1
|
Besleaga I, Raptová R, Stoica AC, Milunovic MNM, Zalibera M, Bai R, Igaz N, Reynisson J, Kiricsi M, Enyedy ÉA, Rapta P, Hamel E, Arion VB. Are the metal identity and stoichiometry of metal complexes important for colchicine site binding and inhibition of tubulin polymerization? Dalton Trans 2024; 53:12349-12369. [PMID: 38989784 PMCID: PMC11264232 DOI: 10.1039/d4dt01469c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/29/2024] [Indexed: 07/12/2024]
Abstract
Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.
Collapse
Affiliation(s)
- Iuliana Besleaga
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Renáta Raptová
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, A-8010 Graz, Austria
| | - Alexandru-Constantin Stoica
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| | - Miljan N M Milunovic
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Mónika Kiricsi
- School of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK
| | - Éva A Enyedy
- Department of Molecular and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary.
- MTA-SZTE Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-81237 Bratislava, Slovakia
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, USA
| | - Vladimir B Arion
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 42, A-1090 Vienna, Austria.
- Inorganic Polymers Department, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
2
|
Qu N, Song K, Ji Y, Liu M, Chen L, Lee RJ, Teng L. Albumin Nanoparticle-Based Drug Delivery Systems. Int J Nanomedicine 2024; 19:6945-6980. [PMID: 39005962 PMCID: PMC11246635 DOI: 10.2147/ijn.s467876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024] Open
Abstract
Nanoparticle-based systems are extensively investigated for drug delivery. Among others, with superior biocompatibility and enhanced targeting capacity, albumin appears to be a promising carrier for drug delivery. Albumin nanoparticles are highly favored in many disease therapies, as they have the proper chemical groups for modification, cell-binding sites for cell adhesion, and affinity to protein drugs for nanocomplex generation. Herein, this review summarizes the recent fabrication techniques, modification strategies, and application of albumin nanoparticles. We first discuss various albumin nanoparticle fabrication methods, from both pros and cons. Then, we provide a comprehensive introduction to the modification section, including organic albumin nanoparticles, metal albumin nanoparticles, inorganic albumin nanoparticles, and albumin nanoparticle-based hybrids. We finally bring further perspectives on albumin nanoparticles used for various critical diseases.
Collapse
Affiliation(s)
- Na Qu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Ke Song
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ER, the Netherlands
| | - Yating Ji
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Mingxia Liu
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Lijiang Chen
- School of Pharmacy, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, 130023, People's Republic of China
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Yantai, 264000, People's Republic of China
| |
Collapse
|
3
|
Milunovic MM, Ohui K, Besleaga I, Petrasheuskaya TV, Dömötör O, Enyedy ÉA, Darvasiova D, Rapta P, Barbieriková Z, Vegh D, Tóth S, Tóth J, Kucsma N, Szakács G, Popović-Bijelić A, Zafar A, Reynisson J, Shutalev AD, Bai R, Hamel E, Arion VB. Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters. J Med Chem 2024; 67:9069-9090. [PMID: 38771959 PMCID: PMC11181322 DOI: 10.1021/acs.jmedchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 05/09/2024] [Indexed: 05/23/2024]
Abstract
The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented.
