1
|
Schwalm MP, Knapp S, Rogov VV. Toward effective Atg8-based ATTECs: Approaches and perspectives. J Cell Biochem 2024; 125:e30380. [PMID: 36780422 DOI: 10.1002/jcb.30380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/15/2023]
Abstract
Induction of Atg8-family protein (LC3/GABARAP proteins in human) interactions with target proteins of interest by proximity-inducing small molecules offers the possibility for novel targeted protein degradation approaches. However, despite intensive screening campaigns during the last 5 years, no potent ligands for LC3/GABARAPs have been developed, rendering this approach largely unexplored and unsuitable for therapeutic exploitation. In this Viewpoint, we analyze the reported attempts identifying LC3/GABARAP inhibitors and provide our own point of view why no potent inhibitors have been found. Additionally, we designate reasonable directions for the identification of potent and probably selective LC3/GABARAP inhibitors for alternative therapeutic applications.
Collapse
Affiliation(s)
- Martin P Schwalm
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Stefan Knapp
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| | - Vladimir V Rogov
- Department of Biochemistry, Chemistry and Pharmacy, Institute for Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
2
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Tan X, Huang Z, Pei H, Jia Z, Zheng J. Molecular glue-mediated targeted protein degradation: A novel strategy in small-molecule drug development. iScience 2024; 27:110712. [PMID: 39297173 PMCID: PMC11409024 DOI: 10.1016/j.isci.2024.110712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Small-molecule drugs are effective and thus most widely used. However, their applications are limited by their reliance on active high-affinity binding sites, restricting their target options. A breakthrough approach involves molecular glues, a novel class of small-molecule compounds capable of inducing protein-protein interactions (PPIs). This opens avenues to target conventionally undruggable proteins, overcoming limitations seen in conventional small-molecule drugs. Molecular glues play a key role in targeted protein degradation (TPD) techniques, including ubiquitin-proteasome system-based approaches such as proteolysis targeting chimeras (PROTACs) and molecular glue degraders and recently emergent lysosome system-based techniques like molecular degraders of extracellular proteins through the asialoglycoprotein receptors (MoDE-As) and macroautophagy degradation targeting chimeras (MADTACs). These techniques enable an innovative targeted degradation strategy for prolonged inhibition of pathology-associated proteins. This review provides an overview of them, emphasizing the clinical potential of molecular glues and guiding the development of molecular-glue-mediated TPD techniques.
Collapse
Affiliation(s)
- Xueqiang Tan
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zuyi Huang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hairun Pei
- Beijing Advanced Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Jimin Zheng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Chen S, Wang W, Chen Z, Li R, Wu Z, Dong G, Sheng C. Peptide-Mediated Small Molecule Lysosome-Targeting Chimeras for Targeted Degradation of Membrane and Intracellular Proteins. J Med Chem 2024; 67:15807-15815. [PMID: 39146536 DOI: 10.1021/acs.jmedchem.4c01449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Targeted protein degradation through the lysosomal pathway has attracted increasing attention and expanded the scope of degradable proteins. However, the endogenous lysosomal degradation strategies are mainly based on antibodies or nanobodies. Effective small molecule lysosomal degraders are still rather rare. Herein, a new lysosomal degradation approach, termed peptide-mediated small molecule lysosome-targeting chimeras (PSMLTACs), was developed by the incorporation of small molecule ligands with a lysosome-sorting NPGY motif containing the cell-penetrating peptide. PSMLTACs were successfully applied to degrade both membrane and intracellular targets. In particular, the PSMLTAC strategy demonstrated higher degradation efficiency on membrane target PD-L1 and intracellular target PDEδ than corresponding PROTAC degraders. Taken together, this proof-of-concept provides a convenient and effective strategy for targeted protein degradation.
