1
|
Su JF, Xiao Y, Wei LY, Lei HY, Sun F, Wang WX, Li SH, Wang XC, Zheng J, Wang JZ. A new tau dephosphorylation-targeting chimera for the treatment of tauopathies. Acta Pharmacol Sin 2024; 45:2267-2276. [PMID: 38956416 PMCID: PMC11489737 DOI: 10.1038/s41401-024-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/26/2024] [Indexed: 07/04/2024] Open
Abstract
Abnormal accumulation of hyperphosphorylated tau protein plays a pivotal role in a collection of neurodegenerative diseases named tauopathies, including Alzheimer's disease (AD). We have recently conceptualized the design of hetero-bifunctional chimeras for selectively promoting the proximity between tau and phosphatase, thus specifically facilitating tau dephosphorylation and removal. Here, we sought to optimize the construction of tau dephosphorylating-targeting chimera (DEPTAC) and obtained a new chimera D14, which had high efficiency in reducing tau phosphorylation both in cell and tauopathy mouse models, while showing limited cytotoxicity. Moreover, D14 ameliorated neurodegeneration in primary cultured hippocampal neurons treated with toxic tau-K18 fragments, and improved cognitive functions of tauopathy mice. These results suggested D14 as a cost-effective drug candidate for the treatment of tauopathies.
Collapse
Affiliation(s)
- Jing-Fen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lin-Yu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hui-Yang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Xia Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shi-Hong Li
- Department of Anesthesiology, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Beijing Life Science Academy, Beijing, 102209, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
2
|
Zhou Y, Li C, Chen X, Zhao Y, Liao Y, Huang P, Wu W, Nieto NS, Li L, Tang W. Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins. Nat Commun 2024; 15:8695. [PMID: 39379374 PMCID: PMC11461649 DOI: 10.1038/s41467-024-52685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Targeted protein degradation has emerged as a novel therapeutic modality to treat human diseases by utilizing the cell's own disposal systems to remove protein target. Significant clinical benefits have been observed for degrading many intracellular proteins. Recently, the degradation of extracellular proteins in the lysosome has been developed. However, there have been limited successes in selectively degrading protein targets in disease-relevant cells or tissues, which would greatly enhance the development of precision medicine. Additionally, most degraders are not readily available due to their complexity. We report a class of easily accessible Folate Receptor TArgeting Chimeras (FRTACs) to recruit the folate receptor, primarily expressed on malignant cells, to degrade extracellular soluble and membrane cancer-related proteins in vitro and in vivo. Our results indicate that FRTAC is a general platform for developing more precise and effective chemical probes and therapeutics for the study and treatment of cancers.
Collapse
Affiliation(s)
- Yaxian Zhou
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chunrong Li
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xuankun Chen
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuan Zhao
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yaxian Liao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nicholas S Nieto
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Weiping Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
3
|
Li N, Zheng G, Fu L, Liu N, Chen T, Lu S. Designed dualsteric modulators: A novel route for drug discovery. Drug Discov Today 2024; 29:104141. [PMID: 39168404 DOI: 10.1016/j.drudis.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Orthosteric and allosteric modulators, which constitute the majority of current drugs, bind to the orthosteric and allosteric sites of target proteins, respectively. However, the clinical efficacy of these agents is frequently compromised by poor selectivity or reduced potency. Dualsteric modulators feature two linked pharmacophores that bind to orthosteric and allosteric sites of the target proteins simultaneously, thereby offering a promising avenue to achieve both potency and specificity. In this review, we summarize recent structures available for dualsteric modulators in complex with their target proteins, elucidating detailed drug-target interactions and dualsteric action patterns. Moreover, we provide a design and optimization strategy for dualsteric modulators based on structure-based drug design approaches.
