1
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Li J, Ye B, Gao S, Liu X, Zhan P. The latest developments in the design and discovery of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV. Expert Opin Drug Discov 2024:1-18. [PMID: 39397419 DOI: 10.1080/17460441.2024.2415309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION This review encapsulates the recent strides in the development of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, focusing on the novel structural designs that promise to overcome limitations of existing therapies, such as drug resistance and toxicity. AREAS COVERED We underscore the application of computational chemistry and structure-based drug design in refining NNRTIs with enhanced potency and safety. EXPERT OPINION Highlighting the emergence of diverse chemical scaffolds like diarylpyrimidines, indoles, DABOs and HEPTs, the review reveals compounds with nanomolar efficacy and improved pharmacokinetics. The integration of artificial intelligence in drug discovery is poised to accelerate the evolution of NNRTIs, laying the foundation for addressing drug resistance in the era of anti-HIV therapy through innovative designs and multi-target strategies.
Collapse
Affiliation(s)
- Junyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
3
|
Huang WJ, Pannecouque C, De Clercq E, Wang S, Chen FE. Fragment Addition-Based Design of Heteroaromatic-Biphenyl-DAPYs as Potent and Orally Available Non-nucleoside Reverse Transcriptase Inhibitors Featuring Significantly Enhanced Safety. J Med Chem 2024; 67:17568-17584. [PMID: 39352547 DOI: 10.1021/acs.jmedchem.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Our previously disclosed biphenyl-DAPY 3 emerged as a potent inhibitor against WT HIV-1 and various mutant strains. Yet, its journey toward clinical application was thwarted by pronounced cytotoxicity and low selectivity (CC50 = 6 μM, SI = 3515). The safety improvement approach we employed in this work entailed the incorporation of diverse heteroaromatic substituents at the C5 position to exploit the tolerant regions of the NNRTIs' binding pocket through fragment addition-based drug design strategy, ultimately leading to the identification of a series of novel heteroaromatic-biphenyl-DAPYs. The exemplary compound 10d revealed a striking reduction in cytotoxicity (CC50 > 272.81 μM), nearly 45.5 times lower than 3, while showcasing 15-fold increase in selectivity (SI > 52632). This analog sustained exceptional anti-HIV-1 activity against both WT HIV-1 (EC50 = 5 nM) and various mutant strains. Compared to 3, a markedly slower rate of metabolism in human liver microsomes of 10d was observed. Its pharmacokinetic profile was equally captivating, featuring excellent oral bioavailability (F = 57.4%). Moreover, 10d exhibited a delicate sensitivity toward CYP, minimal inhibition of hERG, and no detectable acute toxicity in vivo. These enchanting findings illuminated the potential of 10d as a promising candidate for HIV-1 therapy.
Collapse
Affiliation(s)
- Wen-Juan Huang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Leuven B-3000, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
4
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2024. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang JS, Zhao KX, Zhang K, Pannecouque C, De Clercq E, Wang S, Chen FE. Structure-guided design of novel biphenyl-quinazoline derivatives as potent non-nucleoside reverse transcriptase inhibitors featuring improved anti-resistance, selectivity, and solubility. Bioorg Chem 2024; 147:107340. [PMID: 38593532 DOI: 10.1016/j.bioorg.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In pursuit of enhancing the anti-resistance efficacy and solubility of our previously identified NNRTI 1, a series of biphenyl-quinazoline derivatives were synthesized employing a structure-based drug design strategy. Noteworthy advancements in anti-resistance efficacy were discerned among some of these analogs, prominently exemplified by compound 7ag, which exhibited a remarkable 1.37 to 602.41-fold increase in potency against mutant strains (Y181C, L100I, Y188L, F227L + V106A, and K103N + Y181C) in comparison to compound 1. Compound 7ag also demonstrated comparable anti-HIV activity against both WT HIV and K103N, albeit with a marginal reduction in activity against E138K. Of significance, this analog showed augmented selectivity index (SI > 5368) relative to compound 1 (SI > 37764), Nevirapine (SI > 158), Efavirenz (SI > 269), and Etravirine (SI > 1519). Moreover, it displayed a significant enhancement in water solubility, surpassing that of compound 1, Etravirine, and Rilpivirine. To elucidate the underlying molecular mechanisms, molecular docking studies were undertaken to probe the critical interactions between 7ag and both WT and mutant strains of HIV-1 RT. These findings furnish invaluable insights driving further advancements in the development of DAPYs for HIV therapy.