Collapse
Affiliation(s)
- Shuqiang Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Zhipeng Chen
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Ruyan Li
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Zhe Wu
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Lorentzen KC, Prescott AR, Ganley IG. Artificial targeting of autophagy components to mitochondria reveals both conventional and unconventional mitophagy pathways. Autophagy 2024:1-23. [PMID: 39177530 DOI: 10.1080/15548627.2024.2395149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Macroautophagy/autophagy enables lysosomal degradation of a diverse array of intracellular material. This process is essential for normal cellular function and its dysregulation is implicated in many diseases. Given this, there is much interest in understanding autophagic mechanisms of action in order to determine how it can be best targeted therapeutically. In mitophagy, the selective degradation of mitochondria via autophagy, mitochondria first need to be primed with signals that allow the recruitment of the core autophagy machinery to drive the local formation of an autophagosome around the target mitochondrion. To determine how the recruitment of different core autophagy components can drive mitophagy, we took advantage of the mito-QC mitophagy assay (an outer mitochondrial membrane-localized tandem mCherry-GFP tag). By tagging autophagy proteins with an anti-mCherry (or anti-GFP) nanobody, we could recruit them to mitochondria and simultaneously monitor levels of mitophagy. We found that targeting ULK1, ATG16L1 and the different Atg8-family proteins was sufficient to induce mitophagy. Mitochondrial recruitment of ULK1 and the Atg8-family proteins induced a conventional mitophagy pathway, requiring RB1CC1/FIP200, PIK3C3/VPS34 activity and ATG5. Surprisingly, the mitophagy pathway upon recruitment of ATG16L1 proceeded independently of ATG5, although it still required RB1CC1 and PIK3C3/VPS34 activity. In this latter pathway, mitochondria were alternatively delivered to lysosomes via uptake into early endosomes.Abbreviation: aGFP: anti-GFP nanobody; amCh: anti-mCherry nanobody; ATG: autophagy related; ATG16L1: autophagy related 16 like 1; AUTAC/AUTOTAC: autophagy-targeting chimera; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CCCP: carbonyl cyanide m-chlorophenylhydrazone; COX4/COX IV: cytochrome c oxidase subunit 4; DFP: deferiprone; DMSO: dimethyl sulfoxide; GABARAP: GABA type A receptor-associated protein; GABARAPL1: GABA type A receptor associated protein like 1; HSPD1/HSP60: heat shock protein family D (Hsp60) member 1; HRP: horseradish peroxidase; HTRA2/OMI: HtrA serine peptidase 2; IB: immunoblotting; IF: immunofluorescence; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NBR1: NBR1 autophagy cargo receptor; OMM: outer mitochondrial membrane; OPA1: OPA1 mitochondrial dynamin like GTPase; OPTN: optineurin; (D)PBS: (Dulbecco's) phosphate-buffered saline; PD: Parkinson disease; PFA: paraformaldehyde; POI: protein of interest; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; RAB: RAB, member RAS oncogene family; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; ULK: unc-51 like autophagy activating kinase 1; VPS: vacuolar protein sorting; WIPI: WD repeat domain, phosphoinositide interacting.
Collapse
Affiliation(s)
- Katharina C Lorentzen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Alan R Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ian G Ganley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
6
|
Yin K, Zhang Z, Mo Y, Wu H, Cao Z, Xue Y, Wang M, Guo W, Feng L, Zhao C, Gu X. Discovery of autophagy-tethering compounds as potent NLRP3 degraders for IBD Immunotherapy. Eur J Med Chem 2024; 275:116581. [PMID: 38870831 DOI: 10.1016/j.ejmech.2024.116581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3) constitutes an essential inflammasome sensor protein, pivotal in the orchestration of innate immunity. Given its paramount role, NLRP3 has recently emerged as an enticing therapeutic target for disorders associated with inflammation. In this study, we embarked on the design and synthesis of two series of compounds, endowed with the capacity to induce NLRP3 degradation via autophagy-tethering compounds (ATTECs)-an innovative targeted protein degradation technology. Notably, MC-ND-18 emerged as the most potent agent for effectuating NLRP3 degradation through autophagic mechanisms and concurrently exhibited marked anti-inflammatory efficacy in mice model of dextran sulfate sodium (DSS)-induced colitis. Consequently, we have successfully developed a pioneering NLRP3 protein degrader, offering a novel therapeutic avenue for ameliorating NLRP3-associated pathologies.
Collapse
Affiliation(s)
- Kai Yin
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Ziwen Zhang
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Yanqing Mo
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Hongyu Wu
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Zhonglian Cao
- Department of Biopharmaceuticals, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Yongxing Xue
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China
| | - Mingrunlin Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China.
| | - Li Feng
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China.
| | - Chunchang Zhao
- School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Xianfeng Gu
- School of Pharmacy & Minhang Hospitol, Fudan University, Shanghai 201301, China.
| |
Collapse
|
7
|
Zhang X, Wang W, Dong G, Song Y, Zhai X, Sheng C. Discovery of a potent and selective JAK1-targeting PROTAC degrader with anti-tumor activities. Bioorg Med Chem Lett 2024; 109:129838. [PMID: 38838918 DOI: 10.1016/j.bmcl.2024.129838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wei Wang
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China
| | - Guoqiang Dong
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China
| | - Yingqi Song
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, PR China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Chunquan Sheng
- The Center for Basic Research and Innovation of Medicine and Pharmacy (MOE), School of Pharmacy, Second Military Medical University (Naval Medical University), 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
8
|
Ozgencil F, Gunindi HB, Eren G. Dual-targeted NAMPT inhibitors as a progressive strategy for cancer therapy. Bioorg Chem 2024; 149:107509. [PMID: 38824699 DOI: 10.1016/j.bioorg.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is a crucial enzyme in the nicotinamide adenine dinucleotide (NAD+) synthesis pathway catalyzing the condensation of nicotinamide (NAM) with 5-phosphoribosyl-1-pyrophosphate (PRPP) to produce nicotinamide mononucleotide (NMN). Given the pivotal role of NAD+ in a range of cellular functions, including DNA synthesis, redox reactions, cytokine generation, metabolism, and aging, NAMPT has become a promising target for many diseases, notably cancer. Therefore, various NAMPT inhibitors have been reported and classified as first and second-generation based on their chemical structures and design strategies, dual-targeted being one. However, most NAMPT inhibitors suffer from several limitations, such as dose-dependent toxicity and poor pharmacokinetic properties. Consequently, there is no clinically approved NAMPT inhibitor. Hence, research on discovering more effective and less toxic dual-targeted NAMPT inhibitors with desirable pharmacokinetic properties has drawn attention recently. This review summarizes the previously reported dual-targeted NAMPT inhibitors, focusing on their design strategies and advantages over the single-targeted therapies.
