1
|
Bulbul AS, Kuriakose A, Komal, Reena, Acharyya JN, Prakash GV, Sankar M. Synthesis, Structural, Electrochemical, and DFT Studies of Highly Substituted Nonplanar Ni(II) Porphyrins and Their Intensity-Dependent Third-Order Nonlinear Optical Properties. Inorg Chem 2024; 63:17967-17982. [PMID: 39292616 DOI: 10.1021/acs.inorgchem.4c02460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We designed and successfully synthesized highly substituted electron-deficient nonplanar Ni(II) porphyrins and their derivatives (1-7) in moderate to good yields. These derivatives were comprehensively characterized by various spectroscopic techniques and single-crystal X-ray diffraction (SCXRD) analysis. SCXRD analysis confirmed the structures of compounds 2, 4, and 7, adopting saddle-shape geometry. These nonplanar porphyrins demonstrated significant bathochromic shifts in their absorption spectra compared to parent NiTPP, attributed to the influence of bulky β-substituents and/or peripheral fusion. π-Extended porphyrins 6 and 7 displayed panchromatic absorption spectra extending into the NIR region. Porphyrins 6 and 7 demonstrated a profound anodic shift (∼400 mV) in their first reduction peak potentials compared to precursor NiTPP(NO2)Br6. The experimental absorption spectral pattern matches the simulated absorption spectra obtained from TD-DFT studies. The femtosecond laser intensity-dependent third-order nonlinear optical studies revealed that NiDFP(VCN)2Br6 (6) and NiDFP(VCN)2(PE)6 (7) displayed giant optical nonlinearities compared to the other porphyrins. Among all, NiDFP(VCN)2Br6 (6) possessed the highest two-photon absorption coefficient (β) and cross-section (σTPA) values in the range of 22-33 × 10-10 m/W and 3.77-6.95 × 106 GM, respectively. These findings suggest that the investigated nonplanar π-extended porphyrins are promising candidates for future optoelectronic applications.
Collapse
Affiliation(s)
- Amir Sohel Bulbul
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Albin Kuriakose
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Komal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Reena
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Jitendra Nath Acharyya
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - G Vijaya Prakash
- Nanophotonics Lab, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
2
|
Body N, Lefebvre C, Eeckhout S, Léonard AS, Troian-Gautier L, Hermans S, Riant O. Structure-Activity Relationship of Benzophenazine Derivatives for Homogeneous and Heterogenized Photooxygenation Catalysis. Chemistry 2024; 30:e202400242. [PMID: 38805006 DOI: 10.1002/chem.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Singlet oxygen is a powerful oxidant used in various applications, such as organic synthesis, medicine, and environmental remediation. Organic and inorganic photosensitizers are commonly used to generate this reactive species through energy transfer with the triplet ground state of oxygen. We describe here a series of novel benzophenazine derivatives as a promising class of photosensitizers for singlet oxygen photosensitization. In this study, we investigated the structure-activity relationship of these benzophenazine derivatives. Akin to a molecular compass, the southern fragment was first functionalized with either aromatic tertiary amines, alkyl tertiary amines, aromatic sulfur groups, alkyl sulfur groups, or cyclic ethers. Enhanced photophysical properties (in terms of triplet excited-state lifetime, absorption wavelength, triplet state energy, and O2 quenching capabilities) were obtained with cyclic ether and sulfur groups. Conversely, the presence of an amine moiety was detrimental to the photocatalysts. The western and northern fragments were also investigated and slightly undesirable to negligible changes in photophysical properties were observed. The most promising candidate was then immobilized on silica nanoparticles and its photoactivity was evaluated in the citronellol photooxidation reaction. A high NMR yield of 97 % in desired product was obtained, with only a slight decrease over several recycling runs (85 % in the fourth run). These results provide insights into the design of efficient photosensitizers for singlet oxygen generation and the development of heterogeneous systems.
Collapse
Affiliation(s)
- Nathalie Body
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Corentin Lefebvre
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Sarah Eeckhout
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Anne-Sophie Léonard
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| | - Sophie Hermans
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| | - Olivier Riant
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Shirke AA, Walker E, Chavali S, Ramamurthy G, Zhang L, Panigrahi A, Basilion JP, Wang X. A Synergistic Strategy Combining Chemotherapy and Photodynamic Therapy to Eradicate Prostate Cancer. Int J Mol Sci 2024; 25:7086. [PMID: 39000194 PMCID: PMC11241360 DOI: 10.3390/ijms25137086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Prostate cancer is the most prevalent cancer among men in the United States and is a leading cause of cancer-related death. Prostate specific membrane antigen (PSMA) has been established as a biomarker for prostate cancer diagnosis and treatment. This study aimed to develop a novel theranostic agent, PSMA-1-MMAE-Pc413, which integrates a PSMA-targeting ligand, the photosensitizer Pc413, and the microtubular inhibitor monomethyl auristatin E (MMAE) for synergistic therapeutic efficacy. In vitro uptake studies revealed that PSMA-1-MMAE-Pc413 demonstrated selective and specific uptake in PSMA-positive PC3pip cells but not in PSMA-negative PC3flu cells, with the uptake in PC3pip cells being approximately three times higher. In vitro cytotoxicity assays showed that, when exposed to light, PSMA-1-MMAE-Pc413 had a synergistic effect, leading to significantly greater cytotoxicity in PSMA-positive cells (IC50 = 2.2 nM) compared to PSMA-1-Pc413 with light irradiation (IC50 = 164.9 nM) or PSMA-1-MMAE-Pc413 without light irradiation (IC50 = 12.6 nM). In vivo imaging studies further demonstrated the selective uptake of PSMA-1-MMAE-Pc413 in PC3pip tumors. In in vivo studies, PSMA-1-MMAE-Pc413 dramatically improves the therapeutic outcome for prostate cancer by providing a synergistic effect that surpasses the efficacy of each treatment modality alone in PC3pip tumors. These findings suggest that PSMA-1-MMAE-Pc413 has strong potential for clinical application in improving prostate cancer treatment.
