing of the critical contribution made by epigenetic pathways, which works in concert with genetics. Mounting evidence demonstrates cancer as a complex interplay between genetics and epigenetics. Notably, epigenetic elements play a pivotal role in governing alternative pre-mRNA splicing, a primary contributor to protein diversity. In this review, we have provided detailed insights into the bidirectional communication between epigenetic modifiers and alternative splicing, providing examples of specific genes and isoforms affected. Notably, succinct discussion on targeting epigenetic regulators and the potential of the emerging field of epigenome editing to modulate splicing patterns is also presented. In summary, this review offers valuable insights into the intricate interplay between epigenetics and alternative splicing in cancer, paving the way for novel approaches to understanding and targeting this critical process.
Collapse
Affiliation(s)
- Madhura R Pandkar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sanjeev Shukla
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Zhu Z, Tang J, Kyriazakos S, Knieb A, Xu Y, Zhang C, Prakash GKS. Mono- and Difluoromethylation of 3(2 H)-Pyridazinones. Org Lett 2024. [PMID: 39264299 DOI: 10.1021/acs.orglett.4c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A method for direct N-monofluoromethylation of pyridazinones with S-monofluoromethyl-S-phenyl-2,3,4,5-tetramethylphenylsulfonium triflate is disclosed. A method for the N- and O-difluoromethylated pyridazinones with TMSCF2Br as the only promising difluorocarbene precursor is also reported. Substrates with various relevant functional groups, including analogues of Lynparza, are tolerated under both methods.
Collapse
Affiliation(s)
- Ziyue Zhu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Jiaqi Tang
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Samantha Kyriazakos
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Alexander Knieb
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Yijie Xu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Chao Zhang
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
3
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Morgenstern E, Molthof C, Schwartz U, Graf J, Bruckmann A, Hombach S, Kretz M. lncRNA LINC00941 modulates MTA2/NuRD occupancy to suppress premature human epidermal differentiation. Life Sci Alliance 2024; 7:e202302475. [PMID: 38649186 PMCID: PMC11035861 DOI: 10.26508/lsa.202302475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Numerous long non-coding RNAs (lncRNAs) were shown to have a functional impact on cellular processes such as human epidermal homeostasis. However, the mechanism of action for many lncRNAs remains unclear to date. Here, we report that lncRNA LINC00941 regulates keratinocyte differentiation on an epigenetic level through association with the NuRD complex, one of the major chromatin remodelers in cells. We find that LINC00941 interacts with NuRD-associated MTA2 and CHD4 in human primary keratinocytes. LINC00941 perturbation changes MTA2/NuRD occupancy at bivalent chromatin domains in close proximity to transcriptional regulator genes, including the EGR3 gene coding for a transcription factor regulating epidermal differentiation. Notably, LINC00941 depletion resulted in reduced NuRD occupancy at the EGR3 gene locus, increased EGR3 expression in human primary keratinocytes, and increased abundance of EGR3-regulated epidermal differentiation genes in cells and human organotypic epidermal tissues. Our results therefore indicate a role of LINC00941/NuRD in repressing EGR3 expression in non-differentiated keratinocytes, consequentially preventing premature differentiation of human epidermal tissues.
