1
|
Cartereau A, Bouchouireb Z, Kaaki S, Héricourt F, Taillebois E, Le Questel JY, Thany SH. Pharmacology and molecular modeling studies of sulfoxaflor, flupyradifurone and neonicotinoids on the human neuronal α7 nicotinic acetylcholine receptor. Toxicol Appl Pharmacol 2024; 492:117123. [PMID: 39393466 DOI: 10.1016/j.taap.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
We conducted electrophysiological and molecular docking studies using a heterologous expression system (Xenopus oocytes) to compare the effects of four neonicotinoids (acetamiprid, imidacloprid, clothianidin and thiamethoxam), one sulfoximine, (sulfoxaflor), and one butenolide (flupyradifurone), on human α7 neuronal nicotinic acetylcholine receptors (nAChRs). All neonicotinoids (except thiamethoxam), as well as the recently introduced nAChR competitive modulators, flupyradifurone and sulfoxaflor, appear to be weaker agonists than acetylcholine. Two mutations in loop C (E211N and E211P) and one mutation in loop D (Q79K), known to be involved in the binding properties of neonicotinoids were introduced to the α7 wild type. Interestingly, the acetylcholine and nicotine-evoked activation was not modified in human α7 mutated receptors, but the net charge was enhanced for clothianidin and imidacloprid, respectively. Flupyradifurone responses strongly increased under the Q79K mutation. The molecular docking investigations demonstrated that the orientations and interactions of the ligands considered were in accordance with those observed experimentally. Specifically, the charged fragments of acetylcholine and nicotine, used as reference ligands, and their neonicotinoid homologs were found to be surrounded by aromatic residues, with key interactions with Trp171 and Y210. Furthermore, the molecular docking investigations predicted the water-mediated interaction between the carbonyl oxygen of acetylcholine and the Nsp2 nitrogen of the pyridine ring for nicotine (as well as for the majority of the corresponding neonicotinoid fragments) and main chain NH of L141. The docking scores, extending over a significant range of 6 kcal/mol, showed that most neonicotinoids were poorly stabilized in the α7 nAChR compared to acetylcholine, except sulfoxaflor.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Sara Kaaki
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - François Héricourt
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - Emiliane Taillebois
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Steeve H Thany
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
2
|
Maienfisch P, Koerber K. Recent innovations in crop protection research. PEST MANAGEMENT SCIENCE 2024. [PMID: 39344983 DOI: 10.1002/ps.8441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024]
Abstract
As the world's population continues to grow and demand for food increases, the agricultural industry faces the challenge of producing higher yields while ensuring the safety and quality of harvests, operators, and consumers. The emergence of resistance, pest shifts, and stricter regulatory requirements also urgently calls for further advances in crop protection and the discovery of new innovative products for sustainable crop protection. This study reviews recent highlights in innovation as presented at the 15th IUPAC International Congress of Crop Protection Chemistry held in New Delhi, in 2023. The following new products are discussed: the insecticides Indazapyroxamet, Dimpropyridaz and Fenmezoditiaz, the fungicides Mefentrifluconazole and Pyridachlomethyl, the nematicide Cyclobutrifluram, the herbicides Rimisoxafen, Dimesulfazet, and Epyrifenacil as well as the abiotic stress management product Anisiflupurin. In addition, the latest innovative research areas and discovery highlights in all areas of crop protection will be presented, including insecticidal alkyl sulfones and 1,3,4-trisubstituted pyrazoles, fungicidal picolinamides, herbicidal ketoenols, and trifluoromethylpyrazoles, as well as the latest advances in crop enhancement and green pest control research. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Karsten Koerber
- Global Research Crop Protection, BASF SE, Ludwigshafen, Germany
| |
Collapse
|
3
|
Terajima T, Ayabe C, Matsumoto Y, Uehara K, Horikoshi R, Suzuki T, Shimomura K, Tomizawa M. Potency and Target Surface Interaction of Diazinoyl Nicotinic Insecticides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12967-12974. [PMID: 38814790 DOI: 10.1021/acs.jafc.4c01499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Structure-activity relationships of diazinoyl nicotinic insecticides (diazinoyl isomers and 5- or 6-substituted pyrazin-2-oyl analogues) are considered in terms of affinity to the insect nicotinic acetylcholine receptor (nAChR) and insecticidal activity against the imidacloprid-resistant brown planthopper. Among the test compounds, 3-(6-chloropyridin-3-ylmethyl)-2-(pyrazinoyl)iminothiazoline shows the highest potency in nAChR affinity and insecticidal activity. Aplysia californica acetylcholine binding protein (AChBP) mutants (Y55W + Q57R and Y55W + Q57T) are utilized to compare molecular recognition of nicotinic insecticides with diverse pharmacophores. N-nitro- or N-cyanoimine imidacloprid or acetamiprid, respectively, exhibits a high affinity to these AChBP mutants at a similar potency level. Intriguingly, the pyrazin-2-oyl analogue has a higher affinity to AChBP Y55W + Q57R than that to Y55W + Q57T, thereby indicating that pyrazine nitrogen atoms contact Arg57 guanidinium and Trp55 indole NH. Furthermore, nicotine prefers AChBP Y55W + Q57T over Y55W + Q57R, conceivably suggesting that the protonated nicotine is repulsed by Arg57 guanidinium, consistent with its inferior potency to insect nAChR.