Collapse
Affiliation(s)
| | - Katerina Ohui
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Iuliana Besleaga
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Tatsiana V. Petrasheuskaya
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Orsolya Dömötör
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Éva A. Enyedy
- Department
of Molecular and Analytical Chemistry, Interdisciplinary Excellence
Centre, University of Szeged, Dóm tér 7-8, Szeged H-6720, Hungary
- MTA-SZTE
Lendület Functional Metal Complexes Research Group, University of Szeged, Dóm tér 7, Szeged H-6720, Hungary
| | - Denisa Darvasiova
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Peter Rapta
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Zuzana Barbieriková
- Institute
of Physical Chemistry and Chemical Physics, Faculty of Chemical and
Food Technology, Slovak University of Technology
in Bratislava, Bratislava SK-81237, Slovakia
| | - Daniel Vegh
- Institute
of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Szilárd Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Judit Tóth
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Nóra Kucsma
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
| | - Gergely Szakács
- Institute
of Molecular Life Sciences, HUN-REN Research
Centre for Natural Sciences, Hungarian Research Network, Magyar Tudósok körútja
2, Budapest H-1117, Hungary
- Center
for Cancer Research, Medical University
of Vienna, Vienna A-1090, Austria
| | - Ana Popović-Bijelić
- Faculty
of Physical Chemistry, University of Belgrade, Belgrade 11158, Serbia
| | - Ayesha Zafar
- School
of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jóhannes Reynisson
- School
of Pharmacy and Bioengineering, Keele University, Newcastle-under-Lyme, Staffordshire ST5 5BG, United
Kingdom
| | - Anatoly D. Shutalev
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Ruoli Bai
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Molecular
Pharmacology Branch, Developmental Therapeutics Program, Division
of Cancer Diagnosis and Treatment, National Cancer Institute, Frederick
National Laboratory for Cancer Research, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry, University of Vienna, Vienna A-1090, Austria
- Inorganic
Polymers Department, “Petru Poni”
Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41 A, Iasi 700487, Romania
| |
Collapse
|
4
|
Du LQ, Zeng CJ, Mo DY, Qin QP, Tan MX, Liang H. 8-hydroxyquinoline-N-oxide copper(II)- and zinc(II)-phenanthroline and bipyridine coordination compounds: Design, synthesis, structures, and antitumor evaluation. J Inorg Biochem 2024; 251:112443. [PMID: 38100902 DOI: 10.1016/j.jinorgbio.2023.112443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Fourteen novel tumor-targeting copper(II) and zinc(II) complexes, [Cu(ONQ)(QD1)(NO3)]·CH3OH (NQ3), [Cu(ONQ)(QD2)(NO3)] (NQ2), [Cu(NQ)(QD2)Cl] (NQ3), [Cu(ONQ)(QD1)Cl] (NQ4), [Cu(ONQ)(QD3)](NO3) (NQ5), [Cu(ONQ)(QD3)Cl] (NQ6), [Zn(ONQ)(QD4)Cl] (NQ7), [Zn(ONQ)(QD1)Cl] (NQ8), [Zn(ONQ)(QD5)Cl] (NQ9), [Zn(ONQ)(QD2)Cl] (NQ10), [Zn(ONQ)(QD6)Cl] (NQ11), [Zn(ONQ)(QD7)Cl] (NQ12), and [Zn(ONQ)(QD3)Cl] (NQ13) supported on 8-hydroxyquinoline-N-oxide (H-ONQ), 2,2'-dipyridyl (QD1), 5,5'-dimethyl-2,2'-bipyridyl (QD2), 1,10-phenanthroline (QD3), 4,4'-dimethoxy-2,2'-bipyridyl (QD4), 4,4'-dimethyl-2,2'-bipyridyl (QD5), 5-chloro-1,10-phenanthroline (QD6), and bathophenanthroline (QD7), were first synthesized and characterized using various spectroscopic techniques. Furthermore, NQ1-NQ13 exhibited higher antiproliferative activity and selectivity for cisplatin-resistant SK-OV-3/DDP tumor cells (CiSK3) compared to normal HL-7702 cells based on results obtained from the cell counting Kit-8 (CCK-8) assay. The complexation of copper(II) ion with QD2 and ONQ ligands resulted in an evident increase in the antiproliferation of NQ1-NQ6, with NQ6 exhibiting the highest antitumor potency against CiSK3 cells compared to NQ1-NQ5, H-ONQ, QD1-QD7, and NQ7-NQ13 as well as the reference cisplatin drug with an IC50 value of 0.17 ± 0.05 μM. Mechanistic studies revealed that NQ4 and NQ6 induced apoptosis of CiSK3 cells via mitophagy pathway regulation and adenosine triphosphate (ATP) depletion. Further, the differential induction of mitophagy decreased in the order of NQ6 > NQ4, which can be attributed to the major impact of the QD3 ligand with a large planar geometry and the Cl leaving group within the NQ6 complex. In summary, these results confirmed that the newly synthesized H-ONQ copper(II) and zinc(II) coordination metal compounds NQ1-NQ13 exhibit potential as anticancer drugs for cisplatin-resistant ovarian CiSK3 cancer treatment.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chu-Jie Zeng
