1
|
Twarda-Clapa A. An update patent review of MDM2-p53 interaction inhibitors (2019-2023). Expert Opin Ther Pat 2024; 34:1177-1198. [PMID: 39435470 DOI: 10.1080/13543776.2024.2419836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/16/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION The activity of the major tumor suppressor protein p53 is disrupted in nearly all human cancer types, either by mutations in TP53 gene or by overexpression of its negative regulator, Mouse Double Minute 2 (MDM2). The release of p53 from MDM2 and its homolog MDM4 with inhibitors based on different chemistries opened up a prospect for a broad, non-genotoxic anticancer therapy. AREAS COVERED This article reviews the patents and patent applications between years 2019 and 2023 in the field of MDM2-p53 interaction inhibitors. The newly reported molecules searched in Espacenet, Google Patents, and PubMed were grouped into five general categories: compounds having single-ring, multi-ring, or spiro-oxindole scaffolds, peptide derivatives, and proteolysis-targeting chimeras (PROTACs). The article also presents the progress of MDM2 antagonists of various structures in recruiting or completed cancer clinical trials. EXPERT OPINION Despite 20 years of intensive studies after the discovery of the first-in-class small-molecule inhibitor, Nutlin-3, no drugs targeting MDM2-p53 interaction have reached the market. Nevertheless, more than 10 compounds are still being evaluated in clinics, both as standalone drugs and in combinations with other targeted therapies or standard chemotherapy agents, including two inhibitors in phase 3 studies and two compounds granted orphan-drug/fast-track designation by the FDA.
Collapse
Affiliation(s)
- Aleksandra Twarda-Clapa
- Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
2
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
3
|
Falcone NA, He S, Hoskin JF, Mangat S, Sorensen EJ. N-Oxide-to-Carbon Transmutations of Azaarene N-Oxides. Org Lett 2024; 26:4280-4285. [PMID: 38739528 DOI: 10.1021/acs.orglett.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reactions that change the identity of an atom within a ring system are emerging as valuable tools for the site-selective editing of molecular structures. Herein, we describe the expansion of an underdeveloped transformation that directly converts azaarene-derived N-oxides to all-carbon arenes. This ring transmutation exhibits good functional group tolerance and replaces the N-oxide moiety with either unsubstituted, substituted, or isotopically labeled carbon atoms in a single laboratory operation.
Collapse
Affiliation(s)
- Nicholas A Falcone
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sam He
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John F Hoskin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sandeep Mangat
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Wang W, Albadari N, Du Y, Fowler JF, Sang HT, Xian W, McKeon F, Li W, Zhou J, Zhang R. MDM2 Inhibitors for Cancer Therapy: The Past, Present, and Future. Pharmacol Rev 2024; 76:414-453. [PMID: 38697854 PMCID: PMC11068841 DOI: 10.1124/pharmrev.123.001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 05/05/2024] Open
Abstract
Since its discovery over 35 years ago, MDM2 has emerged as an attractive target for the development of cancer therapy. MDM2's activities extend from carcinogenesis to immunity to the response to various cancer therapies. Since the report of the first MDM2 inhibitor more than 30 years ago, various approaches to inhibit MDM2 have been attempted, with hundreds of small-molecule inhibitors evaluated in preclinical studies and numerous molecules tested in clinical trials. Although many MDM2 inhibitors and degraders have been evaluated in clinical trials, there is currently no Food and Drug Administration (FDA)-approved MDM2 inhibitor on the market. Nevertheless, there are several current clinical trials of promising agents that may overcome the past failures, including agents granted FDA orphan drug or fast-track status. We herein summarize the research efforts to discover and develop MDM2 inhibitors, focusing on those that induce MDM2 degradation and exert anticancer activity, regardless of the p53 status of the cancer. We also describe how preclinical and clinical investigations have moved toward combining MDM2 inhibitors with other agents, including immune checkpoint inhibitors. Finally, we discuss the current challenges and future directions to accelerate the clinical application of MDM2 inhibitors. In conclusion, targeting MDM2 remains a promising treatment approach, and targeting MDM2 for protein degradation represents a novel strategy to downregulate MDM2 without the side effects of the existing agents blocking p53-MDM2 binding. Additional preclinical and clinical investigations are needed to finally realize the full potential of MDM2 inhibition in treating cancer and other chronic diseases where MDM2 has been implicated. SIGNIFICANCE STATEMENT: Overexpression/amplification of the MDM2 oncogene has been detected in various human cancers and is associated with disease progression, treatment resistance, and poor patient outcomes. This article reviews the previous, current, and emerging MDM2-targeted therapies and summarizes the preclinical and clinical studies combining MDM2 inhibitors with chemotherapy and immunotherapy regimens. The findings of these contemporary studies may lead to safer and more effective treatments for patients with cancers overexpressing MDM2.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Najah Albadari
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Josef F Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Hannah T Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wa Xian
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Frank McKeon
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Wei Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Jia Zhou
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy (W.W., Y.D., J.F.F., H.T.S., R.Z.), Drug Discovery Institute (W.W., R.Z.), Stem Cell Center, Department of Biology and Biochemistry (W.X., F.M.), University of Houston, Houston, Texas; College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee (N.A., W.L.); and Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas (J.Z.)