Collapse
Affiliation(s)
- Fikriye Ozgencil
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Habibe Beyza Gunindi
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Gokcen Eren
- SIRTeam Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye.
| |
Collapse
|
9
|
Zhang J, Pan X, Ji W, Zhou J. Autophagy mediated targeting degradation, a promising strategy in drug development. Bioorg Chem 2024; 149:107466. [PMID: 38843684 DOI: 10.1016/j.bioorg.2024.107466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/17/2024]
Abstract
Targeted protein degradation (TPD) technologies have become promising therapeutic approaches through degrading disease-causing proteins via the protein degradation system. Autophagy is a fundamental biological process with a high relationship to protein degradation, which belongs to one of two main protein degradation pathways, the autophagy-lysosomal system. Recently, various autophagy-based TPD techniques ATTECs, AUTACs, and AUTOTACs, etc, have also been gradually developed, and they have achieved efficient degradation potency for the targeted protein, expanding the potential of degradation for large-size proteins or protein aggregates. Herein, we introduce the machinery of autophagy and its relation to protein degradation, and multiple methods for using autophagy to specifically degrade target proteins.
Collapse
Affiliation(s)
- Jiantao Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Xiangyi Pan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Wenshu Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| |
Collapse
|
10
|
Li Y, Kong X, Chu X, Fu H, Feng X, Zhao C, Deng Y, Ge J. Targeting NAD Metabolism: Rational Design, Synthesis and In Vitro Evaluation of NAMPT/PARP1 Dual-Target Inhibitors as Anti-Breast Cancer Agents. Molecules 2024; 29:2836. [PMID: 38930900 PMCID: PMC11206297 DOI: 10.3390/molecules29122836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The malignancy of breast cancer poses a global challenge, with existing treatments often falling short of desired efficacy. Extensive research has underscored the effectiveness of targeting the metabolism of nicotinamide adenine dinucleotide (NAD), a pivotal molecule crucial for cancer cell survival and growth, as a promising anticancer strategy. Within mammalian cells, sustaining optimal NAD concentrations relies on two key enzymes, namely nicotinamide phosphoribosyltransferase (NAMPT) and poly(ADP-ribose) polymer 1 (PARP1). Recent studies have accentuated the potential benefits of combining NAMPT inhibitors and PARP1 inhibitors to enhance therapeutic outcomes, particularly in breast cancer. In this study, we designed and synthesized eleven novel NAMPT/PARP1 dual-target inhibitors. Among them, compound DDY02 exhibited acceptable inhibitory activities against both NAMPT and PARP1, with IC50 values of 0.01 and 0.05 µM, respectively. Moreover, in vitro evaluations revealed that treatment with DDY02 resulted in proliferation inhibition, NAD depletion, DNA damage, apoptosis, and migration inhibition in MDA-MB-468 cells. These results posit DDY02, by targeting NAD metabolism through inhibiting both NAMPT and PARP1, as a promising lead compound for the development of breast cancer therapy.
Collapse
Affiliation(s)
- Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xianxiu Kong
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinhong Chu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xinchi Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanru Deng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
11
|
Huang X, Wu F, Ye J, Wang L, Wang X, Li X, He G. Expanding the horizons of targeted protein degradation: A non-small molecule perspective. Acta Pharm Sin B 2024; 14:2402-2427. [PMID: 38828146 PMCID: PMC11143490 DOI: 10.1016/j.apsb.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/05/2024] Open
Abstract
Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.
Collapse
Affiliation(s)
- Xiaowei Huang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Ye
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Liu L, Zhao L, Yang L, Chai M, Liu Z, Ma N, Wang Y, Wu Q, Guo J, Zhou F, Huang W, Ren X, Wang J, Ding M, Wang Z, Ding K. Discovery of LLC355 as an Autophagy-Tethering Compound for the Degradation of Discoidin Domain Receptor 1. J Med Chem 2024; 67:8043-8059. [PMID: 38730324 DOI: 10.1021/acs.jmedchem.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Discoidin domain receptor 1 (DDR1) is a potential target for cancer drug discovery. Although several DDR1 kinase inhibitors have been developed, recent studies have revealed the critical roles of the noncatalytic functions of DDR1 in tumor progression, metastasis, and immune exclusion. Degradation of DDR1 presents an opportunity to block its noncatalytic functions. Here, we report the discovery of the DDR1 degrader LLC355 by employing autophagosome-tethering compound technology. Compound LLC355 efficiently degraded DDR1 protein with a DC50 value of 150.8 nM in non-small cell lung cancer NCI-H23 cells. Mechanistic studies revealed compound LLC355 to induce DDR1 degradation via lysosome-mediated autophagy. Importantly, compound LLC355 potently suppressed cancer cell tumorigenicity, migration, and invasion and significantly outperformed the corresponding inhibitor 1. These results underline the therapeutic advantage of targeting the noncatalytic function of DDR1 over inhibition of its kinase activity.