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Dong-Yin Mo
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
5
|
Mohamady S, Khalil AF, Naguib BH, Nafie MS, Tawfik HO, Shaldam MA. Tailored horseshoe-shaped nicotinonitrile scaffold as dual promising c-Met and Pim-1 inhibitors: Design, synthesis, SAR and in silico study. Bioorg Chem 2024; 143:106988. [PMID: 37995644 DOI: 10.1016/j.bioorg.2023.106988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
For the horseshoe tactic to succeed in inhibiting c-Met and Pim-1, the nicotinonitrile derivatives (2a-n) were produced in high quantities by coupling acetyl phenylpyrazole (1) with the proper aldehydes and ethyl cyanoacetate under basic conditions. Consistent basic and spectroscopic data (NMR, IR, Mass, and HPLC) supported the new products' structural findings. With IC50 potency in nanomolar ranges, these compounds had effectively repressed them, particularly compounds 2d and 2 h, with IC50 values below 200 nM. The most potent compounds (2d and 2 h) were tested for their antitumor effects against prostate (PC-3), colon (HCT-116), and breast (MDA-MB-231) and were evaluated in comparison to the anticancer drug tivantinib using the MTT assay. Similar to tivantinib, these compounds showed good antiproliferative properties against the HCT-116 tumor cells while having low cytotoxicity towards healthy fetal colon (FHC) cells. In the HCT-116 cell line, their ability to trigger the apoptotic cascade was also investigated by looking at the level of Bax and Bcl-2 as well as the activation of the proteolytic caspase cascade. When HCT-116 cells were exposed to compounds 2d and 2 h in comparison to the control, active caspase-3 levels increased. The HCT-116 cell line also upregulated Bcl-2 protein levels and downregulated Bax levels. Additionally, when treated with compound 2d, the HCT-116 cell cycle was primarily stopped at the S phase. Compared to the control, compound 2d treatment significantly inhibited the protein expression levels of c-Met and Pim-1 kinases in the treated HCT-116 cells. Thorough molecular modeling analyses, such as molecular docking and dynamic simulation, were performed to ascertain the binding mechanism and stability of the target compounds.
Collapse
Affiliation(s)
- Samy Mohamady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt.
| | - Ahmed F Khalil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Bassem H Naguib
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo 11837, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt
| |
Collapse
|
6
|
Chen Y, Ke Z, Yuan L, Liang M, Zhang S. Hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline complexes as potential anticancer agents: synthesis, characterization and anticancer evaluation. Dalton Trans 2023; 52:12318-12331. [PMID: 37591821 DOI: 10.1039/d3dt01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
We synthesized and analyzed nine unique copper(II) hydrazylpyridine salicylaldehyde and 1,10-phenanthroline complexes, [Cu(L1a)(phen)] (Cugdupt1), [Cu(L2a)(phen)]·(CH3CN) (Cugdupt2), [Cu(L3a)(phen)] (Cugdupt3), [Cu(L4a)(phen)]·(CH3CN) (Cugdupt4), [Cu(L5a)(phen)] (Cugdupt5), [Cu(L6a)(phen)] (Cugdupt6), [Cu(L7a)(phen)] (Cugdupt7) [Cu(L8a)(phen)] (Cugdupt8) and [Cu(L9a)(phen)]·0.5(H2O) (Cugdupt9). We were motivated by the intriguing properties of the coupled ligands of hydrazylpyridine, salicylaldehyde, and 1,10-phenanthroline. The MTT assay demonstrated that Cugdupt1-Cugdupt9 have higher anticancer activity than L1H2-L9H2, phen and cisplatin on A549/DDP cancer cells (A549cis). Cugdupt1-Cugdupt9 were superior to cisplatin with IC50 values of 1.6-100.0 fold on A549cis cells (IC50(Cugdupt1-Cugdupt9) = 0.5-30.5 μM, IC50(cisplatin) = 61.5 ± 1.0 μM). However, Cugdupt1-Cugdupt9 had lower cytotoxicity toward the HL-7702 normal cells. Cugdupt1 and Cugdupt8 can induce reduction of mitochondrial respiratory chain complexes I/IV (MRCC-I/IV), mitophagy pathways, and eventually protein regulation and adenosine triphosphate (ATP) depletion in A549cis cells. The findings indicated that Cugdupt1 and Cugdupt8 caused cell death via both ATP diminution and mitophagy pathways. Finally, Cugdupt8 demonstrated high efficacy and no obvious cytotoxicity in A549 tumor-bearing mice. This study thus helps evaluate the potential of the hydrazylpyridine salicylaldehyde-copper(II)-1,10-phenanthroline compounds for cisplatin-resistant tumor therapy.
