1
|
Nielipińska D, Rubiak D, Pietrzyk-Brzezińska AJ, Małolepsza J, Błażewska KM, Gendaszewska-Darmach E. Stapled peptides as potential therapeutics for diabetes and other metabolic diseases. Biomed Pharmacother 2024; 180:117496. [PMID: 39362065 DOI: 10.1016/j.biopha.2024.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
The field of peptide drug research has experienced notable progress, with stapled peptides featuring stabilized α-helical conformation, emerging as a promising field. These peptides offer enhanced stability, cellular permeability, and binding affinity and exhibit potential in the treatment of diabetes and metabolic disorders. Stapled peptides, through the disruption of protein-protein interactions, present varied functionalities encompassing agonism, antagonism, and dual-agonism. This comprehensive review offers insight into the technology of peptide stapling and targeting of crucial molecular pathways associated with glucose metabolism, insulin secretion, and food intake. Additionally, we address the challenges in developing stapled peptides, including concerns pertaining to structural stability, peptide helicity, isomer mixture, and potential side effects.
Collapse
Affiliation(s)
- Dominika Nielipińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| | - Dominika Rubiak
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Agnieszka J Pietrzyk-Brzezińska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland
| | - Joanna Małolepsza
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Poland.
| | - Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Poland.
| |
Collapse
|
2
|
Phuong HBT, Ngan HD, Thi HP, Thanh BNT, Dang TT, Ho TNT, Thanh TT, Hong MN, Xuan HL. Dual Antimicrobial and Anticancer Activity of Membrane-Active Peptide BP52. Protein J 2024; 43:1025-1034. [PMID: 39190120 DOI: 10.1007/s10930-024-10231-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
The linear undecapeptide BP52 was previously reported to have antibacterial activity against phytopathogenic bacteria species. Due to the structural similarities to naturally occurring cationic helical antimicrobial peptides, it was speculated that this peptide could potentially target microbial pathogens and cancer cells found in mammals. Consequently, this study aims to further investigate the structural and biological properties of this peptide. Our findings indicate that BP52 exhibits strong antimicrobial and anticancer activity while displaying relatively low levels of hemolytic activity. Hence, this study suggests that BP52 could be a potential lead compound for drug discovery against infectious diseases and cancer. Besides, new insights into the relationships between the structure and the multifunctional properties of antimicrobial peptides were also explored.
Collapse
Affiliation(s)
- Hai Bui Thi Phuong
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hoa Doan Ngan
- Faculty of Medical Technology, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hue Pham Thi
- Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam
| | | | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Thao N T Ho
- VN-UK Institute for Research and Executive Education, The University of Danang, Danang, 550000, Vietnam
| | | | - Minh Nguyen Hong
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, 12116, Vietnam
- Bioresource Research Center, Phenikaa University, Hanoi, 12116, Vietnam
| | - Huy Luong Xuan
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
3
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Zhen B, Geng C, Yang Y, Liang H, Jiang Y, Li X, Ye G. Systematic alanine and stapling mutational analysis of antimicrobial peptide Chem-KVL. Bioorg Med Chem Lett 2024; 107:129794. [PMID: 38735344 DOI: 10.1016/j.bmcl.2024.129794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Chem-KVL is a tandem repeating peptide, with 14 amino acids that was modified based on a short peptide from a fragment of the human host defense protein chemerin. Chem-KVL increases cationicity and hydrophobicity and shows broad-spectrum antibacterial activity. To determine the molecular determinants of Chem-KVL and whether staple-modified Chem-KVL would improve antibacterial activity and protease stability or decrease cytotoxicity, we combined alanine and stapling scanning, and designed a series of alanine and staple-derived Chem-KVL peptides, termed Chem-A1 to Chem-A14 and SCL-1 to SCL-7. We next examined their antibacterial activity against several gram-positive and gram-negative bacteria, their proteolytic stability, and their cytotoxicity. Ala scanning of Chem-KVL suggested that both the positively charged residues (Lys and Arg) and the hydrophobic residues (Lue and Val) were critical for the antibacterial activities of Chem-KVL peptide. Of note, Chem-A4 was able to remarkably inhibit the growth of gram-positive and gram-negative bacteria when compared to the original peptide. And the antibacterial activities of stapled SCL-4 and SCL-7 were several times higher than those of the linear peptide against gram-positive and gram-negative bacteria. Stapling modification of peptides resulted in increased helicity and protein stability when compared with the linear peptide. These stapled peptides, especially SCL-4 and SCL-7, may serve as the leading compounds for further optimization and antimicrobial therapy.