Collapse
Affiliation(s)
- Lianchao Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Lijie Zhao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Lujun Yang
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, #1 Xiangshan Branch Lane, Hangzhou 310024, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Minxue Chai
- College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Zhengyong Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Nan Ma
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Yongxing Wang
- Livzon Research Institute, Livzon Pharmaceutical Group Inc., #38 Chuangye North Road, Jinwan District, Zhuhai 519000, China
| | - Qinxue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Fengtao Zhou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Xiaomei Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Jian Wang
- College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, #345 Lingling Road, Shanghai 200032, China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), Guangzhou City Key Laboratory of Precision Chemical Drug Development, College of Pharmacy, Jinan University, 855 Xingye Avenue East, Guangzhou 511400, China
| |
Collapse
|
13
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
14
|
Lawer A, Schulz L, Sawyer R, Liu X. Harmony of Protein Tags and Chimeric Molecules Empowers Targeted Protein Ubiquitination and Beyond. Cells 2024; 13:426. [PMID: 38474390 DOI: 10.3390/cells13050426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Post-translational modifications (PTMs) are crucial mechanisms that underlie the intricacies of biological systems and disease mechanisms. This review focuses on the latest advancements in the design of heterobifunctional small molecules that hijack PTM machineries for target-specific modifications in living systems. A key innovation in this field is the development of proteolysis-targeting chimeras (PROTACs), which promote the ubiquitination of target proteins for proteasomal degradation. The past decade has seen several adaptations of the PROTAC concept to facilitate targeted (de)phosphorylation and acetylation. Protein fusion tags have been particularly vital in these proof-of-concept studies, aiding in the investigation of the functional roles of post-translationally modified proteins linked to diseases. This overview delves into protein-tagging strategies that enable the targeted modulation of ubiquitination, phosphorylation, and acetylation, emphasizing the synergies and challenges of integrating heterobifunctional molecules with protein tags in PTM research. Despite significant progress, many PTMs remain to be explored, and protein tag-assisted PTM-inducing chimeras will continue to play an important role in understanding the fundamental roles of protein PTMs and in exploring the therapeutic potential of manipulating protein modifications, particularly for targets not yet addressed by existing drugs.
Collapse
Affiliation(s)
- Aggie Lawer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Luke Schulz
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Renata Sawyer
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| | - Xuyu Liu
- School of Chemistry, Faculty of Science, The University of Sydney, Camperdown, NSW 2050, Australia
- Heart Research Institute, The University of Sydney, Newtown, NSW 2042, Australia
| |
Collapse
|
15
|
Wen F, Gui G, Wang X, Ye L, Qin A, Zhou C, Zha X. Drug discovery targeting nicotinamide phosphoribosyltransferase (NAMPT): Updated progress and perspectives. Bioorg Med Chem 2024; 99:117595. [PMID: 38244254 DOI: 10.1016/j.bmc.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
16
|
Ouyang Z, Ma M, Zhang Z, Wu H, Xue Y, Jian Y, Yin K, Yu S, Zhao C, Guo W, Gu X. Targeted Degradation of PCSK9 In Vivo by Autophagy-Tethering Compounds. J Med Chem 2024; 67:433-449. [PMID: 38112492 DOI: 10.1021/acs.jmedchem.3c01634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9), a secreted protein that is synthesized and spontaneously cleaved in the endoplasmic reticulum, has become a hot lipid-lowering target chased by pharmaceutical companies in recent years. Autophagosome-tethering compounds (ATTECs) represent a new strategy to degrade targeted biomolecules. Here, we designed and synthesized PCSK9·ATTECs that are capable of lowering PCSK9 levels via autophagy in vivo, providing the first report of the degradation of a secreted protein by ATTECs. OY3, one of the PCSK9·ATTECs synthesized, shows greater potency to reduce plasma low-density lipoprotein cholesterol (LDL-C) levels and improve atherosclerosis symptoms than treatment with the same dose of simvastatin. OY3 also significantly reduces the high expression of PCSK9 caused by simvastatin administration in atherosclerosis model mice and subsequently increases the level of low-density lipoprotein receptor, promoting simvastatin to clear plasma LDL-C and alleviate atherosclerosis symptoms. Thus, we developed a new candidate compound to treat atherosclerosis that could also promote statin therapy.
