1
|
Hermosilla-Trespaderne M, Hu-Yang MX, Dannoura A, Frey AM, George AL, Trost M, Marín-Rubio JL. Proteomic Analysis Reveals Trilaciclib-Induced Senescence. Mol Cell Proteomics 2024; 23:100778. [PMID: 38679389 PMCID: PMC11141265 DOI: 10.1016/j.mcpro.2024.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Trilaciclib, a cyclin-dependent kinase 4/6 inhibitor, was approved as a myeloprotective agent for protecting bone marrow from chemotherapy-induced damage in extensive-stage small cell lung cancer. This is achieved through the induction of a temporary halt in the cell cycle of bone marrow cells. While it has been studied in various cancer types, its potential in hematological cancers remains unexplored. This research aimed to investigate the efficacy of trilaciclib in hematological cancers. Utilizing mass spectrometry-based proteomics, we examined the alterations induced by trilaciclib in the chronic myeloid leukemia cell line, K562. Interestingly, trilaciclib promoted senescence in these cells rather than cell death, as observed in acute myeloid leukemia, acute lymphoblastic leukemia, and myeloma cells. In K562 cells, trilaciclib hindered cell cycle progression and proliferation by stabilizing cyclin-dependent kinase 4/6 and downregulating cell cycle-related proteins, along with the concomitant activation of autophagy pathways. Additionally, trilaciclib-induced senescence was also observed in the nonsmall cell lung carcinoma cell line, A549. These findings highlight trilaciclib's potential as a therapeutic option for hematological cancers and underscore the need to carefully balance senescence induction and autophagy modulation in chronic myeloid leukemia treatment, as well as in nonsmall cell lung carcinoma cell line.
Collapse
Affiliation(s)
- Marina Hermosilla-Trespaderne
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Mark Xinchen Hu-Yang
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Abeer Dannoura
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Andrew M Frey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Amy L George
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK.
| | - José Luis Marín-Rubio
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, UK; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
2
|
Chen R, Lukianova E, van der Loeff IS, Spegarova JS, Willet JDP, James KD, Ryder EJ, Griffin H, IJspeert H, Gajbhiye A, Lamoliatte F, Marin-Rubio JL, Woodbine L, Lemos H, Swan DJ, Pintar V, Sayes K, Ruiz-Morales ER, Eastham S, Dixon D, Prete M, Prigmore E, Jeggo P, Boyes J, Mellor A, Huang L, van der Burg M, Engelhardt KR, Stray-Pedersen A, Erichsen HC, Gennery AR, Trost M, Adams DJ, Anderson G, Lorenc A, Trynka G, Hambleton S. NUDCD3 deficiency disrupts V(D)J recombination to cause SCID and Omenn syndrome. Sci Immunol 2024; 9:eade5705. [PMID: 38787962 DOI: 10.1126/sciimmunol.ade5705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Inborn errors of T cell development present a pediatric emergency in which timely curative therapy is informed by molecular diagnosis. In 11 affected patients across four consanguineous kindreds, we detected homozygosity for a single deleterious missense variant in the gene NudC domain-containing 3 (NUDCD3). Two infants had severe combined immunodeficiency with the complete absence of T and B cells (T -B- SCID), whereas nine showed classical features of Omenn syndrome (OS). Restricted antigen receptor gene usage by residual T lymphocytes suggested impaired V(D)J recombination. Patient cells showed reduced expression of NUDCD3 protein and diminished ability to support RAG-mediated recombination in vitro, which was associated with pathologic sequestration of RAG1 in the nucleoli. Although impaired V(D)J recombination in a mouse model bearing the homologous variant led to milder immunologic abnormalities, NUDCD3 is absolutely required for healthy T and B cell development in humans.