Collapse
Affiliation(s)
- Aditi A. Shirke
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| | - Sriprada Chavali
- Department of Biochemistry, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA;
| | - Gopalakrishnan Ramamurthy
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Abhiram Panigrahi
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - James P. Basilion
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
- Department of Radiology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (G.R.); (L.Z.); (A.P.)
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, USA; (A.A.S.); (E.W.)
| |
Collapse
|
4
|
Cen JH, Xie QH, Guo GH, Xu SY, Liu ZY, Liao YH, Zhong XP, Liu HY. Construction of 5-Fluorouracil and Gallium Corrole Conjugates for Enhanced Photodynamic Therapy. J Med Chem 2024; 67:9054-9068. [PMID: 38781403 DOI: 10.1021/acs.jmedchem.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Molecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates (1-Ga-4-Ga) were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated. The most active complex (2-Ga) possesses a low IC50 value of 0.185 μM and a phototoxic index of 541 against HepG2 cells. Additionally, the 5FU-gallium corrole conjugate (2-Ga) exhibited a synergistic increase in cytotoxicity under irradiation. Excitedly, treatment of HepG2 tumor-bearing mice with 2-Ga under irradiation could completely ablate tumors without harming normal tissues. 2-Ga-mediated PDT could disrupt mitochondrial function, cause cell cycle arrest in the sub-G1 phase, and activate the cell apoptosis pathway by upregulating the cleaved PARP expression and the Bax/Bcl-2 ratios. This work provides a useful strategy for the design of new corrole-based chemo-photodynamic therapy drugs.
Collapse
Affiliation(s)
- Jing-He Cen
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Qi-Hu Xie
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Geng-Hong Guo
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shi-Yin Xu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ze-Yu Liu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Xiao-Ping Zhong
- Department of Plastic Surgery and Burns, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, The Key Laboratory of Fuel Cell Technology of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
5
|
Shi H, Carter OWL, Ponte F, Imberti C, Gomez-Gonzalez MA, Cacho-Nerin F, Quinn PD, Parker JE, Sicilia E, Huang H, Sadler PJ. A Photodynamic and Photochemotherapeutic Platinum-Iridium Charge-Transfer Conjugate for Anticancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202400476. [PMID: 38656762 DOI: 10.1002/anie.202400476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Indexed: 04/26/2024]
Abstract
The novel hetero-dinuclear complex trans,trans,trans-[PtIV(py)2(N3)2(OH)(μ-OOCCH2CH2CONHCH2-bpyMe)IrIII(ppy)2]Cl (Pt-Ir), exhibits charge transfer between the acceptor photochemotherapeutic Pt(IV) (Pt-OH) and donor photodynamic Ir(III) (Ir-NH2) fragments. It is stable in the dark, but undergoes photodecomposition more rapidly than the Pt(IV) parent complex (Pt-OH) to generate Pt(II) species, an azidyl radical and 1O2. The Ir(III)* excited state, formed after irradiation, can oxidise NADH to NAD⋅ radicals and NAD+. Pt-Ir is highly photocytotoxic towards cancer cells with a high photocytotoxicity index upon irradiation with blue light (465 nm, 4.8 mW/cm2), even with short light-exposure times (10-60 min). In contrast, the mononuclear Pt-OH and Ir-NH2 subunits and their simple mixture are much less potent. Cellular Pt accumulation was higher for Pt-Ir compared to Pt-OH. Irradiation of Pt-Ir in cancer cells damages nuclei and releases chromosomes. Synchrotron-XRF revealed ca. 4× higher levels of intracellular platinum compared to iridium in Pt-Ir treated cells under dark conditions. Luminescent Pt-Ir distributes over the whole cell and generates ROS and 1O2 within 1 h of irradiation. Iridium localises strongly in small compartments, suggestive of complex cleavage and excretion via recycling vesicles (e.g. lysosomes). The combination of PDT and PACT motifs in one molecule, provides Pt-Ir with a novel strategy for multimodal phototherapy.