Collapse
Affiliation(s)
- Nuan Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| | - Lili Fu
- Department of Nephrology, People's Hospital of Pudong New Area, Shanghai University of Medicine & Health Sciences, Shanghai 201299, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
4
|
Chen Y, Liu F, Pal S, Hu Q. Proteolysis-targeting drug delivery system (ProDDS): integrating targeted protein degradation concepts into formulation design. Chem Soc Rev 2024; 53:9582-9608. [PMID: 39171633 DOI: 10.1039/d4cs00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a revolutionary paradigm in drug discovery and development, offering a promising avenue to tackle challenging therapeutic targets. Unlike traditional drug discovery approaches that focus on inhibiting protein function, TPD aims to eliminate proteins of interest (POIs) using modular chimeric structures. This is achieved through the utilization of proteolysis-targeting chimeras (PROTACs), which redirect POIs to E3 ubiquitin ligases, rendering them for degradation by the cellular ubiquitin-proteasome system (UPS). Additionally, other TPD technologies such as lysosome-targeting chimeras (LYTACs) and autophagy-based protein degraders facilitate the transportation of proteins to endo-lysosomal or autophagy-lysosomal pathways for degradation, respectively. Despite significant growth in preclinical TPD research, many chimeras fail to progress beyond this stage in the drug development. Various factors contribute to the limited success of TPD agents, including a significant hurdle of inadequate delivery to the target site. Integrating TPD into delivery platforms could surmount the challenges of in vivo applications of TPD strategies by reshaping their pharmacokinetics and pharmacodynamic profiles. These proteolysis-targeting drug delivery systems (ProDDSs) exhibit superior delivery performance, enhanced targetability, and reduced off-tissue side effects. In this review, we will survey the latest progress in TPD-inspired drug delivery systems, highlight the importance of introducing delivery ideas or technologies to the development of protein degraders, outline design principles of protein degrader-inspired delivery systems, discuss the current challenges, and provide an outlook on future opportunities in this field.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
5
|
Kim M, Choi H, Jang DJ, Kim HJ, Sub Y, Gee HY, Choi C. Exploring the clinical transition of engineered exosomes designed for intracellular delivery of therapeutic proteins. Stem Cells Transl Med 2024; 13:637-647. [PMID: 38838263 PMCID: PMC11227971 DOI: 10.1093/stcltm/szae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/18/2024] [Indexed: 06/07/2024] Open
Abstract
Extracellular vesicles, particularly exosomes, have emerged as promising drug delivery systems owing to their unique advantages, such as biocompatibility, immune tolerability, and target specificity. Various engineering strategies have been implemented to harness these innate qualities, with a focus on enhancing the pharmacokinetic and pharmacodynamic properties of exosomes via payload loading and surface engineering for active targeting. This concise review outlines the challenges in the development of exosomes as drug carriers and offers insights into strategies for their effective clinical translation. We also highlight preclinical studies that have successfully employed anti-inflammatory exosomes and suggest future directions for exosome therapeutics. These advancements underscore the potential for integrating exosome-based therapies into clinical practice, heralding promise for future medical interventions.
Collapse
Affiliation(s)
| | - Hojun Choi
- ILIAS Biologics Inc., Daejeon 34014, Korea
| | - Deok-Jin Jang
- ILIAS Biologics Inc., Daejeon 34014, Korea
- Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, Sangju 37224, Korea
| | | | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | | |
Collapse
|
6
|
Huang X, Wu F, Ye J, Wang L, Wang X, Li X, He G. Expanding the horizons of targeted protein degradation: A non-small molecule perspective. Acta Pharm Sin B 2024; 14:2402-2427. [PMID: 38828146 PMCID: PMC11143490 DOI: 10.1016/j.apsb.2024.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 06/05/2024] Open
Abstract
Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.