Collapse
Affiliation(s)
- Borui Zhen
- School of Pharmacy, Dali University, Dali 671000, China; School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Chenchen Geng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Yi Yang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Haiyan Liang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | | | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Guangming Ye
- Wuxi Branch of Ruijin Hospital Shanghai Jiao Tong University School of Medicine, Wuxi 214000, China.
| |
Collapse
|
5
|
Song M, Liu Q, Yao JF, Wang YT, Ma YN, Xu H, Yu QY, Li Z, Du SS, Qi YK. Synthesis and structural optimization of oncolytic peptide LTX-315. Bioorg Med Chem 2024; 107:117760. [PMID: 38762978 DOI: 10.1016/j.bmc.2024.117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Oncolytic peptides represented potential novel candidates for anticancer treatments especially drug-resistant cancer cell lines. One of the most promising and extensively studied is LTX-315, which is considered as the first in class oncolytic peptide and has entered phase I/II clinical trials. Nevertheless, the shortcomings including poor proteolytic stability, moderate anticancer durability and high synthesis costs may hinder the widespread clinical applications of LTX-315. In order to reduce the synthesis costs, as well as develop derivatives possessing both high protease-stability and durable anticancer efficiency, twenty LTX-315-based derived-peptides were designed and efficiently synthesized. Especially, through solid-phase S-alkylation, as well as the optimized peptide cleavage condition, the derived peptides could be prepared with drastically reduced synthesis cost. The in vitro anticancer efficiency, serum stability, anticancer durability, anti-migration activity, and hemolysis effect were systematically investigated. It was found that derived peptide MS-13 exhibited comparable anticancer efficiency and durability to those of LTX-315. Strikingly, the D-type peptide MS-20, which is the enantiomer of MS-13, was demonstrated to possess significantly high proteolytic stability and sustained anticancer durability. In general, the cost-effective synthesis and stability-guided structural optimizations were conducted on LTX-315, affording the highly hydrolysis resistant MS-20 which possessed durable anticancer activity. Meanwhile, this study also provided a reliable reference for the future optimization of anticancer peptides through the solid-phase S-alkylation and L-type to D-type amino acid substitutions.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qing Liu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jing-Fang Yao
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Yu-Tao Wang
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan-Nan Ma
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Huan Xu
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian-Yao Yu
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Zhibo Li
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shan-Shan Du
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| | - Yun-Kun Qi
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, #1 Ningde Road, Qingdao 266073, China.
| |
Collapse
|
6
|
Li Y, Wu M, Fu Y, Xue J, Yuan F, Qu T, Rissanou AN, Wang Y, Li X, Hu H. Therapeutic stapled peptides: Efficacy and molecular targets. Pharmacol Res 2024; 203:107137. [PMID: 38522761 DOI: 10.1016/j.phrs.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Peptide stapling, by employing a stable, preformed alpha-helical conformation, results in the production of peptides with improved membrane permeability and enhanced proteolytic stability, compared to the original peptides, and provides an effective solution to accelerate the rapid development of peptide drugs. Various reviews present peptide stapling chemistries, anchoring residues and one- or two-component cyclization, however, therapeutic stapled peptides have not been systematically summarized, especially focusing on various disease-related targets. This review highlights the latest advances in therapeutic peptide drug development facilitated by the application of stapling technology, including different stapling techniques, synthetic accessibility, applicability to biological targets, potential for solving biological problems, as well as the current status of development. Stapled peptides as therapeutic drug candidates have been classified and analysed mainly by receptor- and ligand-based stapled peptide design against various diseases, including cancer, infectious diseases, inflammation, and diabetes. This review is expected to provide a comprehensive reference for the rational design of stapled peptides for different diseases and targets to facilitate the development of therapeutic peptides with enhanced pharmacokinetic and biological properties.