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Oliver W L Carter
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | - Fortuna Ponte
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036, Arcavacata Rende, Cs, Italy
| | - Cinzia Imberti
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| | | | - Fernando Cacho-Nerin
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Paul D Quinn
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Julia E Parker
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, U.K
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, via Pietro Bucci, 87036, Arcavacata Rende, Cs, Italy
| | - Huaiyi Huang
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K
| |
Collapse
|
6
|
Nagarajan T, Gayathri MP, Mack J, Nyokong T, Govindarajan S, Babu B. Blue-Light-Activated Water-Soluble Sn(IV)-Porphyrins for Antibacterial Photodynamic Therapy (aPDT) against Drug-Resistant Bacterial Pathogens. Mol Pharm 2024; 21:2365-2374. [PMID: 38620059 DOI: 10.1021/acs.molpharmaceut.3c01162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Antimicrobial resistance has emerged as a global threat to the treatment of infectious diseases. Antibacterial photodynamic therapy (aPDT) is a promising alternative approach and is highly suitable for the treatment of cutaneous bacterial infections through topical applications. aPDT relies on light-responsive compounds called photosensitizer (PS) dyes, which generate reactive oxygen species (ROS) when induced by light, thereby killing bacterial cells. Despite several previous studies in this area, the molecular details of targeting and cell death mediated by PS dyes are poorly understood. In this study, we further investigate the antibacterial properties of two water-soluble Sn(IV) tetrapyridylporphyrins that were quaternized with methyl and hexyl groups (1 and 2). In this follow-up study, we demonstrate that Sn(IV)-porphyrins can be photoexcited by blue light (a 427 nm LED) and exhibit various levels of bactericidal activity against both Gram-(+) and Gram-(-) strains of bacteria. Using localization studies through fluorescence microscopy, we show that 2 targets the bacterial membrane more effectively than 1 and exhibits comparatively higher aPDT activity. Using multiple fluorescence reporters, we demonstrate that photoactivation of 1 and 2 results in extensive collateral damage to the bacterial cells including DNA cleavage, membrane damage, and delocalization of central systems necessary for bacterial growth and division. In summary, this investigation provides deep insights into the mechanism of bacterial killing mediated by the Sn(IV)-porphyrins. Moreover, our approach offers a new method for evaluating the activity of PS, which may inspire the discovery of new PS with enhanced aPDT activity.
Collapse
Affiliation(s)
- T Nagarajan
- Department of Biological Sciences, SRM University-AP, Amaravati 522502, India
| | - M P Gayathri
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| | - John Mack
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda 6140, South Africa
| | | | - Balaji Babu
- Department of Chemistry, SRM University-AP, Amaravati 522502, India
| |
Collapse
|
7
|
Zhao H, Wang Y, Chen Q, Liu Y, Gao Y, Müllen K, Li S, Narita A. A Nanographene-Porphyrin Hybrid for Near-Infrared-Ii Phototheranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309131. [PMID: 38430537 PMCID: PMC11095198 DOI: 10.1002/advs.202309131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/20/2024] [Indexed: 03/04/2024]
Abstract
Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.
Collapse
Affiliation(s)
- Hao Zhao
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
| | - Yu Wang
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryOxfordOX1 3TAUK
- Present address:
Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhou215123P.R. China
| | - Ying Liu
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Yijian Gao
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shengliang Li
- College of Pharmaceutical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate University1919‐1 Tancha, Onna‐son, Kunigami‐gunOkinawa904‐0495Japan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
8
|
Otvagin VF, Krylova LV, Peskova NN, Kuzmina NS, Fedotova EA, Nyuchev AV, Romanenko YV, Koifman OI, Vatsadze SZ, Schmalz HG, Balalaeva IV, Fedorov AY. A first-in-class β-glucuronidase responsive conjugate for selective dual targeted and photodynamic therapy of bladder cancer. Eur J Med Chem 2024; 269:116283. [PMID: 38461680 DOI: 10.1016/j.ejmech.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/12/2024]
Abstract
In this report, we present a novel prodrug strategy that can significantly improve the efficiency and selectivity of combined therapy for bladder cancer. Our approach involved the synthesis of a conjugate based on a chlorin-e6 photosensitizer and a derivative of the tyrosine kinase inhibitor cabozantinib, linked by a β-glucuronidase-responsive linker. Upon activation by β-glucuronidase, which is overproduced in various tumors and localized in lysosomes, this conjugate released both therapeutic modules within targeted cells. This activation was accompanied by the recovery of its fluorescence and the generation of reactive oxygen species. Investigation of photodynamic and dark toxicity in vitro revealed that the novel conjugate had an excellent safety profile and was able to inhibit tumor cells proliferation at submicromolar concentrations. Additionally, combined therapy effects were also observed in 3D models of tumor growth, demonstrating synergistic suppression through the activation of both photodynamic and targeted therapy.
Collapse
Affiliation(s)
- Vasilii F Otvagin
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Lubov V Krylova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Nina N Peskova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Natalia S Kuzmina
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Ekaterina A Fedotova
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Alexander V Nyuchev
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation
| | - Yuliya V Romanenko
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Oscar I Koifman
- Research Institute of Macroheterocycles, Ivanovo State University of Chemical Technology, 153000, Ivanovo, Russian Federation
| | - Sergey Z Vatsadze
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., Moscow, 119991, Russian Federation
| | - Hans-Günther Schmalz
- Department of Chemistry, University of Cologne, Greinstrasse 4, 50939, Cologne, Germany
| | - Irina V Balalaeva
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| | - Alexey Yu Fedorov
- Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, Nizhny Novgorod, 603950, Russian Federation.