Collapse
Affiliation(s)
- Takehito Terajima
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Chihiro Ayabe
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yutsuki Matsumoto
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Kana Uehara
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Ryo Horikoshi
- Biological Solutions Research Center, Research and Development Division, Mitsui Chemicals Crop & Life Solutions, Inc., Mobara 297-0017, Chiba, Japan
| | - Tomonori Suzuki
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Kenji Shimomura
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Motohiro Tomizawa
- Department of Chemistry, Faculty of Life Sciences, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
4
|
Zhou C, Kong Y, Zhang H, Zhai N, Li Z, Qian X, Liu Z, Cheng J. Computational Modeling Oriented Substructure Splicing Application in the Identification of Thiazolidine Derivatives as Potential Low Honeybee Toxic Neonicotinoids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11968-11979. [PMID: 38759145 DOI: 10.1021/acs.jafc.4c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
With the aim of identifying novel neonicotinoid insecticides with low bee toxicity, a series of compounds bearing thiazolidine moiety, which has been shown to be low bee toxic, were rationally designed through substructure splicing strategy and evaluated insecticidal activities. The optimal compounds A24 and A29 exhibited LC50 values of 30.01 and 17.08 mg/L against Aphis craccivora, respectively. Electrophysiological studies performed on Xenopus oocytes indicated that compound A29 acted on insect nAChR, with EC50 value of 50.11 μM. Docking binding mode analysis demonstrated that A29 bound to Lymnaea stagnalis acetylcholine binding protein through H-bonds with the residues of D_Arg55, D_Leu102, and D_Val114. Quantum mechanics calculation showed that A29 had a higher highest occupied molecular orbit (HOMO) energy and lower vertical ionization potential (IP) value compared to the high bee toxic imidacloprid, showing potentially low bee toxicity. Bee toxicity predictive model also indicated that A29 was nontoxic to honeybees. Our present work identified an innovative insecticidal scaffold and might facilitate the further exploration of low bee toxic neonicotinoid insecticides.
Collapse
Affiliation(s)
- Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yijin Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huihui Zhang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Zhai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Huang H, Dickhaut J, Weisel M, Mao L, Rankl N, Takeda H, Stam LF, Peacock QM, Höffken HW. Discovery and biological characterization of a novel mesoionic insecticide fenmezoditiaz. PEST MANAGEMENT SCIENCE 2024. [PMID: 38554053 DOI: 10.1002/ps.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Many piercing-sucking insects have developed resistance or cross-resistance to many insecticides targeting insect neural nicotinic acetylcholine receptor (nAChR). Here we are aiming to present the discovery of a novel mesoionic insecticide, fenmezoditiaz, by BASF through structure-based drug design (SBDD) approaches. It has recently been added to the Insecticide Resistance Action Committee mode of classification (IRAC 4E). It is being developed for plant protection against piercing-sucking pests, especially rice hopper complex. RESULTS The soluble acetylcholine binding protein (AChBP) from the sea slug Aplysia californica was modified using site-directed mutagenesis and based on putative aphid nAChR subunit sequences to create soluble insect-like AChBPs. Among them, insect-like β1 AChBP and native aphid membrane preparation showed the highest correlated biochemical affinity toward structurally diverse ligands. This mutant AChBP was used to understand how insect nAChRs structurally interact with mesoionics, which was then utilized to design novel mesoionics including fenmezoditiaz. It is an excellent systemic insecticide with diverse application methods and has a broad insecticidal spectrum, especially against piercing/sucking insects. It lacks cross-resistance for neonicotinoid resistant plant hoppers. Field-collected brown plant hopper populations from Asian countries showed high susceptibility. CONCLUSIONS Fenmezoditiaz is a systemic insecticide with a broad spectrum, lack of cross-resistance and it could be an additional tool for integrated pest management and insecticide resistance management, especially for the rice hopper complex. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Huazhang Huang
- BASF Corporation, Global Insecticide Discovery/ Early Biology, Research Triangle Park, Research Triangle Park, NC, USA