Collapse
Affiliation(s)
- Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Minghao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Yuan
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tianci Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anastassia N Rissanou
- Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 131 Dong'an Road, Shanghai 200032, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| | - Honggang Hu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
7
|
Tung TT, Quoc Thang N, Cao Huy N, Bao Phuong P, Ngoc Minh D, Hai Nam N, Nielsen J. Identification of novel phenylalanine derivatives bearing a hydroxamic acid moiety as potent quorum sensing inhibitors. RSC Med Chem 2024; 15:1320-1328. [PMID: 38665836 PMCID: PMC11042162 DOI: 10.1039/d3md00670k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/20/2024] [Indexed: 04/28/2024] Open
Abstract
Phenylalanine derivatives are a well-known small moiety responsible for controlling the virulence factors of several bacteria. Herein, for the first time, we report novel structures of phenylalanine derivatives bearing a hydroxamic acid moiety which were designed, synthesized, and evaluated for use as quorum sensing inhibitors. Biological results reveal that six compounds showed good quorum sensing inhibitors properties with an IC50 ranging from 7.12 ± 2.11 μM-92.34 ± 2.09 μM (4NPO, a reference compound, IC50 = 29.13 ± 0.88 μM). In addition, three out of the six compounds (4a, 4c, 4h) showed strong anti-biofilm formation and CviR inhibitory activity when compared to that of 4NPO. These biological data were also confirmed by computational studies. In this series of compounds, 4h is the most promising compound for future drug development targeting quorum sensing. Our results concluded that the fragment-based drug design is a good approach for the discovery of novel quorum-sensing inhibitors in the future.
Collapse
Affiliation(s)
- Truong Thanh Tung
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
- PHENIKAA Institute for Advanced Study (PIAS), PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Quoc Thang
- Hanoi University of Pharmacy 13-15 Le Thanh Tong Hanoi Vietnam
- Vinmec International Hospital Hanoi Vietnam
| | - Nguyen Cao Huy
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
| | - Pham Bao Phuong
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
| | - Dinh Ngoc Minh
- Faculty of Pharmacy, PHENIKAA University Hanoi 12116 Vietnam
| | - Nguyen Hai Nam
- Hanoi University of Pharmacy 13-15 Le Thanh Tong Hanoi Vietnam
| | - John Nielsen
- Department of Drug Design and Pharmacology, University of Copenhagen Denmark
| |
Collapse
|
8
|
Bui Thi Phuong H, Doan Ngan H, Le Huy B, Vu Dinh H, Luong Xuan H. The amphipathic design in helical antimicrobial peptides. ChemMedChem 2024; 19:e202300480. [PMID: 38408263 DOI: 10.1002/cmdc.202300480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Indexed: 02/28/2024]
Abstract
Amphipathicity is a critical characteristic of helical antimicrobial peptides (AMPs). The hydrophilic region, primarily composed of cationic residues, plays a pivotal role in the initial binding to negatively charged components on bacterial membranes through electrostatic interactions. Subsequently, the hydrophobic region interacts with hydrophobic components, inducing membrane perturbation, ultimately leading to cell death, or inhibiting intracellular function. Due to the extensive diversity of natural and synthetic AMPs with regard to the design of amphipathicity, it is complicated to study the structure-activity relationships. Therefore, this work aims to categorize the common amphipathic design and investigate their impact on the biological properties of AMPs. Besides, the connection between current structural modification approaches and amphipathic styles was also discussed.
Collapse
Affiliation(s)
| | - Hoa Doan Ngan
- Faculty of Medical Technology, PHENIKAA University, Hanoi, 12116, Vietnam
| | - Binh Le Huy
- Center for High Technology Development, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 11307, Vietnam
- School of Chemical Engineering -, Hanọi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, 11615, Vietnam
| | - Hoang Vu Dinh
- School of Chemical Engineering -, Hanọi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi, 11615, Vietnam
| | - Huy Luong Xuan
- Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam
| |
Collapse
|
9
|
Zhang C, Liu F, Zhang Y, Song C. Macrocycles and macrocyclization in anticancer drug discovery: Important pieces of the puzzle. Eur J Med Chem 2024; 268:116234. [PMID: 38401189 DOI: 10.1016/j.ejmech.2024.116234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
Increasing disease-related proteins have been identified as novel therapeutic targets. Macrocycles are emerging as potential solutions, bridging the gap between conventional small molecules and biomacromolecules in drug discovery. Inspired by successful macrocyclic drugs of natural origins, macrocycles are attracting more attention for enhanced binding affinity and target selectivity. Due to the conformation constraint and structure preorganization, macrocycles can reach bioactive conformations more easily than parent acyclic compounds. Also, rational macrocyclization combined with sequent structural modification will help improve oral bioavailability and combat drug resistance. This review introduces various strategies to enhance membrane permeability in macrocyclization and subsequent modification, such as N-methylation, intramolecular hydrogen bonding modulation, isomerization, and reversible bicyclization. Several case studies highlight macrocyclic inhibitors targeting kinases, HDAC, and protein-protein interactions. Finally, some macrocyclic agents targeting tumor microenvironments are illustrated.