| |
Collapse
|
9
|
Kuzmina NS, Fedotova EA, Jankovic P, Gribova GP, Nyuchev AV, Fedorov AY, Otvagin VF. Enhancing Precision in Photodynamic Therapy: Innovations in Light-Driven and Bioorthogonal Activation. Pharmaceutics 2024; 16:479. [PMID: 38675140 PMCID: PMC11053670 DOI: 10.3390/pharmaceutics16040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Over the past few decades, photodynamic therapy (PDT) has evolved as a minimally invasive treatment modality offering precise control over cancer and various other diseases. To address inherent challenges associated with PDT, researchers have been exploring two promising avenues: the development of intelligent photosensitizers activated through light-induced energy transfers, charges, or electron transfers, and the disruption of photosensitive bonds. Moreover, there is a growing emphasis on the bioorthogonal delivery or activation of photosensitizers within tumors, enabling targeted deployment and activation of these intelligent photosensitive systems in specific tissues, thus achieving highly precise PDT. This concise review highlights advancements made over the last decade in the realm of light-activated or bioorthogonal photosensitizers, comparing their efficacy and shaping future directions in the advancement of photodynamic therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexey Yu. Fedorov
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| | - Vasilii F. Otvagin
- Department of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, Gagarina Av. 23, 603950 Nizhny Novgorod, Russia; (N.S.K.); (E.A.F.); (P.J.); (G.P.G.); (A.V.N.)
| |
Collapse
|
10
|
Xu T, Mi L, Namulinda T, Yan YJ, Meerovich GA, Reshetov IV, Kogan EA, Chen ZL. Quaternary ammonium cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins as photosensitizers for photodynamic therapy. Eur J Med Chem 2024; 267:116228. [PMID: 38354521 DOI: 10.1016/j.ejmech.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In quest for new photosensitizers (PSs) with remarkable antitumor photodynamic efficacy, a series of fifteen quaternary ammonium (QA) cations conjugated 5,15-diaryltetranaphtho[2,3]porphyrins (Ar2TNPs) was synthesized and evaluated in vitro and in vivo to understand how variations in the length of the alkoxy group and the kind of QA cations on meso-phenyl influence the photodynamic antitumor activity. All final compounds (I1-5, II1-5, and III1-5) exhibited robust absorption at 729 nm with significant bathochromic shift and high molar extinction coefficients (1.16 × 105-1.41 × 105 M-1 cm-1), as well as other absorptions at 445, 475, 651, and 714 nm for tumors and other diseases of diverse sizes and depths. Upon exposure to 474 nm light, they displayed intense fluorescence emission with fluorescence quantum yields ranging from 0.32 to 0.43. The ability to generate reactive oxygen species (ROS) was also quantified, attaining a maximum rate of up to 0.0961 s-1. The IC50 values of all the compounds regarding phototoxicity and dark toxicity were determined using KYSE-150 cells, and the phototoxicity indices were calculated. Among these compounds, III1 demonstrated the highest phototoxic index with minimal dark toxicity, and suppressed successfully the growth of esophageal carcinoma xenograft with favorable tolerance in vivo. Furthermore, the histological results showed III1-mediated PDT had a significant cytotoxic effect on the tumor. These outcomes underscore the potential of III1 as a highly effective antitumor photosensitizer drug in photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai, 201620, China.
| | - Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia
| | | | - Evgeniy Altarovna Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119992, Russia
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai, 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
11
|
Belykh DV, Pylina YI, Kustov AV, Startseva OM, Belykh ES, Smirnova NL, Shukhto OV, Berezin DB. Photosensitizing effects and physicochemical properties of chlorophyll a derivatives with hydrophilic oligoethylene glycol fragments at the macrocycle periphery. Photochem Photobiol Sci 2024; 23:409-420. [PMID: 38319518 DOI: 10.1007/s43630-023-00527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
In this work, screening studies of the cytotoxic effect of chlorins with fragments of di-, tri-, and pentaethylene glycol at the macrocycle periphery in relation to HeLa, A549, and HT29 cells were performed. It is shown that, despite different hydrophobicity, all the compounds studied have a comparable photodynamic effect. The conjugate of chlorin e6 with pentaethylene glycol, which has the lowest tendency to association among the studied compounds with tropism for low density lipoproteins and the best characteristics of the formation of molecular complexes with Tween 80, has a significant difference in dark and photoinduced toxicity (ratio IC50(dark)/IC50(photo) approximately 2 orders of magnitude for all cell lines), which allows to hope for a sufficiently large "therapeutic window". A study of the interaction of this compound with HeLa cells shows that the substance penetrates the cell and, after red light irradiation induces ROS appearance inside the cell, associated, apparently, with the photogeneration of singlet oxygen. These data indicate that photoinduced toxic effects are caused by damage to intracellular structures as a result of oxidative stress. Programmed type of cell death characterized with caspase-3 induction is prevailing. So, the conjugate of chlorin e6 with pentaethylene glycol is a promising antitumor PS that can be successfully solubilized with Tween 80, which makes it suitable for further in vivo studies.