| | - Joachim Dickhaut
- BASF SE, Global Insecticide Discovery/ Chemistry at Ludwigshafen, Ludwigshafen am Rhein, Germany
| | - Martin Weisel
- BASF SE, Molecular Modeling & Drug Discovery, Ludwigshafen, Germany
| | - Lixin Mao
- BASF Corporation, Global Insecticide Discovery/ Early Biology, Research Triangle Park, Research Triangle Park, NC, USA
| | - Nancy Rankl
- BASF Corporation, Global Insecticide Discovery/ Early Biology, Research Triangle Park, Research Triangle Park, NC, USA
| | - Haruka Takeda
- Agricultural Solutions, AgSolution Farm Naruto, BASF Japan Ltd, Naruto Sanmu-shi Chiba, Japan
| | - Lynn F Stam
- BASF Corporation, Global Insecticide Discovery/ Early Biology, Research Triangle Park, Research Triangle Park, NC, USA
| | - Quinn M Peacock
- BASF Corporation, Global Insecticide Discovery/ Early Biology, Research Triangle Park, Research Triangle Park, NC, USA
| | | |
Collapse
|
6
|
Zhang K, Chen L, Chen J, Huang H, Liu K, Zhang Y, Yang J, Wu S. Mutation V65I in the β1 Subunit of the Nicotinic Acetylcholine Receptor Confers Neonicotinoid and Sulfoxaflor Resistance in Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5671-5681. [PMID: 38442746 DOI: 10.1021/acs.jafc.3c09456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Neonicotinoids have been widely used to control pests with remarkable effectiveness. Excessive insecticides have led to serious insect resistance. Mutations of the nicotinic acetylcholine receptor (nAChR) are one of the reasons for neonicotinoid resistance conferred in various agricultural pests. Two mutations, V65I and V104I, were found in the nAChR β1 subunit of two neonicotinoid-resistant aphid populations. However, the specific functions of the two mutations remain unclear. In this study, we cloned and identified four nAChR subunits (α1, α2, α8, and β1) of thrips and found them to be highly homologous to the nAChR subunits of other insects. Subsequently, we successfully expressed two subtypes nAChR (α1/α2/α8/β1 and α1/α8/β1) by coinjecting three cofactors for the first time in thrips, and α1/α8/β1 showed abundant current rapidly. Acetylcholine, neonicotinoids, and sulfoxaflor exhibited different activation capacities for the two subtypes of nAChRs. Finally, V65I was found to significantly reduce the binding ability of nAChR to neonicotinoids and sulfoxaflor through electrophysiology and computer simulations. V104I caused a decrease in agonist affinity (pEC50) but an increase in the efficacy (Imax) of nAChR against neonicotinoids and reduced the binding ability of nAChR to sulfoxaflor. This study provides theoretical and technical support for studying the molecular mechanisms of neonicotinoid resistance in pests.
Collapse
Affiliation(s)
- Kun Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Longwei Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jianwen Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Huixiu Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Kaiyang Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Yi Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| | - Jingfang Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Shaoying Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China
- School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China
| |
Collapse
|
7
|
Bouchouireb Z, Thany SH, Le Questel JY. Development of CHARMM compatible force field parameters and molecular dynamics simulations for the pesticide flupyradifurone. J Comput Chem 2024; 45:377-391. [PMID: 37966816 DOI: 10.1002/jcc.27245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 11/16/2023]
Abstract
Flupyradifurone (FLU) is a novel butenolide insecticide with partial agonist activity for insect nicotinic acetylcholine receptors. Its safety for non-target organisms has been questioned in the literature, despite initial claims of its harmlessness. Detailed understanding of its toxicity and related molecular mechanisms remain under discussion. Thus, in this work, an optimized set of CHARMM compatible parameters for FLU is presented. CHARMM General Force Field program was used as a starting point while the non-bonded and bonded parameters were adjusted and optimized to reproduce MP2/6-31G(d) accuracy level results. For the validity assessment of these parameters, infrared spectrum, water-octanol partition coefficient, and normal modes were computed and compared to experimental values found in the literature. Several MD simulations of FLU in water and FLU in complex with an acetylcholine-binding protein were performed to estimate the ability of the optimized parameters to correctly describe its torsional space and reproduce observed crystallographic trends respectively.