Collapse
Affiliation(s)
- Chao Zhang
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Fenfen Liu
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Chun Song
- Laboratory for Food and Medicine Homologous Natural Resources Development and Utilization, Belgorod College of Food Sciences, Dezhou University, Dezhou, 253023, China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Fu XY, Yin H, Chen XT, Yao JF, Ma YN, Song M, Xu H, Yu QY, Du SS, Qi YK, Wang KW. Three Rounds of Stability-Guided Optimization and Systematical Evaluation of Oncolytic Peptide LTX-315. J Med Chem 2024; 67:3885-3908. [PMID: 38278140 DOI: 10.1021/acs.jmedchem.3c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Oncolytic peptides represent promising novel candidates for anticancer treatments. In our efforts to develop oncolytic peptides possessing both high protease stability and durable anticancer efficiency, three rounds of optimization were conducted on the first-in-class oncolytic peptide LTX-315. The robust synthetic method, in vitro and in vivo anticancer activity, and anticancer mechanism were investigated. The D-type peptides represented by FXY-12 possessed significantly improved proteolytic stability and sustained anticancer efficiency. Strikingly, the novel hybrid peptide FXY-30, containing one FXY-12 and two camptothecin moieties, exhibited the most potent in vitro and in vivo anticancer activities. The mechanism explorations indicated that FXY-30 exhibited rapid membranolytic effects and induced severe DNA double-strand breaks to trigger cell apoptosis. Collectively, this study not only established robust strategies to improve the stability and anticancer potential of oncolytic peptides but also provided valuable references for the future development of D-type peptides-based hybrid anticancer chemotherapeutics.
Collapse
Affiliation(s)
- Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Xi-Tong Chen
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Jing-Fang Yao
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Yan-Nan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Min Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huan Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qian-Yao Yu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Ke-Wei Wang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
- Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
11
|
Thi Phuong HB, Huy BL, Van KN, Thi ND, Thi TB, Thi Hai YN, Thanh TB, Xuan HL, Thi Thanh BN. Reducing Self-Assembly by Increasing Net Charge: Effect on Biological Activity of Mastoparan C. ACS Med Chem Lett 2024; 15:69-75. [PMID: 38229756 PMCID: PMC10788938 DOI: 10.1021/acsmedchemlett.3c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
The ability of amphipathic peptides to arrange themselves in aqueous solutions, known as self-assembly, has been found to reduce the effectiveness of these peptides in interacting with cell membranes. Therefore, minimizing their tendency to self-assemble could be a potential strategy for enhancing the pharmacological properties of antimicrobial peptides (AMPs). To explore this idea, this study prepared a series of natural peptides mastoparan C (MPC) with increased net charge and hydrophilicity via alanine-to-lysine substitution and investigated the impact on the biological activity. The preliminary data suggested the influence of both the overall positive charge and the position of a lysine residue on the self-assembly of MPC and its derivatives. Besides, the analogue MPC-A5K,A8K displayed higher anticancer activity and comparable antimicrobial activity with significantly lower hemolysis than MPC. Hence, reducing self-assembly by expanding the cationic area could be a promising approach for developing potent and selective AMPs.