| |
Collapse
|
5
|
Lin Z, Liu C, Yan Z, Cheng J, Wang X, Zhou F, Lyu X, Zhang S, Zhang D, Meng X, Zhao Y. Synthesis and biological evaluation of 4-imidazolidinone-containing compounds as potent inhibitors of the MDM2/p53 interaction. Eur J Med Chem 2024; 270:116366. [PMID: 38581730 DOI: 10.1016/j.ejmech.2024.116366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Inhibition of MDM2/p53 interaction with small-molecule inhibitors stabilizes p53 from MDM2 mediated degradation, which is a promising strategy for the treatment of cancer. In this report, a novel series of 4-imidazolidinone-containing compounds have been synthesized and tested in MDM2/p53 and MDM4/p53 FP binding assays. Upon SAR studies, compounds 2 (TB114) and 22 were identified as the most potent inhibitors of MDM2/p53 but not MDM4/p53 interactions. Both 2 and 22 exhibited strong antiproliferative activities in HCT-116 and MOLM-13 cell lines harboring wild type p53. Mechanistic studies show that 2 and 22 dose-dependently activated p53 and its target genes and induced apoptosis in cells based on the Western blot, qPCR, and flow cytometry assays. In addition, the antiproliferative activities of 2 and 22 were dependent on wild type p53, while they were not toxic to HEK-293 kidney cells. Furthermore, the on-target activities of 2 were general and applicable to other cancer cell lines with wild type p53. These attributes make 2 a good candidate for future optimization to discover a potential treatment of wild-type p53 cancer.
Collapse
Affiliation(s)
- Zhitong Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Chen Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Jing Cheng
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Xiancheng Wang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Feilong Zhou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China
| | - Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| | - Yujun Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China; State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, China.
| |
Collapse
|
6
|
Chandramohan A, Josien H, Yuen TY, Duggal R, Spiegelberg D, Yan L, Juang YCA, Ge L, Aronica PG, Kaan HYK, Lim YH, Peier A, Sherborne B, Hochman J, Lin S, Biswas K, Nestor M, Verma CS, Lane DP, Sawyer TK, Garbaccio R, Henry B, Kannan S, Brown CJ, Johannes CW, Partridge AW. Design-rules for stapled peptides with in vivo activity and their application to Mdm2/X antagonists. Nat Commun 2024; 15:489. [PMID: 38216578 PMCID: PMC10786919 DOI: 10.1038/s41467-023-43346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024] Open
Abstract
Although stapled α-helical peptides can address challenging targets, their advancement is impeded by poor understandings for making them cell permeable while avoiding off-target toxicities. By synthesizing >350 molecules, we present workflows for identifying stapled peptides against Mdm2(X) with in vivo activity and no off-target effects. Key insights include a clear correlation between lipophilicity and permeability, removal of positive charge to avoid off-target toxicities, judicious anionic residue placement to enhance solubility/behavior, optimization of C-terminal length/helicity to enhance potency, and optimization of staple type/number to avoid polypharmacology. Workflow application gives peptides with >292x improved cell proliferation potencies and no off-target cell proliferation effects ( > 3800x on-target index). Application of these 'design rules' to a distinct Mdm2(X) peptide series improves ( > 150x) cellular potencies and removes off-target toxicities. The outlined workflow should facilitate therapeutic impacts, especially for those targets such as Mdm2(X) that have hydrophobic interfaces and are targetable with a helical motif.