Collapse
Affiliation(s)
| | - Steeve H Thany
- Université d'Orléans, LBLGC USC INRAE 1328, Orléans, France
| | | |
Collapse
|
8
|
Kong Y, Zhou C, Tan D, Xu X, Li Z, Cheng J. Discovery of Potential Neonicotinoid Insecticides by an Artificial Intelligence Generative Model and Structure-Based Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5145-5152. [PMID: 38419506 DOI: 10.1021/acs.jafc.3c06895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The identification of neonicotinoid insecticides bearing novel scaffolds is of great importance for pesticide discovery. Here, artificial intelligence-based tools and virtual screening strategy were integrated to discover potential leads of neonicotinoid insecticides. A deep generative model was successfully constructed using a recurrent neural network combined with transfer learning. The model evaluation showed that the pretrained model could accurately grasp the SMILES grammar of drug-like molecules and generate potential neonicotinoid compounds after transfer learning. The generated molecules were evaluated by hierarchical virtual screening, hits were subjected to a similarity search, and the most similar structures were purchased for the bioassay. Compounds A2 and A5 displayed 52.5 and 50.3% mortality rates against Aphis craccivora at 100 mg/L, respectively. The docking study indicated that these two compounds have similar binding modes to neonicotinoids, which were verified by further molecular dynamics simulations.
Collapse
Affiliation(s)
- Yijin Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Du Tan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Son L, Kost V, Maiorov V, Sukhov D, Arkhangelskaya P, Ivanov I, Kudryavtsev D, Siniavin A, Utkin Y, Kasheverov I. Efficient Expression in Leishmania tarentolae (LEXSY) of the Receptor-Binding Domain of the SARS-CoV-2 S-Protein and the Acetylcholine-Binding Protein from Lymnaea stagnalis. Molecules 2024; 29:943. [PMID: 38474455 DOI: 10.3390/molecules29050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Leishmania tarentolae (LEXSY) system is an inexpensive and effective expression approach for various research and medical purposes. The stated advantages of this system are the possibility of obtaining the soluble product in the cytoplasm, a high probability of correct protein folding with a full range of post-translational modifications (including uniform glycosylation), and the possibility of expressing multi-subunit proteins. In this paper, a LEXSY expression system has been employed for obtaining the receptor binding domain (RBD) of the spike-protein of the SARS-CoV-2 virus and the homopentameric acetylcholine-binding protein (AChBP) from Lymnaea stagnalis. RBD is actively used to obtain antibodies against the virus and in various scientific studies on the molecular mechanisms of the interaction of the virus with host cell targets. AChBP represents an excellent structural model of the ligand-binding extracellular domain of all subtypes of nicotinic acetylcholine receptors (nAChRs). Both products were obtained in a soluble glycosylated form, and their structural and functional characteristics were compared with those previously described.
Collapse
Affiliation(s)
- Lina Son
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Vladimir Kost
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Valery Maiorov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Dmitry Sukhov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Polina Arkhangelskaya
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Igor Ivanov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Denis Kudryavtsev
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Andrei Siniavin
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Yuri Utkin
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Igor Kasheverov
- Department of Molecular Bases of Neuroimmune Signaling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
10
|
Lu X, Xu H, Zhang X, Sun T, Lin Y, Li H, Li X, Zhang L, Duan H, Yang X, Ling Y. Target-Based Design, Synthesis, and Biological Evaluation of Novel 1,2,4-Triazolone Derivatives as Potential nAChR Modulators. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19333-19342. [PMID: 38050804 DOI: 10.1021/acs.jafc.3c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Novel agrochemicals have been successfully developed using target-based drug design (TBDD). To discover a novel, efficient, and highly selective nicotinic insecticide candidate, we developed a unified pharmacological model using TBDD by studying the binding modes of 11 nicotinic acetylcholine receptor (nAChR) modulators with acetylcholine binding protein (AChBP) targets for the first time. This model was used to design and develop a series of 1,2,4-triazolone derivatives. Bioassays demonstrated excellent insecticidal activities against Aphis glycines of compounds 4k (LC50 = 4.95 mg/L) and 4q (LC50 = 3.17 mg/L), and low toxicities to Apis mellifera. Additionally, compound 4q was stably bound to Aplysia californica AChBP, which was consistent with the pharmacological model obtained via molecular docking and molecular dynamics simulations. Therefore, compound 4q could be a potential lead candidate targeting nAChR. The explicit pharmacological model of nAChR modulators with Ac-AChBP in this study may facilitate the future rational design of eco-friendly nicotinic insecticides.