Collapse
Affiliation(s)
- Hai Bui Thi Phuong
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
- Faculty
of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Binh Le Huy
- Center
for High Technology Development, Vietnam
Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi 11307, Vietnam
- School
of Chemical Engineering - Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Hanoi 11615, Vietnam
| | - Khanh Nguyen Van
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Ngan Dang Thi
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Thuong Bui Thi
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Yen Nguyen Thi Hai
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Tung Bui Thanh
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| | - Huy Luong Xuan
- Faculty
of Pharmacy, PHENIKAA University, Hanoi 12116, Vietnam
| | - Binh Nguyen Thi Thanh
- VNU
University of Medicine and Pharmacy, 144 Xuan Thuy, Cau Giay, Hanoi 11310., Vietnam
| |
Collapse
|
12
|
Zheng M, Chen H, Li X, Chen S, Shi Y, Hu H. Discovery of a novel antifungal agent: All-hydrocarbon stapling modification of peptide Aurein1.2. J Pept Sci 2024; 30:e3533. [PMID: 37431279 DOI: 10.1002/psc.3533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023]
Abstract
Aurein1.2 is secreted by the Australian tree frog Litoria aurea and is active against a broad range of infectious microbes including bacteria, fungi, and viruses. Its antifungal potency has garnered considerable interest in developing novel classes of natural antifungal agents to fight pathogenic infection by fungi. However, serious pharmacological hurdles remain, hindering its clinical translation. To alleviate its susceptibility to proteolytic degradation and improve its antifungal activity, six conformationally locked peptides were synthesized through hydrocarbon stapling modification and evaluated for their physicochemical and antifungal parameters. Among them, SAU2-4 exhibited significant improvement in helicity levels, protease resistance, and antifungal activity compared to the template linear peptide Aurein1.2. These results confirmed the prominent role of hydrocarbon stapling modification in the manipulation of peptide pharmacological properties and enhanced the application potential of Aurein1.2 in the field of antifungal agent development.
Collapse
Affiliation(s)
- Mengjun Zheng
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Huixuan Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Xiang Li
- School of Pharmacy, Naval Medical University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Yejiao Shi
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Honggang Hu
- School of Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
13
|
Zhang M, Xu B, Li N, Zhang Q, Chen D, Wu S, Yu B, Zhang X, Hu X, Zhang S, Jing Y, Yang Z, Jiang J, Fang Q. All-Hydrocarbon Stapled Peptide Multifunctional Agonists at Opioid and Neuropeptide FF Receptors: Highly Potent, Long-Lasting Brain Permeant Analgesics with Diminished Side Effects. J Med Chem 2023; 66:17138-17154. [PMID: 38095323 DOI: 10.1021/acs.jmedchem.3c02093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Our previous study reported the multifunctional agonist for opioid and neuropeptide FF receptors DN-9, along with its cyclic peptide analogues c[D-Cys2, Cys5]-DN-9 and c[D-Lys2, Asp5]-DN-9. These analogues demonstrated potent antinociceptive effects with reduced opioid-related side effects. To develop more stable and effective analgesics, we designed, synthesized, and evaluated seven hydrocarbon-stapled cyclic peptides based on DN-9. In vitro calcium mobilization assays revealed that most of the stapled peptides, except 3, displayed multifunctional agonistic activities at opioid and neuropeptide FF receptors. Subcutaneous administration of all stapled peptides resulted in effective and long-lasting antinociceptive activities lasting up to 360 min. Among these stapled peptides, 1a and 1b emerged as the optimized compounds, producing potent central antinociception following subcutaneous, intracerebroventricular, and oral administrations. Additionally, subcutaneous administration of 1a and 1b caused nontolerance antinociception, with limited occurrence of constipation and addiction. Furthermore, 1a was selected as the final optimized compound due to its wider safety window compared to 1b.
Collapse
Affiliation(s)
- Mengna Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Biao Xu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Ning Li
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Qinqin Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Dan Chen
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shuyuan Wu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Bowen Yu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xiaodi Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Xuanran Hu
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Shichao Zhang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Yuhong Jing
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Zhenyun Yang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| | - Jinhong Jiang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, 209 Tongshan Rd, Xuzhou, Jiangsu 221004, China
| | - Quan Fang
- Institute of Physiology, School of Basic Medical Sciences, and State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, 199 Donggang West Road, Lanzhou 730000, PR China
| |
Collapse
|
14
|
Bui Thi Phuong H, Le Uyen C, Doan Ngan H, Luong Xuan H. Impact of chemical modifications on the antimicrobial and hemolytic activity of helical amphipathic peptide Lasioglossin LL-III. Amino Acids 2023; 55:1531-1544. [PMID: 37737904 DOI: 10.1007/s00726-023-03326-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Insect venom is abundant in potential antimicrobial peptides (AMPs), which can serve as novel alternatives to conventional antibiotics. Among them, Lasioglossin III LL-III) is a promising candidate with a broad spectrum against many fungi strains and both types of bacteria, whereas almost non-toxic to red blood cells. Many chemical approaches have been recently applied to improve its pharmacological properties and provide useful information regarding structure-activity relationships. Hence, this review focused on highlighting the lesson learned from each modification and supporting the future design of potent, selective, and metabolically stable AMPs.