Collapse
Affiliation(s)
- Xiaowei Huang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fengbo Wu
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Ye
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lian Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoyun Wang
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Li
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Pharmacy and Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Su J, Xiao Y, Wei L, Lei H, Sun F, Wang W, Yin J, Xiong R, Li S, Zhang P, Zhou Y, Wang X, Zheng J, Wang JZ. Generation of tau dephosphorylation-targeting chimeras for the treatment of Alzheimer's disease and related tauopathies. Sci Bull (Beijing) 2024; 69:1137-1152. [PMID: 38341350 DOI: 10.1016/j.scib.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Abnormal hyperphosphorylation and accumulation of tau protein play a pivotal role in neurodegeneration in Alzheimer's disease (AD) and many other tauopathies. Selective elimination of hyperphosphorylated tau is promising for the therapy of these diseases. We have conceptualized a strategy, named dephosphorylation-targeting chimeras (DEPTACs), for specifically hijacking phosphatases to tau to debilitate its hyperphosphorylation. Here, we conducted the step-by-step optimization of each constituent motif to generate DEPTACs with reasonable effectiveness in facilitating the dephosphorylation and subsequent clearance of pathological tau. Specifically, for one of the selected chimeras, D16, we demonstrated its significant efficiency in rescuing the neurodegeneration caused by neurotoxic K18-tau seeds in vitro. Moreover, intravenous administration of D16 also alleviated tau pathologies in the brain and improved memory deficits in AD mice. These results suggested DEPTACs as targeted modulators of tau phosphorylation, which hold therapeutic potential for AD and other tauopathies.
Collapse
Affiliation(s)
- Jingfen Su
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Xiao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Sino-UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weixia Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shihong Li
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Pei Zhang
- The Core Facility and Technical Support, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430030, China
| | - Ying Zhou
- Research Center for Medicine and Structural Biology, Wuhan University, Wuhan 430030, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Beijing 100083, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226000, China.
| |
Collapse
|
8
|
Zhang F, Jiang R, Sun S, Wu C, Yu Q, Awadasseid A, Wang J, Zhang W. Recent advances and mechanisms of action of PD-L1 degraders as potential therapeutic agents. Eur J Med Chem 2024; 268:116267. [PMID: 38422701 DOI: 10.1016/j.ejmech.2024.116267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/01/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.
Collapse
Affiliation(s)
- Feng Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ruiya Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shishi Sun
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Caiyun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qimeng Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Annoor Awadasseid
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China; Moganshan Institute, Zhejiang University of Technology, Deqing, China
| | - Jianwei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Wen Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
9
|
Liang X, Ren H, Han F, Liang R, Zhao J, Liu H. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology. Med Res Rev 2024; 44:632-685. [PMID: 37983964 DOI: 10.1002/med.21992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/13/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Imbalances in protein and noncoding RNA levels in vivo lead to the occurrence of many diseases. In addition to the use of small molecule inhibitors and agonists to restore these imbalances, recently emerged targeted degradation technologies provide a new direction for disease treatment. Targeted degradation technology directly degrades target proteins or RNA by utilizing the inherent degradation pathways, thereby eliminating the functions of pathogenic proteins (or RNA) to treat diseases. Compared with traditional therapies, targeted degradation technology which avoids the principle of traditional inhibitor occupation drive, has higher efficiency and selectivity, and widely expands the range of drug targets. It is one of the most promising and hottest areas for future drug development. Herein, we systematically introduced the in vivo degradation systems applied to degrader design: ubiquitin-proteasome system, lysosomal degradation system, and RNA degradation system. We summarized the development progress, structural characteristics, and limitations of novel chimeric design technologies based on different degradation systems. In addition, due to the lack of clear ligand-binding pockets, about 80% of disease-associated proteins cannot be effectively intervened with through traditional therapies. We deeply elucidated how to use targeted degradation technology to discover and design molecules for representative undruggable targets including transcription factors, small GTPases, and phosphatases. Overall, this review provides a comprehensive and systematic overview of targeted degradation technology-related research advances and a new guidance for the chimeric design of undruggable targets.