Collapse
Affiliation(s)
- D V Belykh
- Institute of Chemistry, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, 48, Pervomaiskaya St., Syktyvkar, 167982, Russia.
| | - Y I Pylina
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russian Federation
| | - A V Kustov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 1, Akademicheskaya St., 153045, Ivanovo, Russian Federation
| | - O M Startseva
- Pitirim Sorokin Syktyvkar State University, 55, Oktyabrskiy Pr., Syktyvkar, 167001, Russian Federation
| | - E S Belykh
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences, 28, Kommunisticheskaya St., Syktyvkar, 167982, Russian Federation
| | - N L Smirnova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences (ISC RAS), 1, Akademicheskaya St., 153045, Ivanovo, Russian Federation
| | - O V Shukhto
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevskiy Ave., 153012, Ivanovo, Russian Federation
| | - D B Berezin
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevskiy Ave., 153012, Ivanovo, Russian Federation
| |
Collapse
|
12
|
Xu T, Mi L, Namulinda T, Chen D, Yan YJ, Chen ZL. Design, synthesis, and evaluation of 5,15-diaryltetranaphtho [2,3]porphyrins as photosensitizers in real-time photodynamic therapy and photodiagnosis. Eur J Med Chem 2024; 264:115980. [PMID: 38039789 DOI: 10.1016/j.ejmech.2023.115980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/04/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
In the pursuit of new potent photosensitizers (PSs) for photodynamic therapy (PDT) with better efficacy, a series of 5,15-diaryltetranaphtho [2,3]porphyrins (Ar2TNPs) with two or four carboxyalkoxy groups were designed, synthesized, and evaluated. These new compounds exhibited strong, broad and red-shifted UV-vis absorptions at 729 nm and other strong absorptions at 446, 475, 650, 659, 714 nm for tumors and other diseases of varying sizes and depths. They possess high molar extinction coefficients (0.95 × 105-1.48 × 105 M-1 cm-1), good singlet oxygen quantum yields and photodynamic antitumor effects towards Eca-109 cells in vitro. It is suggested that the extension of porphyrin with naphthalene into Ar2TNP results into remarkable improvement of photophysical characteristics, while the introduction of carboxyalkoxy groups on meso-phenyl can significantly improve the solubility and photodynamic effects in vitro and in vivo. Notably, compound II3 can localize primarily in lysosomes of Eca-109 cells and induce substantial cell apoptosis after PDT. It can also selectively accumulate in tumor tissues and be traced real-timely through in vivo fluorescence imaging with distinctive inhibition of tumor growth. Therefore, compound II3 deserves to be considered as a promising PDT drug candidate for individualized tumor real-time tracing and treatment.
Collapse
Affiliation(s)
- Tao Xu
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Le Mi
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Danye Chen
- Department of Chemistry, Imperial College of London, London, SW7 2AZ, UK
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China; Shanghai Xianhui Pharmaceutical Co., Ltd., Shanghai 201620, China.
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology and Medical Engineering, Donghua University, Shanghai 201620, China; Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
13
|
Huang F, Li Y, Zhang XJ, Lin MY, Han GY, Lin HY, Lin HY, Miao Z, Li BH, Sheng CQ, Yao JZ. Novel chlorin e 6-based conjugates of tyrosine kinase inhibitors: Synthesis and photobiological evaluation as potent photosensitizers for photodynamic therapy. Eur J Med Chem 2023; 261:115787. [PMID: 37690263 DOI: 10.1016/j.ejmech.2023.115787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Since tyrosine kinase inhibitor (TKI) could reverse ABCG2-mediated drug-resistance, novel chlorin e6-based conjugates of Dasatinib and Imatinib as photosensitizer (PS) were designed and synthesized. The results demonstrated that conjugate 10b showed strongest phototoxicity against HepG2 and B16-F10 cells, which was more phototoxic than chlorin e6 and Talaporfin. It could reduce efflux of intracellular PS by inhibiting ABCG2 in HepG2 cells, and localize in mitochondria, lysosomes, golgi and ER, resulting in higher cell apoptosis rate and ROS production than Talaporfin. Moreover, it could induce cell autophagy and block cell cycle in S phase, and significantly inhibit tumor growth and prolong survival time on BALB/c nude mice bearing HepG2 xenograft tumor to a greater extent than chlorin e6. Consequently, compound 10b could be applied as a promising candidate PS due to its good water-solubility and stability, low drug-resistance, high quantum yield of 1O2 and excellent antitumor efficacy in vitro and in vivo.
Collapse
Affiliation(s)
- Fei Huang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yu Li
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Xing-Jie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Mei-Yu Lin
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Gui-Yan Han
- Qingdao Special Servicemen Recuperation Center of PLA Navy, Qingdao, 266000, China
| | - Hui-Ying Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Hui-Yun Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350007, China
| | - Zhenyuan Miao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Bu-Hong Li
- School of Science, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| | - Chun-Quan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| | - Jian-Zhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Bunin DA, Martynov AG, Gvozdev DA, Gorbunova YG. Phthalocyanine aggregates in the photodynamic therapy: dogmas, controversies, and future prospects. Biophys Rev 2023; 15:983-998. [PMID: 37975002 PMCID: PMC10643719 DOI: 10.1007/s12551-023-01129-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
Photodynamic therapy (PDT), a rapidly developing method for the treatment of cancer and bacterial diseases, is based on the photosensitization of oxygen to generate reactive oxygen species (ROS) that destroy specific biological targets. Among the various photosensitizers, phthalocyanines (Pc) have attracted particular attention due to their excellent photophysical properties, most of which meet the therapeutic requirements. The statement that aggregation of Pc-based photosensitizers is undesirable because it suppresses ROS generation has become commonplace in PDT. In this review, we have collected and discussed a number of works whose results refute this well-established axiom and show that aggregated forms of phthalocyanines can still exhibit photodynamic activity, in some cases in synergy with the photothermal and optoacoustic effects. In addition, ROS generation can be induced by aggregates under the conditions of sonodynamic therapy.