Collapse
Affiliation(s)
| | - Chi Le Uyen
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam
| | - Hoa Doan Ngan
- Faculty of Medical Technology, Phenikaa University, Hanoi, 12116, Vietnam
| | - Huy Luong Xuan
- Faculty of Pharmacy, Phenikaa University, Hanoi, 12116, Vietnam.
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, 12116, Vietnam.
| |
Collapse
|
15
|
He F, Chai Y, Zeng Z, Lu F, Chen H, Zhu J, Fang Y, Cheng K, Miclet E, Alezra V, Wan Y. Rapid Formation of Intramolecular Disulfide Bridges using Light: An Efficient Method to Control the Conformation and Function of Bioactive Peptides. J Am Chem Soc 2023; 145:22639-22648. [PMID: 37788450 DOI: 10.1021/jacs.3c07795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Disulfide bonds are widely found in natural peptides and play a pivotal role in stabilizing their secondary structures, which are highly associated with their biological functions. Herein, we introduce a light-mediated strategy to effectively control the formation of disulfides. Our strategy is based on 2-nitroveratryl (oNv), a widely used photolabile motif, which serves both as a photocaging group and an oxidant (after photolysis). We demonstrated that irradiation of oNv-caged thiols with UV light could release free thiols that are rapidly oxidized by locally released byproduct nitrosoarene, leading to a "break-to-bond" fashion. This strategy is highlighted by the in situ restoration of the antimicrobial peptide tachyplesin I (TPI) from its external disulfide-caged analogue TPI-1. TPI-1 exhibits a distorted structure and a diminished function. However, upon irradiation, the β-hairpin structure and membrane activity of TPI were largely restored via rapid intramolecular disulfide formation. Our study proposes a powerful method to regulate the conformation and function of peptides in a spatiotemporal manner, which has significant potential for the design of disulfide-centered light-responsive systems.
Collapse
Affiliation(s)
- Feng He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Yu Chai
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Zizhen Zeng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Fangling Lu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Huanwen Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Jinhua Zhu
- Institute of TCM, Jiangxi University of Chinese Medicine, Nanchang 330004, P. R. China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| | - Keguang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Emeric Miclet
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques, ICMMO, Université Paris-Saclay, Orsay 91400, France
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, P. R. China
| |
Collapse
|
16
|
Botelho Sampaio de Oliveira K, Lopes Leite M, Albuquerque Cunha V, Brito da Cunha N, Luiz Franco O. Challenges and advances in antimicrobial peptide development. Drug Discov Today 2023; 28:103629. [PMID: 37230283 DOI: 10.1016/j.drudis.2023.103629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
Microbial resistance is a major concern for public health worldwide, mainly because of the inappropriate use of antimicrobials. In this scenario, antimicrobial peptides (AMPs) have emerged as a potential therapeutic alternative means by which to control infectious diseases, because of their broad spectrum of action. However, some challenges can make their clinical application problematic, including metabolic instability and toxicity. Here, we provide a clear description of AMPs as promising molecules for the development of unusual antimicrobial drugs. We also describe current strategies used to overcome the main difficulties related to AMP clinical application, including different peptide designs and nanoformulation.
Collapse
Affiliation(s)
- Kamila Botelho Sampaio de Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Michel Lopes Leite
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Departamento de Biologia Molecular, Instituto de Ciências Biológicas, Universidade de Brasília, Campus Darcy Ribeiro, Bloco K, 70.790-900, Brasília, Brazil
| | - Victor Albuquerque Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Nicolau Brito da Cunha
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Campus Darcy Ribeiro, Brasilia, Brazil.
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil; Pós-graduação em Patologia Molecular, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, Brazil; S-Inova Biotech, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
17
|
Ghareeb H, Metanis N. Enhancing the gastrointestinal stability of salmon calcitonin through peptide stapling. Chem Commun (Camb) 2023; 59:6682-6685. [PMID: 37186112 DOI: 10.1039/d3cc01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Salmon calcitonin (sCT) is a polypeptide hormone available in the clinic. sCT is degraded in the gastrointestinal tract in minutes. In this work, a stapled analogue of salmon calcitonin, KaY-1(R24Q), was developed using the cooperative stapling between Lys and Tyr, with R24Q substitution. The analogue exhibited an improved stability in simulated gastric and intestinal fluid and retained the ability to activate the calcitonin receptor. This work will serve as a starting point for the development of an oral sCT drug.