Collapse
Affiliation(s)
- Eva Morgenstern
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Carolin Molthof
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- https://ror.org/01eezs655 NGS Analysis Center Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Johannes Graf
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Astrid Bruckmann
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
| | - Sonja Hombach
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- https://ror.org/006thab72 Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Markus Kretz
- https://ror.org/01eezs655 Regensburg Center for Biochemistry (RCB), University of Regensburg, Regensburg, Germany
- https://ror.org/006thab72 Institute for Molecular Medicine, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
5
|
Gourisankar S, Krokhotin A, Wenderski W, Crabtree GR. Context-specific functions of chromatin remodellers in development and disease. Nat Rev Genet 2024; 25:340-361. [PMID: 38001317 DOI: 10.1038/s41576-023-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/26/2023]
Abstract
Chromatin remodellers were once thought to be highly redundant and nonspecific in their actions. However, recent human genetic studies demonstrate remarkable biological specificity and dosage sensitivity of the thirty-two adenosine triphosphate (ATP)-dependent chromatin remodellers encoded in the human genome. Mutations in remodellers produce many human developmental disorders and cancers, motivating efforts to investigate their distinct functions in biologically relevant settings. Exquisitely specific biological functions seem to be an emergent property in mammals, and in many cases are based on the combinatorial assembly of subunits and the generation of stable, composite surfaces. Critical interactions between remodelling complex subunits, the nucleosome and other transcriptional regulators are now being defined from structural and biochemical studies. In addition, in vivo analyses of remodellers at relevant genetic loci have provided minute-by-minute insights into their dynamics. These studies are proposing new models for the determinants of remodeller localization and function on chromatin.
Collapse
Affiliation(s)
- Sai Gourisankar
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Andrey Krokhotin
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Wendy Wenderski
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
6
|
Marunde MR, Fuchs HA, Burg JM, Popova IK, Vaidya A, Hall NW, Weinzapfel EN, Meiners MJ, Watson R, Gillespie ZB, Taylor HF, Mukhsinova L, Onuoha UC, Howard SA, Novitzky K, McAnarney ET, Krajewski K, Cowles MW, Cheek MA, Sun ZW, Venters BJ, Keogh MC, Musselman CA. Nucleosome conformation dictates the histone code. eLife 2024; 13:e78866. [PMID: 38319148 PMCID: PMC10876215 DOI: 10.7554/elife.78866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 02/05/2024] [Indexed: 02/07/2024] Open
Abstract
Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.
Collapse
Affiliation(s)
| | - Harrison A Fuchs
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Krzysztof Krajewski
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel HillChapel HillUnited States
| | | | | | | | | | | | - Catherine A Musselman
- Department of Biochemistry, University of Iowa Carver College of MedicineAuroraUnited States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
7
|
Gajjela BK, Zhou MM. Bromodomain inhibitors and therapeutic applications. Curr Opin Chem Biol 2023; 75:102323. [PMID: 37207401 PMCID: PMC10524616 DOI: 10.1016/j.cbpa.2023.102323] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023]
Abstract
The bromodomain acts to recognize acetylated lysine in histones and transcription proteins and plays a fundamental role in chromatin-based cellular processes including gene transcription and chromatin remodeling. Many bromodomain proteins, particularly the bromodomain and extra terminal domain (BET) protein BRD4 have been implicated in cancers and inflammatory disorders and recognized as attractive drug targets. Although clinical studies of many BET bromodomain inhibitors have made substantial progress toward harnessing the therapeutic potential of targeting the bromodomain proteins, the development of this new class of epigenetic drugs is met with challenges, especially on-target dose-limiting toxicity. In this review, we highlight the current development of new-generation small molecule inhibitors for the BET and non-BET bromodomain proteins and discuss the research strategies used to target different bromodomain proteins for a wide array of human diseases including cancers and inflammatory disorders.
Collapse
Affiliation(s)
- Bharath Kumar Gajjela
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, United States.
| |
Collapse
|
8
|
Zahid H, Costello JP, Li Y, Kimbrough JR, Actis M, Rankovic Z, Yan Q, Pomerantz WCK. Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes. ACS Chem Biol 2023; 18:1278-1293. [PMID: 37260298 PMCID: PMC10698694 DOI: 10.1021/acschembio.2c00902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Targeted protein degradation is an emerging technology that can be used for modulating the activity of epigenetic protein targets. Among bromodomain-containing proteins, a number of degraders for the BET family have been developed, while non-BET bromodomains remain underexplored. Several of these proteins are subunits in chromatin remodeling complexes often associated with oncogenic roles. Here, we describe the design of class I (BPTF and CECR2) and IV (BRD9) bromodomain-targeting degraders based on two scaffolds derived from pyridazinone and pyrimidine-based heterocycles. We evaluate various exit vectors and linkers to identify analogues that demonstrate selectivity within these families. We further use an in-cell NanoBRET assay to demonstrate that these heterobifunctional molecules are cell-permeable, form ternary complexes, and can degrade nanoluciferase-bromodomain fusions. As a first example of a CECR2 degrader, we observe that our pyrimidine-based analogues degrade endogenous CECR2 while showing a smaller effect on BPTF levels. The pyridazinone-based compounds did not degrade BPTF when observed through Western blotting, further supporting a more challenging target for degradation and a goal for future optimization.