Collapse
Affiliation(s)
- Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hairu Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Fengyang Han
- School of Pharmacy, Fudan University, Shanghai, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiayan Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
10
|
Wittlinger F, Ogboo BC, Shevchenko E, Damghani T, Pham CD, Schaeffner IK, Oligny BT, Chitnis SP, Beyett TS, Rasch A, Buckley B, Urul DA, Shaurova T, May EW, Schaefer EM, Eck MJ, Hershberger PA, Poso A, Laufer SA, Heppner DE. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. Commun Chem 2024; 7:38. [PMID: 38378740 PMCID: PMC10879502 DOI: 10.1038/s42004-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The re-engineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
- Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ekaterina Shevchenko
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
| | - Tahereh Damghani
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Calvin D Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ilse K Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brandon T Oligny
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Surbhi P Chitnis
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tyler S Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, 5119 Rollins Research Center, 1510 Clifton Rd, Atlanta, GA, 30322, USA
| | - Alexander Rasch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, MA, 01752, USA
| | | | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA
| | - Antti Poso
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, 70210, Kuopio, Finland
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies" Eberhard Karls Universität Tübingen, 72076, Tübingen, Germany.
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076, Tübingen, Germany.
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14203, USA.
- Department of Structural Biology, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA.
| |
Collapse
|
11
|
Pasieka A, Diamanti E, Uliassi E, Laura Bolognesi M. Click Chemistry and Targeted Degradation: A Winning Combination for Medicinal Chemists? ChemMedChem 2023; 18:e202300422. [PMID: 37706617 DOI: 10.1002/cmdc.202300422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Click chemistry is universally recognized as a powerful strategy for the fast and precise assembly of diverse building blocks. Targeted Protein Degradation (TPD) is a new therapeutic modality based on heterobifunctional small-molecule degraders that provides new opportunities to medicinal chemists dealing with undruggable targets and incurable diseases. Here, we highlight how very recently the TPD field and that of click chemistry have merged, opening up the possibility for fine-tuning the properties of a degrader, chemically assembled through a "click" synthesis. By reviewing concrete examples, we want to provide the reader with the insight that the application of click and bioorthogonal chemistry in the TDP field may be a winning combination.
Collapse
Affiliation(s)
- Anna Pasieka
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Eleonora Diamanti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Elisa Uliassi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Maria Laura Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
12
|
Heppner D, Wittlinger F, Ogboo B, Shevchenko E, Damghani T, Pham C, Schaeffner I, Oligny B, Chitnis S, Beyett T, Rasch A, Buckley B, Urul D, Shaurova T, May E, Schaefer E, Eck M, Hershberger P, Poso A, Laufer S. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. RESEARCH SQUARE 2023:rs.3.rs-3286949. [PMID: 37790373 PMCID: PMC10543509 DOI: 10.21203/rs.3.rs-3286949/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bivalent molecules consisting of groups connected through bridging linkers often exhibit strong target binding and unique biological effects. However, developing bivalent inhibitors with the desired activity is challenging due to the dual motif architecture of these molecules and the variability that can be introduced through differing linker structures and geometries. We report a set of alternatively linked bivalent EGFR inhibitors that simultaneously occupy the ATP substrate and allosteric pockets. Crystal structures show that initial and redesigned linkers bridging a trisubstituted imidazole ATP-site inhibitor and dibenzodiazepinone allosteric-site inhibitor proved successful in spanning these sites. The reengineered linker yielded a compound that exhibited significantly higher potency (~60 pM) against the drug-resistant EGFR L858R/T790M and L858R/T790M/C797S, which was superadditive as compared with the parent molecules. The enhanced potency is attributed to factors stemming from the linker connection to the allosteric-site group and informs strategies to engineer linkers in bivalent agent design.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael Eck
- Dana-Farber Cancer Institute & Department of Biological Chemistry and Molecular Pharmacology at Harvard Medical School
| | | | | | | |
Collapse
|
13
|
Kong NR, Jones LH. Clinical Translation of Targeted Protein Degraders. Clin Pharmacol Ther 2023; 114:558-568. [PMID: 37399310 DOI: 10.1002/cpt.2985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a potentially transformational therapeutic modality with considerable promise. Molecular glue degraders remodel the surface of E3 ligases inducing interactions with neosubstrates resulting in their polyubiquitination and proteasomal degradation. Molecular glues are clinically precedented and have demonstrated the ability to degrade proteins-of-interest (POIs) previously deemed undruggable due to the absence of a traditional small molecule binding pocket. Heterobifunctional proteolysis targeting chimeras (PROTACs) possess ligands for an E3 complex and the POIs, which are chemically linked together, and similarly hijack the ubiquitin machinery to deplete the target. There has been a recent surge in the number of degraders entering clinical trials, particularly directed toward cancer. Nearly all utilize CRL4CRBN as the E3 ligase, and a relatively limited diversity of POIs are currently targeted. In this review, we provide an overview of the degraders in clinical trials and provide a perspective on the lessons learned from their development and emerging human data that will be broadly useful to those working in the TPD field.