Collapse
Affiliation(s)
- Zhirong Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Muye Ma
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Ziwen Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Hongyu Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Yongxing Xue
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Yuting Jian
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Kai Yin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Shaokun Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201301, China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201301, China
| |
Collapse
|
17
|
Bao J, Chen Z, Li Y, Chen L, Wang W, Sheng C, Dong G. Discovery of Novel PDEδ Autophagic Degraders: A Case Study of Autophagy-Tethering Compound (ATTEC). ACS Med Chem Lett 2024; 15:29-35. [PMID: 38229750 PMCID: PMC10788939 DOI: 10.1021/acsmedchemlett.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
The autophagy-tethering compound (ATTEC) technology has emerged as a promising strategy for targeted protein degradation (TPD). Here, we report the discovery of the first generation of PDEδ autophagic degraders using an ATTEC approach. The most promising compound 12c exhibited potent PDEδ binding affinity and efficiently induced PDEδ degradation in a concentration-dependent manner. Mechanistic studies confirmed that compound 12c reduced the PDEδ protein level through lysosome-mediated autophagy without affecting the PDEδ mRNA expression. Importantly, compound 12c was much more effective in suppressing the growth in KRAS mutant pancreatic cancer cells than the corresponding PDEδ inhibitor. Taken together, this study expands the application scope of the ATTEC approach and highlights the effectiveness of the PDEδ autophagic degradation strategy in antitumor drug discovery.
Collapse
Affiliation(s)
- Jingying Bao
- School
of Pharmacy, East China University of Science
and Technology, Shanghai 200237, China
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenqian Chen
- School
of Pharmacy, East China University of Science
and Technology, Shanghai 200237, China
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yu Li
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Long Chen
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wei Wang
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Guoqiang Dong
- School
of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
18
|
Zheng H, Li G, Min J, Xu X, Huang W. Lysosome and related protein degradation technologies. Drug Discov Today 2023; 28:103767. [PMID: 37708931 DOI: 10.1016/j.drudis.2023.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Recently, targeted protein degradation technologies based on lysosomal pathways have been developed. Lysosome-based targeted protein degradation technology has a broad range of substrates and the potential to degrade intracellular and extracellular proteins, protein aggregates, damaged organelles and non-protein molecules. Thus, they hold great promise for drug R&D. This study has focused on the biogenesis of lysosomes, their basic functions, lysosome-associated diseases and targeted protein degradation technologies through the lysosomal pathway. In addition, we thoroughly examine the potential applications and limitations of this technology and engage in insightful discussions on potential avenues for future research. Our primary objective is to foster preclinical research on this technology and facilitate its successful clinical implementation.
Collapse
Affiliation(s)
- Hongmei Zheng
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Gangjian Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Jingli Min
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, Zhejiang, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, China.
| |
Collapse
|
19
|
Zeng Y, Xiao J, Xu Y, Wei F, Tian L, Gao Y, Chen Y, Hu Y. Degradation of Cyclin-Dependent Kinase 9/Cyclin T1 by Optimized Microtubule-Associated Protein 1 Light Chain 3 Beta-Recruiting Coumarin Analogs. J Med Chem 2023; 66:12877-12893. [PMID: 37671907 DOI: 10.1021/acs.jmedchem.3c00828] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Autophagy is an efficient and attractive protein degradation pathway in addition to the ubiquitin-proteasome system. Herein, systematic optimization of coumarin analogs linked with the CDK9 inhibitor SNS-032 is reported that may bind to cyclin-dependent kinase 9 (CDK9) and microtubule-associated protein 1 light chain 3 beta (LC3B) simultaneously, which leads to the selective autophagic degradation of targeted CDK9/cyclin T1 and is different from the PROTAC degrader THAL-SNS-032. Further mechanism studies revealed an autophagy-lysosome pathway, where the degraders possibly formed a ternary complex with CDK9 and LC3B. In addition, degrader 10 showed antitumor efficacy in vivo. Our work optimized a potent LC3B recruiter and demonstrated the feasibility of autophagy-tethering compounds (ATTECs), which could be applied for the degradation of diverse intracellular pathogenic proteins to treat related diseases.
Collapse
Affiliation(s)
- Yanping Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jian Xiao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yuanxin Xu
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| | - Fan Wei
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lina Tian
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
| | - Yinglei Gao
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu-Chong-Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210046, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, Shandong, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
20
|
Takahashi D, Ora T, Sasaki S, Ishii N, Tanaka T, Matsuda T, Ikeda M, Moriyama J, Cho N, Nara H, Maezaki H, Kamaura M, Shimokawa K, Arimoto H. Second-Generation AUTACs for Targeted Autophagic Degradation. J Med Chem 2023; 66:12342-12372. [PMID: 37589438 DOI: 10.1021/acs.jmedchem.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Targeted protein degradation via the ubiquitin-proteasome system has emerged as one of the most promising drug discovery modalities. Autophagy, another intracellular degradation system, can target a wide range of nonproteinous substrates as well as proteins, but its application to targeted degradation is still in its infancy. Our previous work revealed a relationship between guanine modification of cysteine residues on intracellular proteins and selective autophagy, resulting in the first autophagy-based degraders, autophagy-targeted chimeras (AUTACs). Based on the research background, all the reported AUTACs compounds contain cysteine as a substructure. Here, we examine the importance of this substructure by conducting SAR studies and report significant improvements in the degrader's activity by replacing cysteine with other moieties. Several derivatives showed sub-μM range degrading activity, demonstrating the increased practical value of AUTACs.