Collapse
Affiliation(s)
- Yating Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zhilin Ke
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Lingyu Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Meixiang Liang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
| | - Shuhua Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.
- College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| |
Collapse
|
7
|
Bhattacharya A, Babu NR, Bandyopadhyay D, Peruncheralathan S. Cu(OTf) 2 Enhanced Intramolecular Nucleophilic N-Arylation of 2-Amino-3-arylquinolines. J Org Chem 2023. [PMID: 37339426 DOI: 10.1021/acs.joc.3c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
In the presence of Cu(OTf)2 (5 mol %) and KOtBu, a synergistic effect of the N-arylation process on 2-amino-3-arylquinolines is observed. Within 4 h, this method provides a wide variety of norneocryptolepine analogues with good to excellent yields. Overall, a double heteroannulation strategy for the synthesis of indoloquinoline alkaloids from nonheterocyclic precursors is demonstrated. Mechanistic investigations establish that the reaction proceeds via the SNAr pathway. Despite moderate yields, the one-pot, two-step double heteroannulation illustrates that this procedure is highly atom-efficient. Neocryptolepine, a natural product, is also synthesized from indoloquinoline. A brief study of the photophysical properties of selected norneocryptolepine analogues is also discussed.
Collapse
Affiliation(s)
- Anwesha Bhattacharya
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, Odisha, India
| | - Nayanthara Ramesh Babu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, Odisha, India
| | - Debashruti Bandyopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, Odisha, India
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, Odisha, India
| |
Collapse
|
8
|
Du LQ, Zhang TY, Huang XM, Xu Y, Tan MX, Huang Y, Chen Y, Qin QP. Synthesis and anticancer mechanisms of zinc(II)-8-hydroxyquinoline complexes with 1,10-phenanthroline ancillary ligands. Dalton Trans 2023; 52:4737-4751. [PMID: 36942929 DOI: 10.1039/d3dt00150d] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Twenty new zinc(II) complexes with 8-hydroxyquinoline (H-Q1-H-Q6) in the presence of 1,10-phenanthroline derivatives (D1-D10) were synthesized and formulated as [Zn(Q1)2(D1)] (DQ1), [Zn(Q2)2(D2)]·CH3OH (DQ2), [Zn(Q1)2(D3)] (DQ3), [Zn(Q1)2(D4)] (DQ4), [Zn(Q3)2(D5)] (DQ5), [Zn(Q3)2(D4)] (DQ6), [Zn(Q4)2(D5)]·CH3OH (DQ7), [Zn(Q4)2(D6)] (DQ8), [Zn(Q4)2(D3)]·CH3OH (DQ9), [Zn(Q4)2(D1)]·H2O (DQ10), [Zn(Q5)2(D4)] (DQ11), [Zn(Q6)2(D6)]·CH3OH (DQ12), [Zn(Q5)2(D2)]·5CH3OH·H2O (DQ13), [Zn(Q5)2(D7)]·CH3OH (DQ14), [Zn(Q5)2(D8)]·CH2Cl2 (DQ15), [Zn(Q5)2(D9)] (DQ16), [Zn(Q5)2(D1)] (DQ17), [Zn(Q5)2(D5)] (DQ18), [Zn(Q5)2(D10)]·CH2Cl2 (DQ19) and [Zn(Q5)2(D3)] (DQ20). They were characterized using multiple techniques. The cytotoxicity of DQ1-DQ20 was screened using human cisplatin-resistant SK-OV-3/DDP ovarian cancer (SK-OV-3CR) cells and normal hepatocyte (HL-7702) cells. Complex DQ6 showed low IC50 values (2.25 ± 0.13 μM) on SK-OV-3CR cells, more than 3.0-8.0 times more cytotoxic than DQ1-DQ5 and DQ7-DQ20 (≥6.78 μM), and even 22.2 times more cytotoxic than the standard cisplatin, the corresponding free H-Q1-H-Q6 and D1-D10 alone (>50 μM). As a comparison, DQ1-DQ20 displayed nontoxic rates against healthy HL-7702 cells. Furthermore, DQ6 and DQ11 induced significant apoptosis via mitophagy pathways. DQ6 also significantly inhibited tumor growth in an in vivo SK-OV-3-xenograft model (ca. 49.7%). Thus, DQ6 may serve as a lead complex for the discovery of new antitumor agents.
Collapse
Affiliation(s)
- Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Tian-Yu Zhang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Xiao-Mei Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yue Xu
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Yuan Chen
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| |
Collapse
|
9
|
Latonduine-1-Amino-Hydantoin Hybrid, Triazole-Fused Latonduine Schiff Bases and Their Metal Complexes: Synthesis, X-ray and Electron Diffraction, Molecular Docking Studies and Antiproliferative Activity. INORGANICS 2023. [DOI: 10.3390/inorganics11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of latonduine derivatives, namely 11-nitro-indolo[2,3-d]benzazepine-7-(1-amino-hydantoin) (B), triazole-fused indolo[2,3-d]benzazepine-based Schiff bases HL1 and HL2 and metal complexes [M(p-cymene)(HL1)Cl]Cl, where M = Ru (1), Os (2), and [Cu(HL2)Cl2] (3) were synthesized and characterized by spectroscopic techniques (UV–vis, 1H, 13C, 15N–1H HSQC NMR) and ESI mass spectrometry. The molecular structures of B and HL1 were confirmed by single-crystal X-ray diffraction, while that of 3 by electron diffraction of nanometer size crystalline sample. Molecular docking calculations of species B in the binding pocket of PIM-1 enzyme revealed that the 1-amino-hydantoin moiety is not involved in any hydrogen-bonding interactions, even though a good accommodation of the host molecule in the ATP binding pocket of the enzyme was found. The antiproliferative activity of organic compounds B, HL1 and HL2, as well as complexes 1–3 was investigated in lung adenocarcinoma A549, colon adenocarcinoma LS-174 and triple-negative breast adenocarcinoma MDA-MB-231 cells and normal human lung fibroblast cells MRC-5 by MTT assays; then, the results are discussed.