Collapse
Affiliation(s)
- Dmitry A. Bunin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Martynov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Daniil A. Gvozdev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Yulia G. Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
16
|
Lima E, Reis LV. Photodynamic Therapy: From the Basics to the Current Progress of N-Heterocyclic-Bearing Dyes as Effective Photosensitizers. Molecules 2023; 28:5092. [PMID: 37446758 DOI: 10.3390/molecules28135092] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.
Collapse
Affiliation(s)
- Eurico Lima
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6201-506 Covilhã, Portugal
| | - Lucinda V Reis
- CQ-VR-Chemistry Centre of Vila Real, University of Trás-os-Montes and Alto Douro, Quinta de Prados, 5001-801 Vila Real, Portugal
| |
Collapse
|
17
|
Yang F, Xu M, Chen X, Luo Y. Spotlight on porphyrins: Classifications, mechanisms and medical applications. Biomed Pharmacother 2023; 164:114933. [PMID: 37236030 DOI: 10.1016/j.biopha.2023.114933] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT) are non-invasive treatment methods with obvious inhibitory effect on tumors and have few side effects, which have been widely concerned and explored by researchers. Sensitizer is the main factor in determining the therapeutic effect of PDT and SDT. Porphyrins, a group of organic compounds widespread in nature, can be activated by light or ultrasound and produce reactive oxygen species. Therefore, porphyrins as sensitizers in PDT have been widely explored and investigated for many years. Herein, we summarize the classical porphyrin compounds and their applications and mechanisms in PDT and SDT. The application of porphyrin in clinical diagnosis and imaging is also discussed. In conclusion, porphyrins have good application prospects in disease treatment as an important part of PDT or SDT, and in clinical diagnosis and imaging.
Collapse
Affiliation(s)
- Fuyu Yang
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Meiqi Xu
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China
| | - Xiaoyu Chen
- Department of Neonatal, The Fourth Hospital of Harbin Medical University, Harbin
| | - Yakun Luo
- National Health Commission Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
18
|
Pogorilyy V, Ostroverkhov P, Efimova V, Plotnikova E, Bezborodova O, Diachkova E, Vasil'ev Y, Pankratov A, Grin M. Thiocarbonyl Derivatives of Natural Chlorins: Synthesis Using Lawesson's Reagent and a Study of Their Properties. Molecules 2023; 28:molecules28104215. [PMID: 37241955 DOI: 10.3390/molecules28104215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The development of sulfur-containing pharmaceutical compounds is important in the advancement of medicinal chemistry. Photosensitizers (PS) that acquire new properties upon incorporation of sulfur-containing groups or individual sulfur atoms into their structure are not neglected, either. In this work, a synthesis of sulfur-containing derivatives of natural chlorophyll a using Lawesson's reagent was optimized. Thiocarbonyl chlorins were shown to have a significant bathochromic shift in the absorption and fluorescence bands. The feasibility of functionalizing the thiocarbonyl group at the macrocycle periphery by formation of a Pt(II) metal complex in the chemotherapeutic agent cisplatin was shown. The chemical stability of the resulting conjugate in aqueous solution was studied, and it was found to possess a high cytotoxic activity against sarcoma S37 tumor cells that results from the combined photodynamic and chemotherapeutic effect on these cells.
Collapse
Affiliation(s)
- Viktor Pogorilyy
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Petr Ostroverkhov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Valeria Efimova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| | - Ekaterina Plotnikova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Olga Bezborodova
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery, Borovsky Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia
| | - Yuriy Vasil'ev
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), str Trubetskaya 8\2, 119435 Moscow, Russia
| | - Andrei Pankratov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
- P. Hertsen Moscow Oncology Research Institute-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr., 3, 125284 Moscow, Russia
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia
| |
Collapse
|
19
|
Hao C, Li X, Wang Z, Liu L, He F, Pan Z. Optically activated MEK1/2 inhibitors (Opti-MEKi) as potential antimelanoma agents. Eur J Med Chem 2023; 251:115236. [PMID: 36924668 DOI: 10.1016/j.ejmech.2023.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
Mitogen-activated protein kinase kinases 1/2 (MEK1/2) play critical roles in the canonical RAS/RAF/MEK/ERK pathway. Highly selective and potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed, and three of them were clinically approved for the treatment of BRAFV600 -mutant melanoma. However, the accompanying side effects of the systemically administered MEK1/2 drugs largely constrain their tolerable doses and efficacy. In this study, a series of mirdametinib-based optically activatable MEK1/2 inhibitors (opti-MEKi) were designed and synthesized. A structural-based design led to the discovery of photocaged compounds with dramatically diminished efficacy in vitro, whose activities can be spatiotemporally induced by short durations of irradiation of ultraviolet (365 nm) light. We demonstrated the robust photoactivation of MEK1/2 inhibition and antimelanoma activity in cultured human cells, as well as in a xenograft zebrafish model. Taken together, the modular approach presented herein provides a method for the optical control of MEK1/2 inhibitor activity, and these data support the further development of optically activatable agents for light-mediated antimelanoma phototherapy.