Collapse
Affiliation(s)
- Daiki Takahashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Taiichi Ora
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Shigekazu Sasaki
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Naoki Ishii
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshio Tanaka
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Takumi Matsuda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Mutsuki Ikeda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Jun Moriyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Nobuo Cho
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hiroshi Nara
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Hironobu Maezaki
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | - Masahiro Kamaura
- Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa 251-8555, Japan
| | | | - Hirokazu Arimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
21
|
Tong Y, Zhu W, Chen J, Zhang W, Xu F, Pang J. Targeted Degradation of Alpha-Synuclein by Autophagosome-Anchoring Chimera Peptides. J Med Chem 2023; 66:12614-12628. [PMID: 37652467 DOI: 10.1021/acs.jmedchem.3c01303] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Targeted protein degradation (TPD) confers knockdown of "undruggable" targets such as alpha-synuclein (αSyn), a pathogenic protein in multiple neurodegenerative diseases. Though many of these proteins were mainly degraded through the autophagy-lysosome pathway (ALP), few TPD tools harnessing the ALP were reported. Herein, we developed a strategy termed autophagosome-anchoring chimera (ATACC), in which the protein of interest (POI) can be anchored to microtubule-associated protein-1 light chain-3B (LC3B) on the autophagosome with the assistance of an LC3-interacting region (LIR)-containing bifunctional peptide, and the selective autophagy of the POI is thus facilitated. A series of αSyn-targeting ATACC peptides were designed and synthesized. Biological evaluations demonstrated that these compounds could degrade αSyn specifically and effectively through a "chemical-induced cargo recognition-ALP degradation" mechanism. The neuroprotective effects of ATACC peptide P1 were further validated in vitro and in vivo. Collectively, our results provided a new TPD tool and revealed a potential therapeutic strategy against synucleinopathies.
Collapse
Affiliation(s)
- Yichen Tong
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wentao Zhu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenqian Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE) & Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiyan Pang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
22
|
Zhang P, Wang W, Guo M, Zhou L, Dong G, Xu D, Sheng C. Discovery of potent NAMPT-Targeting PROTACs using FK866 as the warhead. Bioorg Med Chem Lett 2023; 92:129393. [PMID: 37369332 DOI: 10.1016/j.bmcl.2023.129393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) has emerged as a promising target for cancer therapy due to its strong correlation with nicotinamide adenine dinucleotide (NAD+) metabolism and tumorigenesis. Proteolysis targeting chimeras (PROTACs) provided an attractive strategy for developing NAMPT-targeting NAD+-depleting cancer drugs. Herein, a series of von Hippel-Lindau (VHL)-recruiting NAMPT-targeting PROTACs were designed using NAMPT inhibitor FK866 as the warhead. Among them, compound C5 degraded NAMPT (DC50 = 31.7 nM) in a VHL- and proteasome-dependent manner. Moreover, compound C5 effectively inhibited the proliferation of A2780 cells (IC50 = 30.6 nM) and significantly reduced the general cytotoxicity of FK866 to normal cells.
Collapse
Affiliation(s)
- Peifeng Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Wei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Menglu Guo
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Luozhu Zhou
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Guoqiang Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
23
|
Tang H, Wang L, Wang T, Yang J, Zheng S, Tong J, Jiang S, Zhang X, Zhang K. Recent advances of targeting nicotinamide phosphoribosyltransferase (NAMPT) for cancer drug discovery. Eur J Med Chem 2023; 258:115607. [PMID: 37413882 DOI: 10.1016/j.ejmech.2023.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme for the biosynthesis of NAD+ in the salvage pathway. NAMPT is overexpressed in various cancers, associating with a poor prognosis and tumor progression. Beyond cancer metabolism, recent evidence unravels additional roles of NAMPT in cancer biology, including DNA repair machinery, crosstalk with oncogenic signaling pathways, cancer cell stemness, and immune responses. NAMPT is a promising therapeutic target for cancer. However, first-generation NAMPT inhibitors exhibited limited efficacy and dose-limiting toxicities in clinical trials. Multiple strategies are being exploited to improve their efficacy and minimize toxic-side effects. This review discusses the biomarkers predictive of response to NAMPT inhibitors, and summarizes the most significant advances in the evolution of structurally distinct NAMPT inhibitors, the manipulation of targeted delivery technologies via antibody-drug conjugates (ADCs), PhotoActivated ChemoTherapy (PACT) and the intratumoral delivery system, as well as the development and pharmacological outcomes of NAMPT degraders. Finally, a discussion of future perspectives and challenges in this area is also included.