Collapse
|
10
|
Kuznetcova I, Ostojić M, Gligorijević N, Aranđelović S, Arion VB. Enriching Chemical Space of Bioactive Scaffolds by New Ring Systems: Benzazocines and Their Metal Complexes as Potential Anticancer Drugs. Inorg Chem 2022; 61:20445-20460. [PMID: 36473464 PMCID: PMC9768754 DOI: 10.1021/acs.inorgchem.2c03134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The search for new scaffolds of medicinal significance combined with molecular shape enhances their innovative potential and continues to attract the attention of researchers. Herein, we report the synthesis, spectroscopic characterization (1H and 13C NMR, UV-vis, IR), ESI-mass spectrometry, and single-crystal X-ray diffraction analysis of a new ring system of medicinal significance, 5,6,7,9-tetrahydro-8H-indolo[3,2-e]benzazocin-8-one, and a series of derived potential ligands (HL1-HL5), as well as ruthenium(II), osmium(II), and copper(II) complexes (1a, 1b, and 2-5). The stability of compounds in 1% DMSO aqueous solutions has been confirmed by 1H NMR and UV-vis spectroscopy measurements. The antiproliferative activity of HL1-HL5 and 1a, 1b, and 2-5 was evaluated by in vitro cytotoxicity tests against four cancer cell lines (LS-174, HCT116, MDA-MB-361, and A549) and one non-cancer cell line (MRC-5). The lead compounds HL5 and its copper(II) complex 5 were 15× and 17×, respectively, more cytotoxic than cisplatin against human colon cancer cell line HCT116. Annexin V-FITC apoptosis assay showed dominant apoptosis inducing potential of both compounds after prolonged treatment (48 h) in HCT116 cells. HL5 and 5 were found to induce a concentration- and time-dependent arrest of cell cycle in colon cancer cell lines. Antiproliferative activity of 5 in 3D multicellular tumor spheroid model of cancer cells (HCT116, LS-174) superior to that of cisplatin was found. Moreover, HL5 and 5 showed notable inhibition potency against glycogen synthase kinases (GSK-3α and GSK-3β), tyrosine-protein kinase (Src), lymphocyte-specific protein-tyrosine kinase (Lck), and cyclin-dependent kinases (Cdk2 and Cdk5) (IC50 = 1.4-6.1 μM), suggesting their multitargeted mode of action as potential anticancer drugs.
Collapse
Affiliation(s)
- Irina Kuznetcova
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Marija Ostojić
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Nevenka Gligorijević
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia,
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria,
| |
Collapse
|
11
|
Hawash M. Recent Advances of Tubulin Inhibitors Targeting the Colchicine Binding Site for Cancer Therapy. Biomolecules 2022; 12:biom12121843. [PMID: 36551271 PMCID: PMC9776383 DOI: 10.3390/biom12121843] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer accounts for numerous deaths each year, and it is one of the most common causes of death worldwide, despite many breakthroughs in the discovery of novel anticancer candidates. Each new year the FDA approves the use of new drugs for cancer treatments. In the last years, the biological targets of anticancer agents have started to be clearer and one of these main targets is tubulin protein; this protein plays an essential role in cell division, as well as in intracellular transportation. The inhibition of microtubule formation by targeting tubulin protein induces cell death by apoptosis. In the last years, numerous novel structures were designed and synthesized to target tubulin, and this can be achieved by inhibiting the polymerization or depolymerization of the microtubules. In this review article, recent novel compounds that have antiproliferation activities against a panel of cancer cell lines that target tubulin are explored in detail. This review article emphasizes the recent developments of tubulin inhibitors, with insights into their antiproliferative and anti-tubulin activities. A full literature review shows that tubulin inhibitors are associated with properties in the inhibition of cancer cell line viability, inducing apoptosis, and good binding interaction with the colchicine binding site of tubulin. Furthermore, some drugs, such as cabazitaxel and fosbretabulin, have been approved by FDA in the last three years as tubulin inhibitors. The design and development of efficient tubulin inhibitors is progressively becoming a credible solution in treating many species of cancers.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus P.O. Box 7, Palestine
| |
Collapse
|
12
|