Collapse
Affiliation(s)
- Jin-Si Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Ke-Xin Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Kun Zhang
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49 B-3000, Leuven, Belgium
| | - Shuai Wang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| | - Fen-Er Chen
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China; Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China.
| |
Collapse
|
6
|
Sang Z, Zhang T, Wang Z, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. Design and synthesis of Fsp 3-enriched spirocyclic-substituted diarylpyrimidine derivatives as novel HIV-1 NNRTIs. Chem Biol Drug Des 2024; 103:e14510. [PMID: 38519265 DOI: 10.1111/cbdd.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/13/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
In this study, a novel series of diarylpyrimidine derivatives with Fsp3-enriched spirocycles were designed and synthesized to further explore the chemical space of the hydrophobic channel of the NNRTI-binding pocket. The biological evaluation results showed that most of the compounds displayed effective inhibitory potency against the HIV-1 wild-type strain, with EC50 values ranging from micromolar to submicromolar levels. Among them, TT6 turned out to be the most effective inhibitor with an EC50 value of 0.17 μM, demonstrating up to 47 times more active than that of reference drug 3TC (EC50 = 8.01 μM). More encouragingly, TT6 was found to potently inhibit the HIV-1 mutant strain K103N with an EC50 value of 0.69 μM, being about 6-fold more potent than 3TC (EC50 = 3.68 μM) and NVP (EC50 = 4.62 μM). Furthermore, TT6 exhibited the most potent inhibitory activity toward HIV-1 reverse transcriptase with an IC50 value of 0.33 μM. Additionally, molecular simulation studies were conducted to investigate the binding modes between TT6 and NNRTI-binding pocket, which may provide valuable clues for the follow-up structural optimizations.
Collapse
Affiliation(s)
- Zihao Sang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
7
|
Fang JJ, Yao HZ, Zhuang C, Chen FE. Insight from Linker Investigations: Discovery of a Novel Phenylbenzothiazole Necroptosis Inhibitor Targeting Receptor-Interacting Protein Kinase 1 (RIPK1) from a Phenoxybenzothiazole Compound with Dual RIPK1/3 Targeting Activity. J Med Chem 2023; 66:15288-15308. [PMID: 37917221 DOI: 10.1021/acs.jmedchem.3c01351] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Necroptosis, a regulated cell death form, is a critical contributor in various inflammatory diseases. We previously identified a phenoxybenzothiazole SZM-610 as a RIPK1 and RIPK3 necroptosis inhibitor. We conducted extensive studies to investigate different chemical components' effects on antinecroptosis activity and RIPK1/3 activity. This study focused on replacing the linker in phenoxybenzothiazoles to assess its impact. Remarkably, compound 10, bearing a novel 3,2'-phenylbenzothiazole scaffold, exhibited fourfold more potent nanomolar activity than SZM-610. Unlike SZM-610, this compound inhibited RIPK1 (Kd = 17 nM) and eliminated RIPK3 inhibition at 5000 nM. Various linkages confirmed the 3,2'-phenylbenzothiazole superior potency. Moreover, this compound specifically inhibited necroptosis by inhibiting RIPK1, RIPK3, and MLKL phosphorylation. In a TNF-induced inflammatory model, it dose-dependently (1.25-5 mg/kg) protected mice from hypothermia and death, surpassing SZM-610's effectiveness. These findings highlight 3,2'-phenylbenzothiazole as a promising lead structure for developing drugs targeting necroptosis-related diseases.