Collapse
Affiliation(s)
- He Tang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamei Yang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Zheng
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jun Tong
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
24
|
Chen Y, Li W, Kwon S, Wang Y, Li Z, Hu Q. Small-Molecule Ferritin Degrader as a Pyroptosis Inducer. J Am Chem Soc 2023; 145:9815-9824. [PMID: 37094179 DOI: 10.1021/jacs.3c01852] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Exploring the response of malignant cells to intracellular metabolic stress is critical for understanding pathologic processes and developing anticancer therapies. Herein, we developed ferritin-targeting proteolysis targeting chimeras (PROTACs) to establish the iron excess stress inside cancer cells and investigated subsequent cellular behaviors. We conjugated oleic acid that binds to the ferritin dimer to the ligand of von Hippel-Lindau (VHL) E3 ligase through an alkyl linker. The screened chimera, DeFer-2, degraded ferritin and then rapidly elevated the free iron content, thereby initiating the caspase 3-GSDME-mediated pyroptosis in cancer cells rather than typical ferroptosis that is always associated with iron ion overload. According to its structural and physicochemical characteristics, DeFer-2 was loaded into a tailored albumin-based nano-formulation, which substantially inhibited tumor growth and prolonged the survival time of mice bearing B16F10 subcutaneous tumors with negligible adverse effects. This study developed a ferritin-targeting PROTAC for iron overload stress, revealed iron metabolic dysregulation-mediated pyroptosis, and provided a PROTAC-based pyroptosis inducer for anticancer treatment.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Wen Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Song Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
25
|
Xue Y, Bolinger AA, Zhou J. Novel approaches to targeted protein degradation technologies in drug discovery. Expert Opin Drug Discov 2023; 18:467-483. [PMID: 36895136 PMCID: PMC11089573 DOI: 10.1080/17460441.2023.2187777] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Target protein degradation (TPD) provides a novel therapeutic modality, other than inhibition, through the direct depletion of target proteins. Two primary human protein homeostasis mechanisms are exploited: the ubiquitin-proteasome system (UPS) and the lysosomal system. TPD technologies based on these two systems are progressing at an impressive pace. AREAS COVERED This review focuses on the TPD strategies based on UPS and lysosomal system, mainly classified into three types: Molecular Glue (MG), PROteolysis Targeting Chimera (PROTAC), and lysosome-mediated TPD. Starting with a brief background introduction of each strategy, exciting examples and perspectives on these novel approaches are provided. EXPERT OPINION MGs and PROTACs are two major UPS-based TPD strategies that have been extensively investigated in the past decade. Despite some clinical trials, several critical issues remain, among which is emphasized by the limitation of targets. Recently developed lysosomal system-based approaches provide alternative solutions for TPD beyond UPS' capability. The newly emerging novel approaches may partially address issues that have long plagued researchers, such as low potency, poor cell permeability, on-/off-target toxicity, and delivery efficiency. Comprehensive considerations for the rational design of protein degraders and continuous efforts to seek effective solutions are imperative to advance these strategies into clinical medications.
Collapse
Affiliation(s)
- Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
26
|
Maity P, Chatterjee J, Patil KT, Arora S, Katiyar MK, Kumar M, Samarbakhsh A, Joshi G, Bhutani P, Chugh M, Gavande NS, Kumar R. Targeting the Epidermal Growth Factor Receptor with Molecular Degraders: State-of-the-Art and Future Opportunities. J Med Chem 2023; 66:3135-3172. [PMID: 36812395 DOI: 10.1021/acs.jmedchem.2c01242] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Epidermal growth factor receptor (EGFR) is an oncogenic drug target and plays a critical role in several cellular functions including cancer cell growth, survival, proliferation, differentiation, and motility. Several small-molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAbs) have been approved for targeting intracellular and extracellular domains of EGFR, respectively. However, cancer heterogeneity, mutations in the catalytic domain of EGFR, and persistent drug resistance limited their use. Different novel modalities are gaining a position in the limelight of anti-EGFR therapeutics to overcome such limitations. The current perspective reflects upon newer modalities, importantly the molecular degraders such as PROTACs, LYTACs, AUTECs, and ATTECs, etc., beginning with a snapshot of traditional and existing anti-EGFR therapies including small molecule inhibitors, mAbs, and antibody drug conjugates (ADCs). Further, a special emphasis has been made on the design, synthesis, successful applications, state-of-the-art, and emerging future opportunities of each discussed modality.