Collapse
Affiliation(s)
- Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Jeff P Costello
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Yao Li
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jennifer R Kimbrough
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Marisa Actis
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06520, United States
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
9
|
Sun G, Wei Y, Zhou B, Wang M, Luan R, Bai Y, Li H, Wang S, Zheng D, Wang C, Wang S, Zeng K, Liu S, Lin L, He M, Zhang Q, Zhao Y. BAP18 facilitates CTCF-mediated chromatin accessible to regulate enhancer activity in breast cancer. Cell Death Differ 2023; 30:1260-1278. [PMID: 36828916 PMCID: PMC10154423 DOI: 10.1038/s41418-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
The estrogen receptor alpha (ERα) signaling pathway is a crucial target for ERα-positive breast cancer therapeutic strategies. Co-regulators and other transcription factors cooperate for effective ERα-related enhancer activation. Recent studies demonstrate that the transcription factor CTCF is essential to participate in ERα/E2-induced enhancer transactivation. However, the mechanism of how CTCF is achieved remains unknown. Here, we provided evidence that BAP18 is required for CTCF recruitment on ERα-enriched enhancers, facilitating CTCF-mediated chromatin accessibility to promote enhancer RNAs transcription. Consistently, GRO-seq demonstrates that the enhancer activity is positively correlated with BAP18 enrichment. Furthermore, BAP18 interacts with SMARCA1/BPTF to accelerate the recruitment of CTCF to ERα-related enhancers. Interestingly, BAP18 is involved in chromatin accessibility within enhancer regions, thereby increasing enhancer transactivation and enhancer-promoter looping. BAP18 depletion increases the sensitivity of anti-estrogen and anti-enhancer treatment in MCF7 cells. Collectively, our study indicates that BAP18 coordinates with CTCF to enlarge the transactivation of ERα-related enhancers, providing a better understanding of BAP18/CTCF coupling chromatin remodeling and E-P looping in the regulation of enhancer transcription.
Collapse
Affiliation(s)
- Ge Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yuntao Wei
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Ruina Luan
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yu Bai
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Hao Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shan Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Dantong Zheng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shuchang Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Mingcong He
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China.
| |
Collapse
|
10
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Chem Biol 2022; 17:2673-2678. [PMID: 36268572 DOI: 10.1021/acschembio.2c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
12
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Pharmacol Transl Sci 2022; 5:829-834. [PMID: 36268124 PMCID: PMC9578134 DOI: 10.1021/acsptsci.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/28/2022]
|
13
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Infect Dis 2022; 8:1975-1980. [PMID: 36073808 DOI: 10.1021/acsinfecdis.2c00434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Med Chem Lett 2022; 13:1524-1529. [PMID: 36262399 PMCID: PMC9575161 DOI: 10.1021/acsmedchemlett.2c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/30/2022] Open
|
15
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. J Med Chem 2022; 65:11894-11899. [PMID: 36073827 DOI: 10.1021/acs.jmedchem.2c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Aldrich CC, Calderón F, Conway SJ, He C, Hooker JM, Huryn DM, Lindsley CW, Liotta DC, Müller CE. Virtual Special Issue: Epigenetics 2022. ACS Chem Neurosci 2022. [PMID: 36067366 DOI: 10.1021/acschemneuro.2c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|