Collapse
Affiliation(s)
- Jing-Jie Fang
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hou-Zong Yao
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
8
|
Vanangamudi M, Palaniappan S, Kathiravan MK, Namasivayam V. Strategies in the Design and Development of Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs). Viruses 2023; 15:1992. [PMID: 37896769 PMCID: PMC10610861 DOI: 10.3390/v15101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects.
Collapse
Affiliation(s)
- Murugesan Vanangamudi
- Department of Pharmaceutical Chemistry, Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior 474005, Madhya Pradesh, India;
| | - Senthilkumar Palaniappan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India;
- Center for Active Pharmaceutical Ingredients, Karpagam Academy of Higher Education, Coimbatore 641021, Tamilnadu, India
| | - Muthu Kumaradoss Kathiravan
- Dr. APJ Abdul Kalam Research Lab, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India;
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRMIST, Kattankulathur 603203, Tamilnadu, India
| | - Vigneshwaran Namasivayam
- Pharmaceutical Chemistry, Pharmaceutical Institute, University of Bonn, 53121 Bonn, Germany
- LIED, University of Lübeck and University Medical Center Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
9
|
Han S, Lu Y. Fluorine in anti-HIV drugs approved by FDA from 1981 to 2023. Eur J Med Chem 2023; 258:115586. [PMID: 37393791 DOI: 10.1016/j.ejmech.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Human immunodeficiency virus (HIV) is the etiological agent of acquired immunodeficiency syndrome (AIDS). Nowadays, FDA has approved over thirty antiretroviral drugs grouped in six categories. Interestingly, one-third of these drugs contain different number of fluorine atoms. The introduction of fluorine to obtain drug-like compounds is a well-accepted strategy in medicinal chemistry. In this review, we summarized 11 fluorine-containing anti-HIV drugs, focusing on their efficacy, resistance, safety, and specific roles of fluorine in the development of each drug. These examples may be of help for the discovery of new drug candidates bearing fluorine in their structures.
Collapse
Affiliation(s)
- Sheng Han
- School of Medicine, Shanghai University, Shanghai, China.
| | - Yiming Lu
- School of Medicine, Shanghai University, Shanghai, China; Department of Critical Care Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Sang YL, Pannecouque C, De Clercq E, Wang S, Chen FE. Picomolar inhibitor of reverse transcriptase featuring significantly improved metabolic stability. Acta Pharm Sin B 2023. [PMID: 37521857 PMCID: PMC10372819 DOI: 10.1016/j.apsb.2023.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Considering the undesirable metabolic stability of our recently identified NNRTI 5 (t1/2 = 96 min) in human liver microsomes, we directed our efforts to improve its metabolic stability by introducing a new favorable hydroxymethyl side chain to the C-5 position of pyrimidine. This strategy provided a series of novel methylol-biphenyl-diarylpyrimidines with excellent anti-HIV-1 activity. The best compound 9g was endowed with remarkably improved metabolic stability in human liver microsomes (t1/2 = 2754 min), which was about 29-fold longer than that of 5 (t1/2 = 96 min). This compound conferred picomolar inhibition of WT HIV-1 (EC50 = 0.9 nmol/L) and low nanomolar activity against five clinically drug-resistant mutant strains. It maintained particularly low cytotoxicity (CC50 = 264 μmol/L) and good selectivity (SI = 256,438). Molecular docking studies revealed that compound 9g exhibited a more stable conformation than 5 due to the newly constructed hydrogen bond of the hydroxymethyl group with E138. Also, compound 9g was characterized by good safety profiles. It displayed no apparent inhibition of CYP enzymes and hERG. The acute toxicity assay did not cause death and pathological damage in mice at a single dose of 2 g/kg. These findings paved the way for the discovery and development of new-generation anti-HIV-1 drugs.