Collapse
Affiliation(s)
- Xingxing Lu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huan Xu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoming Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Tengda Sun
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yufan Lin
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Honghong Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, China
| | - Xuesheng Li
- Guangxi Key Laboratory of Agro-Environment and Agro-Product Safety, Agricultural College, Guangxi University, Nanning, Guangxi Province 530004, China
| | - Li Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xinling Yang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yun Ling
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Meanwell NA. Applications of Bioisosteres in the Design of Biologically Active Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18087-18122. [PMID: 36961953 DOI: 10.1021/acs.jafc.3c00765] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The design of bioisosteres represents a creative and productive approach to improve a molecule, including by enhancing potency, addressing pharmacokinetic challenges, reducing off-target liabilities, and productively modulating physicochemical properties. Bioisosterism is a principle exploited in the design of bioactive compounds of interest to both medicinal and agricultural chemists, and in this review, we provide a synopsis of applications where this kind of molecular editing has proved to be advantageous in molecule optimization. The examples selected for discussion focus on bioisosteres of carboxylic acids, applications of fluorine and fluorinated motifs in compound design, some applications of the sulfoximine functionality, the design of bioisosteres of drug-H2O complexes, and the design of bioisosteres of the phenyl ring.
Collapse
Affiliation(s)
- Nicholas A Meanwell
- The Baruch S. Blumberg Institute, 3805 Old Easton Rd, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
12
|
Wang Y, Zhang X, Kong Y, Yang WL, Xu Z, Cheng J, Shao X, Xu X, Li Z. Design, Synthesis, and Insecticidal Evaluation of Neonicotinoids with Conjugated Diene. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471653 DOI: 10.1021/acs.jafc.3c01802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Neonicotinoid insecticides acting on the insect nicotinic acetylcholine receptors (nAChRs) play an essential role in contemporary pest control. In the present study, a series of novel neonicotinoid analogues with conjugated diene were synthesized. Bioassays indicated that compounds A3 and A12 had LC50 values of 1.26 and 1.24 mg/L against Myzus persicae, respectively, which were comparable to that of imidacloprid (IMI, LC50 = 0.78 mg/L). Density functional theory (DFT) calculations were performed to explain the differences in the insecticidal activities of target compounds. Molecular docking results indicate that compounds A3 and A12 interact favorably with Lymnaea stagnalis AChBP. The hydrolysis experiments confirmed that the stability of compounds A3 and A12 was enhanced in water.
Collapse
Affiliation(s)
- Yiping Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yijin Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
13
|
Liang P, Li J, Chen W, Li J, Yang Q, Zhang J. Application of Natural Bioresources to Sustainable Agriculture: A C-Glycoside Insecticide Based on N-Acetyl-glucosamine for Regulating Insect Molting of Ostrinia furnacalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5496-5506. [PMID: 37013678 DOI: 10.1021/acs.jafc.2c08760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In order to increase the application of natural bioresources in drug discovery and development, a study on N-acetyl-glucosamine (GlcNAc) derivatives of chitin as green pesticides was necessary. In this study, we designed and synthesized a series of novel C-glycoside naphthalimides using GlcNAc as a starting material. Compound 10l showed high inhibitory activity against OfHex1 (IC50 = 1.77 μM), with a nearly 30-fold increase in activity over our previously reported C-glycoside CAUZL-A (IC50 = 47.47 μM). By observing the morphology of the Ostrinia furnacalis, we found that the synthesized compounds significantly inhibited the molting process. In addition, we further explored the morphological changes of the inhibitor-treated O. furnacalis cuticle using scanning electron microscopy. This is the first study to validate the insecticidal mechanism of OfHex1 inhibitors at the microscale level. Several compounds also exhibited excellent larvicidal activity against Plutella xylostella. Moreover, the toxicity measurements and predictions indicated that the C-glycoside naphthalimides have little effect on the natural enemy Trichogramma ostriniae and rats. Together, our results highlight an approach for the design of green pesticides, taking advantage of natural bioresources to control pests in agriculture.