Collapse
Affiliation(s)
| | | | - Tsz Ying Yuen
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (ASTAR), Singapore, 138665, Singapore
| | | | - Diana Spiegelberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Lin Yan
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | | | - Lan Ge
- Merck & Co., Inc., Kenilworth, NJ, 07033, USA
| | - Pietro G Aronica
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, 138671, Singapore
| | | | - Yee Hwee Lim
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (ASTAR), Singapore, 138665, Singapore
| | | | | | | | | | | | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Chandra S Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, 138671, Singapore
| | - David P Lane
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore
| | | | | | - Brian Henry
- MSD International, Singapore, 138665, Singapore.
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (ASTAR), Singapore, 138671, Singapore.
| | | | - Charles W Johannes
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (ASTAR), Singapore, 138665, Singapore.
- Institute of Molecular and Cell Biology, Singapore, 138673, Singapore.
- EPOC Scientific LLC, Stoneham, MA, 02180, USA.
| | - Anthony W Partridge
- MSD International, Singapore, 138665, Singapore.
- Genentech, South San Francisco, CA, 94080, USA.
| |
Collapse
|
7
|
Cheng J, Yan Z, Jiang K, Liu C, Xu D, Lyu X, Hu X, Zhang S, Zhou Y, Li J, Zhao Y. Discovery of JN122, a Spiroindoline-Containing Molecule that Inhibits MDM2/p53 Protein-Protein Interaction and Exerts Robust In Vivo Antitumor Efficacy. J Med Chem 2023; 66:16991-17025. [PMID: 38062557 DOI: 10.1021/acs.jmedchem.3c01815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
MDM2 and MDM4 cooperatively and negatively regulate p53, while this pathway is often hijacked by cancer cells in favor of their survival. Blocking MDM2/p53 interaction with small-molecule inhibitors liberates p53 from MDM2 mediated degradation, which is an attractive strategy for drug discovery. We reported herein structure-based discovery of highly potent spiroindoline-containing MDM2 inhibitor (-)60 (JN122), which also exhibited moderate activities against MDM4/p53 interactions. In a panel of cancer cell lines harboring wild type p53, (-)60 efficiently promoted activation of p53 and its target genes, inhibited cell cycle progression, and induced cell apoptosis. Interestingly, (-)60 also promoted degradation of MDM4. More importantly, (-)60 exhibited good PK properties and exerted robust antitumor efficacies in a systemic mouse xenograft model of MOLM-13. Taken together, our study showcases a class of potent MDM2 inhibitors featuring a novel spiro-indoline scaffold, which is promising for future development targeting cancer cells with wild-type p53.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Kailong Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Chen Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Dehua Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124000, P. R. China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
| | - Xiaobei Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yubo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124000, P. R. China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, P. R. China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
8
|
Shoaib TH, Abdelmoniem N, Mukhtar RM, Alqhtani AT, Alalawi AL, Alawaji R, Althubyani MS, Mohamed SGA, Mohamed GA, Ibrahim SRM, Hussein HGA, Alzain AA. Molecular Docking and Molecular Dynamics Studies Reveal the Anticancer Potential of Medicinal-Plant-Derived Lignans as MDM2-P53 Interaction Inhibitors. Molecules 2023; 28:6665. [PMID: 37764441 PMCID: PMC10536213 DOI: 10.3390/molecules28186665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The interaction between the tumor suppressor protein p53 and its negative regulator, the MDM2 oncogenic protein, has gained significant attention in cancer drug discovery. In this study, 120 lignans reported from Ferula sinkiangensis and Justicia procumbens were assessed for docking simulations on the active pocket of the MDM2 crystal structure bound to Nutlin-3a. The docking analysis identified nine compounds with higher docking scores than the co-crystallized reference. Subsequent AMDET profiling revealed satisfactory pharmacokinetic and safety parameters for these natural products. Three compounds, namely, justin A, 6-hydroxy justicidin A, and 6'-hydroxy justicidin B, were selected for further investigation due to their strong binding affinities of -7.526 kcal/mol, -7.438 kcal/mol, and -7.240 kcal/mol, respectively, which surpassed the binding affinity of the reference inhibitor Nutlin-3a (-6.830 kcal/mol). To assess the stability and reliability of the binding of the candidate hits, a molecular dynamics simulation was performed over a duration of 100 ns. Remarkably, the thorough analysis demonstrated that all the hits exhibited stable molecular dynamics profiles. Based on their effective binding to MDM2, favorable pharmacokinetic properties, and molecular dynamics behavior, these compounds represent a promising starting point for further refinement. Nevertheless, it is essential to synthesize the suggested compounds and evaluate their activity through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Tagyedeen H. Shoaib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Nihal Abdelmoniem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Rua M. Mukhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| | - Amal Th. Alqhtani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Abdullah L. Alalawi
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Razan Alawaji
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
| | - Mashael S. Althubyani
- Pharmaceutical Care Services, Madinah Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (A.T.A.); (M.S.A.)