Collapse
Affiliation(s)
- Hiba Ghareeb
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Norman Metanis
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
- Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
18
|
Lu S, Lin J, Jin J, Zhang L, Guan Y, Chen H, Wu Y, Zhang W, Luan X. Tachyplesin I and its derivatives: A pharmaco-chemical perspective on their antimicrobial and antitumor potential. Expert Opin Drug Discov 2022; 17:1407-1423. [PMID: 36503335 DOI: 10.1080/17460441.2023.2157402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Increasing evidence suggests that intratumor microbiota are an intrinsic component in the tumor microenvironment across multiple cancer types, and that there is a close relationship between microbiota and tumor progression. Therefore, how to address the interaction between bacteria and malignances has become a growing concern. Tachyplesin I (TPI), a peptide with dual antimicrobial and antitumor effects, holds great promise as a therapeutic alternative for the aforementioned diseases, with the advantage of broad-spectrum activities, quick killing efficacy, and a low tendency to induce resistance. AREAS COVERED This review comprehensively summarizes the pharmacological mechanisms of TPI with an emphasis on its antimicrobial and antitumor potential. Furthermore, it presents advances in TPI derivatives and gives a perspective on their future development. The article is based on literature searches using PubMed and SciFinder to retrieve the most up-to-date information of TPI. EXPERT OPINION Bacterial infections and cancer both pose a serious threat to health due to their symbiotic interactions and drug resistance. TPI is anticipated to be a novel agent to control pathogenic bacteria and various tumors through multiple mechanisms of action. Indeed, the continuous advancements in chemical modification and innovative applications of TPI give hope for future improvements in therapeutic efficacy.
Collapse
Affiliation(s)
- Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Jinmei Jin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Lijun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Yingyun Guan
- Department of Pharmacy, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Municipality, Shanghai, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China.,School of Pharmacy, Naval Medical University, Municipality, Shanghai, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Municipality, Shanghai, China
| |
Collapse
|
19
|
Adak A, Das G, Gupta V, Khan J, Mukherjee N, Mondal P, Roy R, Barman S, Gharai PK, Ghosh S. Evolution of Potential Antimitotic Stapled Peptides from Multiple Helical Peptide Stretches of the Tubulin Heterodimer Interface: Helix-Mimicking Stapled Peptide Tubulin Inhibitors. J Med Chem 2022; 65:13866-13878. [PMID: 36240440 DOI: 10.1021/acs.jmedchem.2c01116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play a crucial role in microtubule dynamics. Microtubules are considered as a key target for the design and development of anticancer therapeutics, where inhibition of tubulin-tubulin interactions plays a crucial role. Here, we focused on a few key helical stretches at the interface of α,β-tubulin heterodimers and developed a structural mimic of these helical peptides, which can serve as potent inhibitors of microtubule polymerization. To induce helicity, we have made stapled analogues of these sequences. Thereafter, we modified the lead sequences of the antimitotic stapled peptides with halo derivatives. It is observed that halo-substituted stapled peptides follow an interesting trend for the electronegativity of halogen atoms in interaction patterns with tubulin and a correlation in the toxicity profile. Remarkably, we found that para-fluorophenylalanine-modified stapled peptide is the most potent inhibitors, which perturbs microtubule dynamics, induces apoptotic death, and inhibits the growth of melanoma.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Surajit Barman
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India.,Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
20
|
Ricardo MG, Reuber EE, Yao L, Danglad-Flores J, Delbianco M, Seeberger PH. Design, Synthesis, and Characterization of Stapled Oligosaccharides. J Am Chem Soc 2022; 144:18429-18434. [PMID: 36173281 PMCID: PMC9562281 DOI: 10.1021/jacs.2c06882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Stapling short peptides
to lock specific conformations and thereby
obtain superior pharmacological properties is well established. However,
similar concepts have not been applied to oligosaccharides. Here,
we describe the design, synthesis, and characterization of the first
stapled oligosaccharides. Automated assembly of β-(1,6)-glucans
equipped with two alkenyl side chains was followed by on-resin Grubbs
metathesis for efficient ring closure with a variety of cross-linkers
of different sizes. Oligosaccharide stapling increases enzymatic stability
and cell penetration, therefore opening new opportunities for the
use of glycans in medicinal chemistry.
Collapse
Affiliation(s)
- Manuel G Ricardo
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Emelie E Reuber
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Ling Yao
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck-Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|