Collapse
Affiliation(s)
- Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Jingmin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jianyang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
14
|
Liu Z, Song R, Zhang D, Wu R, Liu T, Wu Z, Zhang J, Hu D. Synthesis, insecticidal activity, and mode of action of novel imidazopyridine mesoionic derivatives containing an amido group. PEST MANAGEMENT SCIENCE 2022; 78:4983-4993. [PMID: 36054072 DOI: 10.1002/ps.7121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In our previous work, we applied a new synthetic strategy to design and synthesize a series of imidazopyridine mesoionic derivatives with an ester group. The newly synthesized compounds had excellent insecticidal activity against aphids; however, insecticidal activity against planthoppers was less than satisfactory. In the present study, we designed and synthesized a series of novel imidazopyridine mesoionic compounds, containing an amido group, and these compounds were found to have improved insecticidal activity against planthoppers. RESULTS The bioassay results demonstrated that most of the target compounds had moderate-to-good insecticidal activity against Sogatella furcifera, and some exhibited good-to-excellent insecticidal activity against Aphis craccivora. Among them, compound C6 had the highest insecticidal activity against S. furcifera and A. craccivora, with LC50 values of 10.5 and 2.09 μg mL-1 , respectively. Proteomic results suggested that the differentially expressed proteins mainly were enriched in the nervous system-related pathways after compound C6 treatment. Enzymatic assay results showed that compound C6 and triflumezopyrim had a certain inhibitory effect on acetylcholinesterase. Molecular docking and real-time quantitative PCR results indicated that compound C6 not only may act on the nicotinic acetylcholine receptor, but also may interact with the α4 and β1 subunits of this receptor. CONCLUSION The results reported here contribute to the development of new mesoionic insecticides and further our understanding of the mode-of-action of imidazopyridine mesoionic derivatives. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Desheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Rong Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
15
|
Wang X, Shuai J, Kong Y, Li Z, Li W, Cheng J. Mechanism of the distinct toxicity level of imidacloprid and thiacloprid against honey bees: An in silico study based on cytochrome P450 9Q3. J Mol Graph Model 2022; 116:108257. [PMID: 35816906 DOI: 10.1016/j.jmgm.2022.108257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/09/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
The honey bee, Apis mellifera, shows variation in sensitivity to imidacloprid and thiacloprid, which does not reside at the target site but rather in the rapidly oxidative metabolism mediated by P450s (such as a single P450, CYP9Q3). An in silico study was conducted to investigate the various metabolism of imidacloprid and thiacloprid. The binding potency of thiacloprid was stronger and a stable π-π interaction with Phe121 and the N-H⋯N hydrogen bond with Asn214 are found in the CYP9Q3-thiacloprid system but absent in imidacloprid, which might affect the potential metabolic activity. Moreover, the values of highest occupied molecular orbit (HOMO) energy and the vertical ionization potential (IP) of two compounds demonstrated that thiacloprid is more likely to oxidation. The findings revealed the probable binding modes of imidacloprid and thiacloprid with CYP9Q3 and might facilitate future design of the low bee toxicity neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jing Shuai
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yijin Kong
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
16
|
Mezei I, Valverde-Garcia P, Siebert MW, Gomez LE, Torne M, Watson GB, Raquel AM, Fereres A, Sparks TC. Impact of the nicotinic acetylcholine receptor mutation R81T on the response of European Myzus persicae populations to imidacloprid and sulfoxaflor in laboratory and in the field. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 187:105187. [PMID: 36127049 DOI: 10.1016/j.pestbp.2022.105187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Sulfoxaflor (Isoclast™ active) is a sulfoximine insecticide that is active on a broad range of sap-feeding insects, including species that exhibit reduced susceptibility to currently available insecticides. Colonies of Myzus persicae (green peach aphid) were established from aphids collected in the field from peach (Prunus persica) and nectarine (Prunus persica var. nucipersica) orchards in France, Italy and Spain. The presence of the nicotinic acetylcholine receptor (nAChR) point mutation R81T was determined for all the colonies. Eight of the 35 colonies collected were susceptible relative to R81T (i.e., R81T absent), three