Collapse
Affiliation(s)
- Nikki R Kong
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lyn H Jones
- Center for Protein Degradation, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Pergu R, Shoba VM, Chaudhary SK, Munkanatta Godage DNP, Deb A, Singha S, Dhawa U, Singh P, Anokhina V, Singh S, Siriwardena SU, Choudhary A. Development and Applications of Chimera Platforms for Tyrosine Phosphorylation. ACS CENTRAL SCIENCE 2023; 9:1558-1566. [PMID: 37637727 PMCID: PMC10450875 DOI: 10.1021/acscentsci.3c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Indexed: 08/29/2023]
Abstract
Chimeric small molecules that induce post-translational modification (PTM) on a target protein by bringing it into proximity to a PTM-inducing enzyme are furnishing novel modalities to perturb protein function. Despite recent advances, such molecules are unavailable for a critical PTM, tyrosine phosphorylation. Furthermore, the contemporary design paradigm of chimeric molecules, formed by joining a noninhibitory binder of the PTM-inducing enzyme with the binder of the target protein, prohibits the recruitment of most PTM-inducing enzymes as their noninhibitory binders are unavailable. Here, we report two platforms to generate phosphorylation-inducing chimeric small molecules (PHICS) for tyrosine phosphorylation. We generate PHICS from both noninhibitory binders (scantily available, platform 1) and kinase inhibitors (abundantly available, platform 2) using cysteine-based group transfer chemistry. PHICS triggered phosphorylation on tyrosine residues in diverse sequence contexts and target proteins (e.g., membrane-associated, cytosolic) and displayed multiple bioactivities, including the initiation of a growth receptor signaling cascade and the death of drug-resistant cancer cells. These studies provide an approach to induce biologically relevant PTM and lay the foundation for pharmacologic PTM editing (i.e., induction or removal) of target proteins using abundantly available inhibitors of PTM-inducing or -erasing enzymes.
Collapse
Affiliation(s)
- Rajaiah Pergu
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Veronika M. Shoba
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Santosh K. Chaudhary
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | | | - Arghya Deb
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Santanu Singha
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Uttam Dhawa
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Prashant Singh
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Viktoriya Anokhina
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sameek Singh
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Sachini U. Siriwardena
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
| | - Amit Choudhary
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02115, United States
- Divisions
of Renal Medicine and Engineering, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
15
|
Meng X, Qi J. Manipulating Tyrosine Phosphorylation by Heterobifunctional Small Molecules. ACS CENTRAL SCIENCE 2023; 9:1512-1514. [PMID: 37637739 PMCID: PMC10451028 DOI: 10.1021/acscentsci.3c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Xianke Meng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215-5450, United
States
- Department
of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | | |
Collapse
|
16
|
Singh S, Tian W, Severance ZC, Chaudhary SK, Anokhina V, Mondal B, Pergu R, Singh P, Dhawa U, Singha S, Choudhary A. Proximity-inducing modalities: the past, present, and future. Chem Soc Rev 2023; 52:5485-5515. [PMID: 37477631 DOI: 10.1039/d2cs00943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Living systems use proximity to regulate biochemical processes. Inspired by this phenomenon, bifunctional modalities that induce proximity have been developed to redirect cellular processes. An emerging example of this class is molecules that induce ubiquitin-dependent proteasomal degradation of a protein of interest, and their initial development sparked a flurry of discovery for other bifunctional modalities. Recent advances in this area include modalities that can change protein phosphorylation, glycosylation, and acetylation states, modulate gene expression, and recruit components of the immune system. In this review, we highlight bifunctional modalities that perform functions other than degradation and have great potential to revolutionize disease treatment, while also serving as important tools in basic research to explore new aspects of biology.