Collapse
|
11
|
Ling X, Hao QQ, Pannecouque C, Clercq ED, Chen FE. Expansion of the S–CN-DABO scaffold to exploit the impact on inhibitory activities against the non-nucleoside HIV-1 reverse transcriptase. Eur J Med Chem 2022; 238:114512. [DOI: 10.1016/j.ejmech.2022.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 11/04/2022]
|
12
|
Lan W, Tang X, Yu J, Fei Q, Wu W, Li P, Luo H. Design, Synthesis, and Bioactivities of Novel Trifluoromethyl Pyrimidine Derivatives Bearing an Amide Moiety. Front Chem 2022; 10:952679. [PMID: 35910720 PMCID: PMC9334529 DOI: 10.3389/fchem.2022.952679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Twenty-three novel trifluoromethyl pyrimidine derivatives containing an amide moiety were designed and synthesized through four-step reactions and evaluated for their antifungal, insecticidal, and anticancer properties. Bioassay results indicated that some of the title compounds exhibited good in vitro antifungal activities against Botryosphaeria dothidea (B. dothidea), Phompsis sp., Botrytis cinereal (B. cinerea), Colletotrichum gloeosporioides (C. gloeosporioides), Pyricutaria oryzae (P. oryzae), and Sclerotinia sclerotiorum (S. sclerotiorum) at 50 μg/ml. Meanwhile, the synthesized compounds showed moderate insecticidal activities against Mythimna separata (M. separata) and Spdoptera frugiperda (S. frugiperda) at 500 μg/ml, which were lower than those of chlorantraniliprole. In addition, the synthesized compounds indicated certain anticancer activities against PC3, K562, Hela, and A549 at 5 μg/ml, which were lower than those of doxorubicin. Notably, this work is the first report on the antifungal, insecticidal, and anticancer activities of trifluoromethyl pyrimidine derivatives bearing an amide moiety.
Collapse
Affiliation(s)
- Wenjun Lan
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xuemei Tang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine, Kaili University, Kaili, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
- *Correspondence: Wenneng Wu, ; Pei Li, ; Heng Luo,
| |
Collapse
|
13
|
Liu G, Hou R, Xu L, Zhang X, Yan J, Xing C, Xu K, Zhuang C. Crystallography-Guided Optimizations of the Keap1-Nrf2 Inhibitors on the Solvent Exposed Region: From Symmetric to Asymmetric Naphthalenesulfonamides. J Med Chem 2022; 65:8289-8302. [PMID: 35687391 DOI: 10.1021/acs.jmedchem.2c00170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Directly inhibiting the Keap1-Nrf2 protein-protein interaction has been investigated as a promising strategy to activate Nrf2 for anti-inflammation. We previously reported a naphthalensulfonamide Keap1-Nrf2 inhibitor NXPZ-2, but have not determined the exact binding mode with Keap1. This symmetric naphthalenesulfonamide compound has relatively low solubility. Herein, we first determined a crystal complex (resolution: 2.3 Å) of human Keap1 Kelch domain with NXPZ-2. Further optimizations on the solvent exposed region obtained asymmetric naphthalenesulfonamides and three crystal structures of Keap1 in complex with designed compounds. Among them, the asymmetric piperazinyl-naphthalenesulfonamide 6k with better aqueous solubility showed the best KD2 value of 0.21 μM to block the interaction. The productions of ROS and NO and the expression of TNF-α were inhibited by 6k in the in vitro model. This compound could relieve inflammations by significantly increasing the Nrf2 nuclear translocation in the LPS-induced ALI model with promising pharmacokinetic properties.
Collapse
Affiliation(s)
- Guodong Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ruilin Hou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lijuan Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xinqi Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianyu Yan
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chengguo Xing
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Ke Xu
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.,Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai 200434, China
| | - Chunlin Zhuang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|