Collapse
Affiliation(s)
- Chenzhou Hao
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiaofeng Li
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhunchao Wang
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Lihong Liu
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Fengli He
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
20
|
Pandurang TP, Kumar B, Verma N, Dastidar DG, Yamada R, Nishihara T, Tanabe K, Kumar D. Synthesis of Red-Light-Responsive Pheophorbide-a Tryptamine Conjugated Photosensitizers for Photodynamic Therapy. ChemMedChem 2023; 18:e202200405. [PMID: 36317820 DOI: 10.1002/cmdc.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/21/2022] [Indexed: 11/07/2022]
Abstract
Six methyl pheophorbide-a derivatives were prepared by linking a tryptamine side chain at the C-131 , C-152 and C-173 positions of pheophorbide-a. Prepared conjugates were characterized and evaluated for their photocytotoxicity against A549 cells. The conjugate 6 a with strong absorption at 413 nm (Soret band), 663-671 nm (Q bands) and comparable fluorescence quantum yield (0.26) was found to exhibit significant cytotoxicity (659 nM). Molecular integration of pheophorbide-a and tryptamines showed synergistic effects as the most potent conjugate 6 a was identified with enhanced photocytotoxicity when compared to methyl pheophorbide-a. The conjugate 6 a was smoothly taken up by A549 cells and exhibited intracellular localization predominantly to lysosome in the cytoplasm. Upon photoirradiation 6 a generated singlet oxygen to show potent cytotoxicity toward A549 cells.
Collapse
Affiliation(s)
- Taur Prakash Pandurang
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Bintu Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Narshimha Verma
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, West Bengal, India
| | - Risa Yamada
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Tatsuya Nishihara
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Kazuhito Tanabe
- College of Science and Engineering, Aoyama Gakuin University, Sagamihara, 252-5258, Japan
| | - Dalip Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| |
Collapse
|
21
|
Photodynamic Antitumor Activity of Halogenated Gallium(III) and Phosphorus(V) Corroles. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
22
|
Xie Y, Wang M, Sun Q, Wang D, Li C. Recent Advances in Tetrakis (4‐Carboxyphenyl) Porphyrin‐Based Nanocomposites for Tumor Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yulin Xie
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Man Wang
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Qianqian Sun
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials College of Chemistry and Life Sciences Zhejiang Normal University Jinhua 321004 P.R. China
| | - Chunxia Li
- Institute of Molecular Sciences and Engineering Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P.R. China
| |
Collapse
|
23
|
Yang W, Yang G, Li MY, Liu ZY, Liao YH, Liu HY. Photodynamic antitumor activity of Gallium(III) and Phosphorus(V) complexes of trimethoxyl A 2B triaryl corrole. Bioorg Chem 2022; 129:106177. [PMID: 36183563 DOI: 10.1016/j.bioorg.2022.106177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/02/2022]
Abstract
Two new trimethoxyl A2B triaryl corroles 10-(2,4,6-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)- corrole (1) and 10-(3,4,5-trimethoxyphenyl)-5,15-bis(pentafluorophenyl)-corrole (2) and their gallium(III) and phosphorus(V) (1-Ga, 1-P, 2-Ga and 2-P) complexes had been prepared and well characterized by UV-vis, NMR and HR-MS. Among all compounds, 2-Ga, 1-P and 2-P showed excellent in vivo photodynamic activity against the MDA-MB-231, A549, Hela and HepG2 cell lines upon light irradiation at 625 nm. And 2-P even exhibited higher phototoxicity than the clinical photosensitizer temoporfin. Also, 2-P exhibited the highest singlet oxygen quantum yield and photostability. The preliminary investigation revealed that 2-P could be rapidly absorbed by tumor cells and mainly located in the cytoplasm. After photodynamic therapy (PDT) treatment with 2-P, mitochondrial membrane potential destruction, intracellular ROS level increasing and nuclear fragmentation of cancer cells could be observed. Cell cycle analysis demonstrated that the 2-P PDT may cause tumor cell arrest at sub-G1 stage and induce early and late apoptosis of cells. These results suggest that 2-P is a promising candidate as a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Wu Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Gang Yang
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Meng-Yuan Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China
| | - Ze-Yu Liu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yu-Hui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou 510091, China.
| | - Hai-Yang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
24
|
Development of novel porphyrin/combretastatin A-4 conjugates for bimodal chemo and photodynamic therapy: Synthesis, photophysical and TDDFT computational studies. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Wang C, Li F, Zhang T, Yu M, Sun Y. Recent advances in anti-multidrug resistance for nano-drug delivery system. Drug Deliv 2022; 29:1684-1697. [PMID: 35616278 PMCID: PMC9154776 DOI: 10.1080/10717544.2022.2079771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy for tumors occasionally results in drug resistance, which is the major reason for the treatment failure. Higher drug doses could improve the therapeutic effect, but higher toxicity limits the further treatment. For overcoming drug resistance, functional nano-drug delivery system (NDDS) has been explored to sensitize the anticancer drugs and decrease its side effects, which are applied in combating multidrug resistance (MDR) via a variety of mechanisms including bypassing drug efflux, controlling drug release, and disturbing metabolism. This review starts with a brief report on the major MDR causes. Furthermore, we searched the papers from NDDS and introduced the recent advances in sensitizing the chemotherapeutic drugs against MDR tumors. Finally, we concluded that the NDDS was based on several mechanisms, and we looked forward to the future in this field.