| | - Shaimaa G. A. Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abdulrahim A. Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani 21111, Sudan; (T.H.S.); (N.A.); (R.M.M.)
| |
Collapse
|
9
|
Emadi R, Bahrami Nekoo A, Molaverdi F, Khorsandi Z, Sheibani R, Sadeghi-Aliabadi H. Applications of palladium-catalyzed C-N cross-coupling reactions in pharmaceutical compounds. RSC Adv 2023; 13:18715-18733. [PMID: 37346956 PMCID: PMC10280806 DOI: 10.1039/d2ra07412e] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
C-N cross-coupling bond formation reactions have become valuable approaches to synthesizing anilines and their derivatives, known as important chemical compounds. Recent developments in this field have focused on versatile catalysts, simple operation methods, and green reaction conditions. This review article presents an overview of C-N cross-coupling reactions in pharmaceutical compound synthesis reports. Selected examples of N-arylation reactions of various nitrogen-based compounds and aryl halides are defined for preparing pharmaceutical molecules.
Collapse
Affiliation(s)
- Reza Emadi
- Department of Biochemistry, Institute of Biochemistry & Biophysics (IBB), University of Tehran Tehran Iran
| | - Abbas Bahrami Nekoo
- Nanoalvand Pharmaceutical Company, Department of Quality Control, Unit of Raw Materials Simindasht Alborz Iran
| | - Fatemeh Molaverdi
- Department of Organic Chemistry, School of Chemistry, College of Science, Tehran University Tehran Islamic Republic of Iran
| | - Zahra Khorsandi
- Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus University St., Nahiyeh san'ati Mahshahr Khouzestan Iran
| | - Hojjat Sadeghi-Aliabadi
- Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan 81746-73461 Iran
| |
Collapse
|
10
|
Abstract
An analysis of 156 published clinical candidates from the Journal of Medicinal Chemistry between 2018 and 2021 was conducted to identify lead generation strategies most frequently employed leading to drug candidates. As in a previous publication, the most frequent lead generation strategies resulting in clinical candidates were from known compounds (59%) followed by random screening approaches (21%). The remainder of the approaches included directed screening, fragment screening, DNA-encoded library screening (DEL), and virtual screening. An analysis of similarity was also conducted based on Tanimoto-MCS and revealed most clinical candidates were distant from their original hits; however, most shared a key pharmacophore that translated from hit-to-clinical candidate. An examination of frequency of oxygen, nitrogen, fluorine, chlorine, and sulfur incorporation in clinical candidates was also conducted. The three most similar and least similar hit-to-clinical pairs from random screening were examined to provide perspective on changes that occur that lead to successful clinical candidates.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, One Design Center Pl Suite 19-400, Boston, Massachusetts 02210, United States
| |
Collapse
|
11
|
Aguilar A, Wang S. Therapeutic Strategies to Activate p53. Pharmaceuticals (Basel) 2022; 16:24. [PMID: 36678521 PMCID: PMC9866379 DOI: 10.3390/ph16010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
The p53 protein has appropriately been named the "guardian of the genome". In almost all human cancers, the powerful tumor suppressor function of p53 is compromised by a variety of mechanisms, including mutations with either loss of function or gain of function and inhibition by its negative regulators MDM2 and/or MDMX. We review herein the progress made on different therapeutic strategies for targeting p53.