of the colonies were found to be homozygous for R81T while 24 colonies had R81T present in some proportion (heterozygous). Sulfoxaflor and imidacloprid were tested in the laboratory against these M. persicae field colonies, which exhibited a wide range of susceptibilities (sulfoxaflor RR = 0.6 to 61, imidacloprid RR = 0.7 to 986) (resistance ratios, RR) to both insecticides. Although sulfoxaflor was consistently more active than imidacloprid against these field collected M. persicae, there was a statistically significant correlation across all colonies between the RRs for imidacloprid and sulfoxaflor (Pearson's r = 0.939, p < 0.0001). However, when a larger group of the colonies from Spain possessing R81T were analyzed, there was no correlation observed for the RRs between imidacloprid and sulfoxaflor (r = 0.2901, p = 0.3604). Thus, consistent with prior studies, the presence of R81T by itself is not well correlated with altered susceptibility to sulfoxaflor. In field trials, sulfoxaflor (24 and 36 gai/ha) was highly effective (~avg. 88-96% control) against M. persicae, demonstrating similar levels of efficacy as flonicamid (60-70 gai/ha) and spirotetramat (100-180 gai/ha) at 13-15 days after application, in contrast to imidacloprid (110-190 gai/ha) and acetamiprid (50-75 gai/ha) with lower levels of efficacy (~avg. 62-67% control). Consequently, sulfoxaflor is an effective tool for use in insect pest management programs for M. persicae. However, it is recommended that sulfoxaflor be used in the context of an insecticide resistance management program as advocated by the Insecticide Resistance Action Committee involving rotation with insecticides possessing other modes of action (i.e., avoiding rotation with other Group 4 insecticides) to minimize the chances for resistance development and to extend its future utility.
Collapse
Affiliation(s)
- Imre Mezei
- Corteva Agriscience, Neumann János u.1, 2040 Budaőrs, Hungary.
| | - Pablo Valverde-Garcia
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Melissa W Siebert
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Luis E Gomez
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Maria Torne
- Corteva Agriscience, Joaquín Turina 2, Oficina 6, 28224 Pozuelo de Alarcón, Spain
| | - Gerald B Watson
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| | - Abad M Raquel
- Corteva Agriscience, Joaquín Turina 2, Oficina 6, 28224 Pozuelo de Alarcón, Spain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Cient.ficas, ICA-CSIC, Calle Serrano 115 dpdo, 28006 Madrid, Spain
| | - Thomas C Sparks
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, IN 46268, United States of America
| |
Collapse
|
17
|
Cao X, Yang H, Liu C, Zhang R, Maienfisch P, Xu X. Bioisosterism and Scaffold Hopping in Modern Nematicide Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11042-11055. [PMID: 35549340 DOI: 10.1021/acs.jafc.2c00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The application of agrochemicals is critical to global food safety. Nowadays, environmentally friendly green agrochemicals are the trend in field crop protection. The research and development of nematicides absorbed more attention as a typical representation of agrochemicals. This review describes the origin of recently commercialized nematicides, the application of bioisosterism and scaffold hopping in the discovery and optimization of agrochemicals, especially nematicides, and novel bioisosteric design strategies for the identification of fluensulfone analogues. Pesticide repurposing, high-throughput screening, computer-aided drug design, and incorporation of known pharmacophoric fragments have been the most successful approach for the discovery of new nematicides. As outlined, the strategies of bioisosteric replacements and scaffold hopping have been very successful approaches in the search for new nematicides for sustainable crop protection. In the exploration of novel fluensulfone analogues with nematicidal activity, bioisosteric replacement of sulfone by amide, chain extension by insertion of a methylene group, and reversal of the amide group have proven to be successful approaches and yielded new and highly active fluensulfone analogues. These attempts might result in compounds with an optimal balance of steric, hydrophobic, electronic, and hydrogen-bonding properties and contribute to deal with the complex problem during the research and development of new nematicides. Further ideas are also put forward to provide new approaches for the molecular design of nematicides.
Collapse
Affiliation(s)
- Xiaofeng Cao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Haiping Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Cheng Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- CreInSol Consulting & Biocontrols, CH-4118 Rodersdorf, Switzerland
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|