Jiang M, Zhang Z, Li W, Man X, Sun H, Liang H, Yang F. Developing a Copper(II) Agent Based on His-146 and His-242 Residues of Human Serum Albumin Nanoparticles: Integration To Overcome Cisplatin Resistance and Inhibit the Metastasis of Nonsmall Cell Lung Cancer. J Med Chem 2022; 65:9447-9458. [PMID: 35786921 DOI: 10.1021/acs.jmedchem.2c00698] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To overcome the resistance of nonsmall cell lung cancer (NSCLC) cells to cisplatin and inhibit their metastasis, we proposed to develop a Cu(II) agent based on the specific residue(s) of HSA nanoparticles (NPs) for multitargeting the tumor microenvironment (TME). To this end, we not only synthesized four Cu(II) 2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone compounds (C1-C4), obtaining a Cu compound (C4) with significant cytotoxicity by studying their structure-activity relationships, but also revealed the binding mechanism of C4 to HSA through X-ray crystallography and confirmed the successful construction of a new HSA-C4 NPs delivery system. C4 and HSA-C4 NPs inhibited the A549cisR tumor growth and metastasis, and HSA NPs optimized the anticancer behavior of C4. We further confirmed the anticancer mechanism of the C4/HSA-C4 NP multitargeting TME to overcome cisplatin resistance: killing tumor cells by acting on the mtDNA and inducing apoptosis, polarizing M2-type macrophages to the M1-type, and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Ming Jiang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China.,School of Food and Biochemical Engineering, Guangxi Science & Technology Normal University, Laibin, Guangxi 546199, China
| | - Zhenlei Zhang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Wenjuan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Xueyu Man
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Hongbin Sun
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hong Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| | - Feng Yang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, Guangxi Normal University, Guilin, Guangxi 541004, China
| |
Collapse
|
13
|
Kuznetcova I, Bacher F, Alfadul SM, Tham MJR, Ang WH, Babak MV, Rapta P, Arion VB. Elucidation of Structure-Activity Relationships in Indolobenzazepine-Derived Ligands and Their Copper(II) Complexes: the Role of Key Structural Components and Insight into the Mechanism of Action. Inorg Chem 2022; 61:10167-10181. [PMID: 35713376 PMCID: PMC9490829 DOI: 10.1021/acs.inorgchem.2c01375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indolo[3,2-d][1]benzazepines (paullones), indolo[3,2-d][2]benzazepines, and indolo[2,3-d][2]benzazepines (latonduines) are isomeric scaffolds of current medicinal interest. Herein, we prepared a small library of novel indolo[3,2-d][2]benzazepine-derived ligands HL1-HL4 and copper(II) complexes 1-4. All compounds were characterized by spectroscopic methods (1H and 13C NMR, UV-vis, IR) and electrospray ionization (ESI) mass spectrometry, while complexes 2 and 3, in addition, by X-ray crystallography. Their purity was confirmed by HPLC coupled with high-resolution ESI mass spectrometry and/or elemental analysis. The stability of compounds in aqueous solutions in the presence of DMSO was confirmed by 1H NMR and UV-vis spectroscopy measurements. The compounds revealed high antiproliferative activity in vitro in the breast cancer cell line MDA-MB-231 and hepatocellular carcinoma cell line LM3 in the low micromolar to nanomolar concentration range. Important structure-activity relationships were deduced from the comparison of anticancer activities of HL1-HL4 and 1-4 with those of structurally similar paullone-derived (HL5-HL7 and 5-7) and latonduine-derived scaffolds (HL8-HL11 and 8-11). The high anticancer activity of the lead drug candidate 4 was linked to reactive oxygen species and endoplasmic reticulum stress induction, which were confirmed by fluorescent microscopy and Western blot analysis.
Collapse
Affiliation(s)
- Irina Kuznetcova
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Felix Bacher
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | - Samah Mutasim Alfadul
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Max Jing Rui Tham
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore 117544, Singapore
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, SK-81237 Bratislava, Slovak Republic
| | - Vladimir B Arion
- Institute of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| |
Collapse
|
14
|
Cai DH, Chen BH, Liu QY, Le XY, He L. Synthesis, structural studies, interaction with DNA/HSA and antitumor evaluation of new Cu( ii) complexes containing 2-(1 H-imidazol-2-yl)pyridine and amino acids. Dalton Trans 2022; 51:16574-16586. [DOI: 10.1039/d2dt02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New Cu(ii) complexes with promising anticancer activity induce apoptosis in HepG2 cells through DNA damage and cytotoxic ROS-mediated mitochondrial dysfunction pathways.
Collapse
Affiliation(s)
- Dai-Hong Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Bai-Hua Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Qi-Yan Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Xue-Yi Le
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| | - Liang He
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|