Collapse
Affiliation(s)
- Sameek Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Wenzhi Tian
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Zachary C Severance
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santosh K Chaudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Viktoriya Anokhina
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Basudeb Mondal
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Rajaiah Pergu
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Prashant Singh
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Uttam Dhawa
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Santanu Singha
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Divisions of Renal Medicine and Engineering, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
17
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
18
|
Kannan MP, Sreeraman S, Somala CS, Kushwah RB, Mani SK, Sundaram V, Thirunavukarasou A. Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets. Future Med Chem 2023; 15:867-883. [PMID: 37254917 DOI: 10.4155/fmc-2023-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Targeted protein degradation (TPD) aids in developing novel bifunctional small-molecule degraders and eliminates proteins of interest. The TPD approach shows promising results in oncological, neurogenerative, cardiovascular and gynecological drug development. We provide an overview of technology advancements in TPD, including molecular glues, proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimeras, antibody-based PROTAC, GlueBody PROTAC, autophagy-targeting chimera, autophagosome-tethering compound, autophagy-targeting chimera and chaperone-mediated autophagy-based degraders. Here we discuss the development and evolution of the TPD field, the variety of proteins that PROTACs target and the biological repercussions of their degradation. We particularly highlight the recent improvements in TPD research that utilize autophagy or the endolysosomal pathway, which enables the targeting of undruggable targets.
Collapse
Affiliation(s)
- Mayuri P Kannan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Sarojini Sreeraman
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| | - Chaitanya S Somala
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Raja Bs Kushwah
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Saravanan K Mani
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Anand Thirunavukarasou
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| |
Collapse
|
19
|
Chirnomas D, Hornberger KR, Crews CM. Protein degraders enter the clinic - a new approach to cancer therapy. Nat Rev Clin Oncol 2023; 20:265-278. [PMID: 36781982 DOI: 10.1038/s41571-023-00736-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 165.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2023] [Indexed: 02/15/2023]
Abstract
Heterobifunctional protein degraders, such as PROteolysis TArgeting Chimera (PROTAC) protein degraders, constitute a novel therapeutic modality that harnesses the cell's natural protein-degradation machinery - that is, the ubiquitin-proteasome system - to selectively target proteins involved in disease pathogenesis for elimination. Protein degraders have several potential advantages over small-molecule inhibitors that have traditionally been used for cancer treatment, including their event-driven (rather than occupancy-driven) pharmacology, which permits sub-stoichiometric drug concentrations for activity, their capacity to act iteratively and target multiple copies of a protein of interest, and their potential to target nonenzymatic proteins that were previously considered 'undruggable'. Following numerous innovations in protein degrader design and rigorous evaluation in preclinical models, protein degraders entered clinical testing in 2019. Currently, 18 protein degraders are in phase I or phase I/II clinical trials that involve patients with various tumour types, with a phase III trial of one initiated in 2022. The first safety, efficacy and pharmacokinetic data from these studies are now materializing and, although considerably more evidence is needed, protein degraders are showing promising activity as cancer therapies. Herein, we review advances in protein degrader development, the preclinical research that supported their entry into clinical studies, the available data for protein degraders in patients and future directions for this new class of drugs.
Collapse
Affiliation(s)
| | | | - Craig M Crews
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA.
- Department of Pharmacology, Yale University, New Haven, CT, USA.
- Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
20
|
Peng Y, Liu J, Inuzuka H, Wei W. Targeted protein posttranslational modifications by chemically induced proximity for cancer therapy. J Biol Chem 2023; 299:104572. [PMID: 36870680 PMCID: PMC10050664 DOI: 10.1016/j.jbc.2023.104572] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Post-translational modifications (PTMs) regulate all aspects of protein function. Therefore, upstream regulators of PTMs, such as kinases, acetyltransferases, or methyltransferases, are potential therapeutic targets for human diseases, including cancer. To date, multiple inhibitors and/or agonists of these PTM upstream regulators are in clinical use, while others are still in development. However, these upstream regulators control not only the PTMs of disease-related target proteins but also other disease-irrelevant substrate proteins. Thus, nontargeted perturbing activities may introduce unwanted off-target toxicity issues that limit the use of these drugs in successful clinical applications. Therefore, alternative drugs that solely regulate a specific PTM of the disease-relevant protein target may provide a more precise effect in treating disease with relatively low side effects. To this end, chemically induced proximity has recently emerged as a powerful research tool, and several chemical inducers of proximity (CIPs) have been used to target and regulate protein ubiquitination, phosphorylation, acetylation, and glycosylation. These CIPs have a high potential to be translated into clinical drugs and several examples such as PROTACs and MGDs are now in clinical trials. Hence, more CIPs need to be developed to cover all types of PTMs, such as methylation and palmitoylation, thus providing a full spectrum of tools to regulate protein PTM in basic research and also in clinical application for effective cancer treatment.
Collapse
Affiliation(s)
- Yunhua Peng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
21
|
Chatterjee DR, Kapoor S, Jain M, Das R, Chowdhury MG, Shard A. PROTACting the kinome with covalent warheads. Drug Discov Today 2023; 28:103417. [PMID: 36306996 DOI: 10.1016/j.drudis.2022.103417] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/19/2022] [Accepted: 10/19/2022] [Indexed: 02/02/2023]
Abstract
The dawn of targeted degradation using proteolysis-targeting chimeras (PROTACs) against recalcitrant proteins has prompted numerous efforts to develop complementary drugs. Although many of these are specifically directed against undruggable proteins, there is increasing interest in small molecule-based PROTACs that target intracellular pathways, and some have recently entered clinical trials. Concurrently, small molecule-based PROTACs that target protumorigenic pathways in cancer cells, the tumor microenvironment (TME), and angiogenesis have been found to have potent effects that synergize with the action of antibodies. This has led to the augmentation of PROTACs with variable substitution patterns. Several combinations with small molecules targeting undruggable proteins are now under clinical investigation. In this review, we discuss the recent milestones achieved as well as challenges encountered in this area of drug development, as well as our opinion on the best path forward.
Collapse
Affiliation(s)
- Deep Rohan Chatterjee
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Saumya Kapoor
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Meenakshi Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Rudradip Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Moumita Ghosh Chowdhury
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
22
|
Desantis J, Mammoli A, Eleuteri M, Coletti A, Croci F, Macchiarulo A, Goracci L. PROTACs bearing piperazine-containing linkers: what effect on their protonation state? RSC Adv 2022; 12:21968-21977. [PMID: 36043064 PMCID: PMC9361468 DOI: 10.1039/d2ra03761k] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) represent an emerging class of compounds for innovative therapeutic application. Their bifunctional nature induces the formation of a ternary complex (target protein/PROTAC/E3 ligase) which allows target protein ubiquitination and subsequent proteasomal-dependent degradation. To date, despite great efforts being made to improve their biological efficacy PROTACs rational design still represents a challenging task, above all for the modulation of their physicochemical and pharmacokinetics properties. Considering the pivotal role played by the linker moiety, recently the insertion of a piperazine moiety into the PROTAC linker has been widely used, as this ring can in principle improve rigidity and increase solubility upon protonation. Nevertheless, the pK a of the piperazine ring is significantly affected by the chemical groups located nearby, and slight modifications in the linker could eliminate the desired effect. In the present study, the pK a values of a dataset of synthesized small molecule compounds including PROTACs and their precursors have been evaluated in order to highlight how a fine modulation of piperazine-containing linkers can impact the protonation state of these molecules or similar heterobifunctional ones. Finally, the possibility of predicting the trend through in silico approaches was also evaluated.
Collapse
Affiliation(s)
- Jenny Desantis
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Andrea Mammoli
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Michela Eleuteri
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Alice Coletti
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Federico Croci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Sciences, University of Perugia Via del Liceo 1 06123 Perugia Italy
| | - Laura Goracci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| |
Collapse
|