Collapse
Affiliation(s)
- Pritam Maity
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Joydeep Chatterjee
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Kiran T Patil
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Sahil Arora
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Madhurendra K Katiyar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Manvendra Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States
| | - Gaurav Joshi
- Department of Pharmaceutical Science, Hemvati Nandan Bahuguna Garhwal (A Central) University, Srinagar 246174, Dist. Garhwal (Uttarakhand), India
| | | | - Manoj Chugh
- In Vitro Diagnostics, Transasia BioMedical Pvt. Ltd. 400072 Mumbai, India
| | - Navnath S Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48201, United States.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, United States
| | - Raj Kumar
- Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, 151401 Bathinda, India
| |
Collapse
|
27
|
Li X, Liu Q, Xie X, Peng C, Pang Q, Liu B, Han B. Application of Novel Degraders Employing Autophagy for Expediting Medicinal Research. J Med Chem 2023; 66:1700-1711. [PMID: 36716420 DOI: 10.1021/acs.jmedchem.2c01712] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Targeted protein degradation (TPD) technology is based on a unique pharmacological mechanism that has profoundly revolutionized medicinal research by overcoming limitations associated with traditional small-molecule drugs. Autophagy, a mechanism for intracellular waste disposal and recovery, is an important biological process in medicinal research. Recently, studies have demonstrated that several emerging autophagic degraders can treat human diseases. Herein we summarize the progress in medicinal research on autophagic degraders, including autophagosome-tethering compounds (ATTEC), autophagy-targeting chimeras (AUTAC), and AUTOphagy-TArgeting chimeras (AUTOTAC), for treating human diseases. These autophagic degraders exhibit excellent potential for treating neurodegenerative diseases. Our research on autophagic degraders provides a new avenue for medicinal research on TPD via autophagy.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy and College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
28
|
Paudel RR, Lu D, Roy Chowdhury S, Monroy EY, Wang J. Targeted Protein Degradation via Lysosomes. Biochemistry 2023; 62:564-579. [PMID: 36130224 DOI: 10.1021/acs.biochem.2c00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the scope of targeted protein degradation (TPD), proteolysis-targeting chimeras (PROTACs), leveraging the ubiquitin-proteasome system, have been extensively studied. However, they are limited to the degradation of soluble and membrane proteins, excluding the aggregated and extracellular proteins and dysfunctional organelles. As an alternative protein degradation pathway, lysosomes serve as a feasible tool for accessing these untouched proteins and/or organelles by proteosomes. Here, we focus on reviewing the emerging lysosome-mediated TPD, such as AUTAC, ATTEC, AUTOTAC, LYTAC, and MoDE-A. Intracellular targets, such as soluble and aggregated proteins and organelles, can be degraded via the autophagy-lysosome pathway. Extracellular targets, such as membrane proteins, and secreted extracellular proteins can be degraded via the endosome-lysosome pathway. In addition, we summarize the mechanism and regulation of autophagy, available methods and assays for monitoring the autophagy process, and the recently developed chemical probes for perturbing the autophagy pathways.
Collapse
Affiliation(s)
- Rishi R Paudel
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Dong Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Sandipan Roy Chowdhury
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Erika Y Monroy
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
29
|
Wang K, Ye K, Zhang X, Wang T, Qi Z, Wang Y, Jiang S, Zhang K. Dual Nicotinamide Phosphoribosyltransferase (NAMPT) and Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitors for the Treatment of Drug-Resistant Nonsmall-Cell Lung Cancer. J Med Chem 2023; 66:1027-1047. [PMID: 36595482 DOI: 10.1021/acs.jmedchem.2c01954] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Depleting NAD+ by blocking its biosynthesis has emerged as an attractive anticancer strategy. Simultaneous blockade of NAD+ production from the salvage and de novo synthesis pathways by targeting NAMPT and IDO1 could achieve more effective NAD+ reduction and, subsequently, more robust antitumor efficacy. Herein, we report the discovery of the first series of dual NAMPT and IDO1 inhibitors according to multitarget drug rationales. Compound 10e has good and balanced inhibitory potencies against NAMPT and IDO1, and significantly inhibits both proliferation and migration of a NSCLC cell line resistant to taxol and FK866 (A549/R cells). Compound 10e also displays potent antitumor efficacy in A549/R xenograft mouse models with no significant toxicity. Moreover, this compound enhances the susceptibility of A549/R cells to taxol in vitro and in vivo. This work provides an efficient approach to targeting NAD+ metabolism in the area of cancer therapy, especially in the context of drug resistance.
Collapse
Affiliation(s)
- Kaizhen Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ke Ye
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangyu Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tianyu Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Qi
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youjun Wang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Jiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kuojun Zhang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
30
|
Hill-Payne B, Dilones S, Burslem G. The importance of controls in targeted protein degradation: Determining mechanism. Methods Enzymol 2022; 681:215-240. [PMID: 36764758 DOI: 10.1016/bs.mie.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Targeted protein degradation has emerged as a useful approach for both basic biological investigations and therapeutic development. However, it can provide confounding results if not properly controlled. In this manuscript, we discuss the importance of proper controls and provide a detailed protocol for their application to proteolysis targeting chimera mediated degradation.
Collapse
Affiliation(s)
- Brianna Hill-Payne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sebastian Dilones
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - George Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
31
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Pu C, Wang S, Liu L, Feng Z, Zhang H, Gong Q, Sun Y, Guo Y, Li R. Current strategies for improving limitations of proteolysis targeting chimeras. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|