Collapse
Affiliation(s)
- Angelo Aguilar
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaomeng Wang
- The Rogel Cancer Center, Departments of Internal Medicine, Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
13
|
Ecker AK, Levorse DA, Victor DA, Mitcheltree MJ. Bioisostere Effects on the EPSA of Common Permeability-Limiting Groups. ACS Med Chem Lett 2022; 13:964-971. [DOI: 10.1021/acsmedchemlett.2c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Andrew K. Ecker
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States
| | - Dorothy A. Levorse
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel A. Victor
- Department of Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew J. Mitcheltree
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115-5727, United States
| |
Collapse
|
14
|
Wang Z, Pan H, Sun H, Kang Y, Liu H, Cao D, Hou T. fastDRH: a webserver to predict and analyze protein-ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief Bioinform 2022; 23:6587180. [PMID: 35580866 DOI: 10.1093/bib/bbac201] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/12/2023] Open
Abstract
Predicting the native or near-native binding pose of a small molecule within a protein binding pocket is an extremely important task in structure-based drug design, especially in the hit-to-lead and lead optimization phases. In this study, fastDRH, a free and open accessed web server, was developed to predict and analyze protein-ligand complex structures. In fastDRH server, AutoDock Vina and AutoDock-GPU docking engines, structure-truncated MM/PB(GB)SA free energy calculation procedures and multiple poses based per-residue energy decomposition analysis were well integrated into a user-friendly and multifunctional online platform. Benefit from the modular architecture, users can flexibly use one or more of three features, including molecular docking, docking pose rescoring and hotspot residue prediction, to obtain the key information clearly based on a result analysis panel supported by 3Dmol.js and Apache ECharts. In terms of protein-ligand binding mode prediction, the integrated structure-truncated MM/PB(GB)SA rescoring procedures exhibit a success rate of >80% in benchmark, which is much better than the AutoDock Vina (~70%). For hotspot residue identification, our multiple poses based per-residue energy decomposition analysis strategy is a more reliable solution than the one using only a single pose, and the performance of our solution has been experimentally validated in several drug discovery projects. To summarize, the fastDRH server is a useful tool for predicting the ligand binding mode and the hotspot residue of protein for ligand binding. The fastDRH server is accessible free of charge at http://cadd.zju.edu.cn/fastdrh/.
Collapse
Affiliation(s)
- Zhe Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong Pan
- Day Surgery Center, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, 310016, Hangzhou, China
| | - Huiyong Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences and Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
15
|
Zhang S, Yan Z, Li Y, Gong Y, Lyu X, Lou J, Zhang D, Meng X, Zhao Y. Structure-Based Discovery of MDM2/4 Dual Inhibitors that Exert Antitumor Activities against MDM4-Overexpressing Cancer Cells. J Med Chem 2022; 65:6207-6230. [PMID: 35420431 DOI: 10.1021/acs.jmedchem.2c00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite recent clinical progress in peptide-based dual inhibitors of MDM2/4, small-molecule ones with robust antitumor activities remain challenging. To tackle this issue, 31 (YL93) was structure-based designed and synthesized, which had MDM2/4 binding Ki values of 1.1 and 642 nM, respectively. In three MDM4-overexpressing cancer cell lines harboring wild-type p53, 31 shows improved cell growth inhibition activities compared to RG7388, an MDM2-selective inhibitor in late-stage clinical trials. Mechanistic studies show that 31 increased cellular protein levels of p53 and p21 and upregulated the expression of p53-targeted genes in RKO cells with MDM4 amplification. In addition, 31 induced cell-cycle arrest and apoptosis in western blot and flow cytometry assays. Taken together, dual inhibition of MDM2/4 by 31 elicited stronger antitumor activities in vitro compared to selective MDM2 inhibitors in wild-type p53 and MDM4-overexpressing cancer cells.
Collapse
Affiliation(s)
- Shiyan Zhang
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yafang Li
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yang Gong
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Jianfeng Lou
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Daizhou Zhang
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Xiangjing Meng
- Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research and Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.,Shandong Provincial Key Laboratory of Biopharmaceuticals, Shandong Academy of Pharmaceutical Sciences, Jinan 250101, China
| |
Collapse
|
16
|
McCoy M, Fradera X, Reutershan MH, Machacek M, Trotter BW. NMR Data-Driven Docking of HDM2-Inhibitor Complexes. Chembiochem 2022; 23:e202100570. [PMID: 35104390 DOI: 10.1002/cbic.202100570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/22/2021] [Indexed: 11/05/2022]
Abstract
We present an automated NMR-guided docking workflow that can be used to generate models of protein-ligand complexes based on data from NOE NMR experiments. The first step is to generate a number of intermolecular distance constraints from experimental NOE data. Then, the ligand is docked on an ensemble of receptor structures to account for protein flexibility, and multiple poses are generated. Finally, we use the NOE-based constraints to filter and score docking poses based on the percentage of NOE constraints that are consistent with protein-ligand interatomic distances. This workflow was successfully used during a Lead Optimization project to generate models of synthetic PPI inhibitors bound to the HDM2 protein.
Collapse
Affiliation(s)
- Mark McCoy
- Merck and Co Inc, Merck Research Laboratories, 2000 Galloping Hill Road, 07033, Kenilworth, UNITED STATES
| | - Xavier Fradera
- Merck: Merck & Co Inc, Merck Research Laboratories, UNITED STATES
| | | | | | | |
Collapse
|