Collapse
Affiliation(s)
- Changduo Wang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fashun Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Tianao Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Min Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
26
|
Chen J, Yan M, Huang K, Xue J. Novel molecular photosensitizer with simultaneously GSH depletion, aggregation inhibition and accelerated elimination for improved and safe photodynamic therapy. Eur J Med Chem 2022; 245:114938. [DOI: 10.1016/j.ejmech.2022.114938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 11/22/2022]
|
27
|
Rennie CC, Edkins RM. Targeted cancer phototherapy using phthalocyanine-anticancer drug conjugates. Dalton Trans 2022; 51:13157-13175. [PMID: 36018269 DOI: 10.1039/d2dt02040h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phototherapy, the use of light to selectively ablate cancerous tissue, is a compelling prospect. Phototherapy is divided into two major domains: photodynamic and photothermal, whereby photosensitizer irradiation generates reactive oxygen species or heat, respectively, to disrupt the cancer microenvironment. Phthalocyanines (Pcs) are prominent phototherapeutics due to their desirable optical properties and structural versatility. Targeting of Pc photosensitizers historically relied on the enhanced permeation and retention effect, but the weak specificity engendered by this approach has hindered bench-to-clinic translation. To improve specificity, antibody and peptide active-targeting groups have been employed to some effect. An alternative targeting method exploits the binding of anticancer drugs to direct the photosensitizer close to essential cellular components, allowing for precise, synergistic phototherapy. This Perspective explores the use of Pc-drug conjugates as targeted anticancer phototherapeutic systems with examples of Pc-platin, Pc-kinase, and Pc-anthracycline conjugates discussed in detail.
Collapse
Affiliation(s)
- Christopher C Rennie
- WestCHEM Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| | - Robert M Edkins
- WestCHEM Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK.
| |
Collapse
|
28
|
Zhu M, Zhang H, Ran G, Yao Y, Yang Z, Ning Y, Yu Y, Zhang R, Peng X, Wu J, Jiang Z, Zhang W, Wang B, Gao S, Zhang J. Bioinspired Design of
seco
‐Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202204330. [DOI: 10.1002/anie.202204330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Guangliu Ran
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi Yu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Xin Peng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jiahui Wu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhifan Jiang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials South China University of Technology Guangzhou 510641 China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|
29
|
Sarbadhikary P, George BP, Abrahamse H. Potential Application of Photosensitizers With High-Z Elements for Synergic Cancer Therapy. Front Pharmacol 2022; 13:921729. [PMID: 35837287 PMCID: PMC9274123 DOI: 10.3389/fphar.2022.921729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/17/2022] [Indexed: 01/10/2023] Open
Abstract
The presence of heavy elements in photosensitizers (PS) strongly influences their electronic and photophysical properties, and hence, conjugation of PS with a suitable element is regarded as a potential strategy to improve their photodynamic properties. Moreover, PS conjugated to metal ion or metal complex and heavy atoms such as halogen have attracted considerable attention as promising agents for multimodal or synergistic cancer therapy. These tetrapyrrole compounds depending on the type and nature of the inorganic elements have been explored for photodynamic therapy (PDT), chemotherapy, X-ray photon activation therapy (PAT), and radiotherapy. Particularly, the combination of metal-based PS and X-ray irradiation has been investigated as a promising novel approach for treating deep-seated tumors, which in the case of PDT is a major limitation due to low light penetration in tissue. This review will summarize the present status of evidence on the effect of insertion of metal or halogen on the photophysical properties of PS and the effectiveness of various metal and halogenated PS investigated for PDT, chemotherapy, and PAT as mono and/or combination therapy.
Collapse
|
30
|
Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys Rev 2022; 14:941-963. [DOI: 10.1007/s12551-022-00962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
|
31
|
Zhu M, Zhang H, Ran G, Yao Y, Yang Z, Ning Y, Yu Y, Zhang R, Peng X, Wu J, Jiang Z, Zhang W, Wang B, Gao S, Zhang J. Bioinspired Design of
seco
‐Chlorin Photosensitizers to Overcome Phototoxic Effects in Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengliang Zhu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Guangliu Ran
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zi‐Shu Yang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi Yu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ruijing Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Xin Peng
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jiahui Wu
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhifan Jiang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Wenkai Zhang
- Center for Advanced Quantum Studies Department of Physics and Applied Optics Beijing Area Major Laboratory Beijing Normal University Beijing 100875 China
| | - Bing‐Wu Wang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
- Spin-X Institute and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials South China University of Technology Guangzhou 510641 China
| | - Jun‐Long Zhang
- Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 China
| |
Collapse
|