Collapse
Affiliation(s)
- Rui Chen
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Elena Lukianova
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Ina Schim van der Loeff
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | | | - Joseph D P Willet
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kieran D James
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Edward J Ryder
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Helen Griffin
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Hanna IJspeert
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Akshada Gajbhiye
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Frederic Lamoliatte
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Jose L Marin-Rubio
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lisa Woodbine
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Henrique Lemos
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Swan
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Valeria Pintar
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Kamal Sayes
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | | | - Simon Eastham
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Penny Jeggo
- Genome Damage and Stability Centre, University of Sussex, BN1 9RQ Brighton, UK
| | - Joan Boyes
- Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| | - Andrew Mellor
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Lei Huang
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Center, Rotterdam 3000 CA, Netherlands
| | - Karin R Engelhardt
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - Asbjørg Stray-Pedersen
- Norwegian National Unit for Newborn Screening, Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo 0424, Norway
| | - Hans Christian Erichsen
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo 0424, Norway
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| | - Matthias Trost
- Biosciences Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, University of Birmingham. B15 2TT Birmingham, UK
| | - Anna Lorenc
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Gosia Trynka
- Wellcome Sanger Institute, Wellcome Genome Campus, CB10 1SA Hinxton, UK
- Open Targets, Wellcome Genome Campus, CB10 1SA Hinxton, UK
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, NE2 4HH Newcastle upon Tyne, UK
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, NE1 4LP Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Zhou Y, Tan C, Zenobi R. Rapid Profiling of the Glycosylation Effects on the Binding of SARS-CoV-2 Spike Protein to Angiotensin-Converting Enzyme 2 Using MALDI-MS with High Mass Detection. Anal Chem 2024; 96:1898-1905. [PMID: 38279913 DOI: 10.1021/acs.analchem.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
The spike protein receptor-binding domain (RBD) of SARS-CoV-2 binds directly to angiotensin-converting enzyme 2 (ACE2), mediating the host cell entry of SARS-CoV-2. Both spike protein and ACE2 are highly glycosylated, which can regulate the binding. Here, we utilized high-mass MALDI-MS with chemical cross-linking for profiling the glycosylation effects on the binding between RBD and ACE2. Overall, it was found that ACE2 glycosylation affects the binding more strongly than does RBD glycosylation. The binding affinity was improved after desialylation or partial deglycosylation (N690) of ACE2, while it decreased after degalactosylation. ACE2 can form dimers in solution, which bind more tightly to the RBD than the ACE2 monomers. The ACE2 dimerization and the binding of RBD to dimeric ACE2 can also be improved by the desialylation or deglycosylation of ACE2. Partial deglycosylation of ACE2 increased the dimerization of ACE2 and the binding affinity of RBD and ACE2 by more than a factor of 2, suggesting its high potential for neutralizing SARS-CoV-2. The method described in the work provided a simple way to analyze the protein-protein interaction without sample purification. It can be widely used for rapid profiling of glycosylation effects on protein-protein interaction for glycosylation-related diseases and the study of multiple interactions between protein and protein aggregates in a single system.
Collapse
Affiliation(s)
- Yuye Zhou
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Congrui Tan
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), CH-8093 Zürich, Switzerland
| |
Collapse
|
4
|
George AL, Sidgwick FR, Watt JE, Martin MP, Trost M, Marín-Rubio JL, Dueñas ME. Comparison of Quantitative Mass Spectrometric Methods for Drug Target Identification by Thermal Proteome Profiling. J Proteome Res 2023; 22:2629-2640. [PMID: 37439223 PMCID: PMC10407934 DOI: 10.1021/acs.jproteome.3c00111] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Indexed: 07/14/2023]
Abstract
Thermal proteome profiling (TPP) provides a powerful approach to studying proteome-wide interactions of small therapeutic molecules and their target and off-target proteins, complementing phenotypic-based drug screens. Detecting differences in thermal stability due to target engagement requires high quantitative accuracy and consistent detection. Isobaric tandem mass tags (TMTs) are used to multiplex samples and increase quantification precision in TPP analysis by data-dependent acquisition (DDA). However, advances in data-independent acquisition (DIA) can provide higher sensitivity and protein coverage with reduced costs and sample preparation steps. Herein, we explored the performance of different DIA-based label-free quantification approaches compared to TMT-DDA for thermal shift quantitation. Acute myeloid leukemia cells were treated with losmapimod, a known inhibitor of MAPK14 (p38α). Label-free DIA approaches, and particularly the library-free mode in DIA-NN, were comparable of TMT-DDA in their ability to detect target engagement of losmapimod with MAPK14 and one of its downstream targets, MAPKAPK3. Using DIA for thermal shift quantitation is a cost-effective alternative to labeled quantitation in the TPP pipeline.
Collapse
Affiliation(s)
- Amy L. George
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Frances R. Sidgwick
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Jessica E. Watt
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Mathew P. Martin
- Newcastle
Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, U.K.
| | - Matthias Trost
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - José Luis Marín-Rubio
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| | - Maria Emilia Dueñas
- Laboratory
for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, U.K.
| |
Collapse
|