1
|
Bagratee T, Prawlall R, Ndlovu T, Sibisi S, Ndadane S, Shaik BB, Palkar MB, Gampa R, Karpoormath R. Exploring the Recent Pioneering Developments of Small Molecules in Antimalarial Drug Armamentarium: A Chemistry Prospective Appraisal. Chem Biodivers 2024; 21:e202400460. [PMID: 38759144 DOI: 10.1002/cbdv.202400460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 05/19/2024]
Abstract
Malaria is a very destructive and lethal parasitic disease that causes significant mortality worldwide, resulting in the loss of millions of lives annually. It is an infectious disease transmitted by mosquitoes, which is caused by different species of the parasite protozoan belonging to the genus Plasmodium. The uncontrolled intake of antimalarial drugs often employed in clinical settings has resulted in the emergence of numerous strains of plasmodium that are resistant to these drugs, including multidrug-resistant strains. This resistance significantly diminishes the effectiveness of many primary drugs used in the treatment of malaria. Hence, there is an urgent need for developing unique classes of antimalarial drugs that function with distinct mechanisms of action. In this context, the design and development of hybrid compounds that combine pharmacophoric properties from different lead molecules into a single unit gives a unique perspective towards further development of malaria drugs in the next generation. In recent years, the field of medicinal chemistry has made significant efforts resulting in the discovery and synthesis of numerous small novel compounds that exhibit potent antimalarial properties, while also demonstrating reduced toxicity and desirable efficacy. In light of this, we have reviewed the progress of hybrid antimalarial agents from 2021 up to the present. This manuscript presents a comprehensive overview of the latest advancements in the medicinal chemistry pertaining to small molecules, with a specific focus on their potential as antimalarial agents. As possible antimalarial drugs that might target both the dual stage and multi-stage stages of the parasite life cycle, these small hybrid molecules have been studied. This review explores a variety of physiologically active compounds that have been described in the literature in order to lay a strong foundation for the logical design and eventual identification of antimalarial drugs based on lead frameworks.
Collapse
Affiliation(s)
- Tameika Bagratee
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Ritika Prawlall
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Thabani Ndlovu
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sinqobile Sibisi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Sisa Ndadane
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Baji Baba Shaik
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Mahesh B Palkar
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
- Department of Pharmaceutical Chemistry, SVKM's NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Vile Parle (West), Mumbai, 400056, Maharashtra, India
| | - Raghavachary Gampa
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville), Durban, 4000, South Africa
| |
Collapse
|
2
|
Appetecchia F, Fabbrizi E, Fiorentino F, Consalvi S, Biava M, Poce G, Rotili D. Transmission-Blocking Strategies for Malaria Eradication: Recent Advances in Small-Molecule Drug Development. Pharmaceuticals (Basel) 2024; 17:962. [PMID: 39065810 PMCID: PMC11279868 DOI: 10.3390/ph17070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Malaria drug research and development efforts have resurged in the last decade following the decelerating rate of mortality and malaria cases in endemic regions. The inefficiency of malaria interventions is largely driven by the spreading resistance of the Plasmodium falciparum parasite to current drug regimens and that of the malaria vector, the Anopheles mosquito, to insecticides. In response to the new eradication agenda, drugs that act by breaking the malaria transmission cycle (transmission-blocking drugs), which has been recognized as an important and additional target for intervention, are being developed. These drugs take advantage of the susceptibility of Plasmodium during population bottlenecks before transmission (gametocytes) and in the mosquito vector (gametes, zygotes, ookinetes, oocysts, sporozoites). To date, compounds targeting stage V gametocytes predominate in the chemical library of transmission-blocking drugs, and some of them have entered clinical trials. The targeting of Plasmodium mosquito stages has recently renewed interest in the development of innovative malaria control tools, which hold promise for the application of compounds effective at these stages. In this review, we highlight the major achievements and provide an update on the research of transmission-blocking drugs, with a particular focus on their chemical scaffolds, antiplasmodial activity, and transmission-blocking potential.
Collapse
Affiliation(s)
| | | | | | | | | | - Giovanna Poce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy; (F.A.); (E.F.); (F.F.); (S.C.); (M.B.)
| |
Collapse
|
3
|
Mambwe D, Coertzen D, Leshabane M, Mulubwa M, Njoroge M, Gibhard L, Girling G, Wicht KJ, Lee MCS, Wittlin S, Moreira DRM, Birkholtz LM, Chibale K. hERG, Plasmodium Life Cycle, and Cross Resistance Profiling of New Azabenzimidazole Analogues of Astemizole. ACS Med Chem Lett 2024; 15:463-469. [PMID: 38628794 PMCID: PMC11017395 DOI: 10.1021/acsmedchemlett.3c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Toward addressing the cardiotoxicity liability associated with the antimalarial drug astemizole (AST, hERG IC50 = 0.0042 μM) and its derivatives, we designed and synthesized analogues based on compound 1 (Pf NF54 IC50 = 0.012 μM; hERG IC50 = 0.63 μM), our previously identified 3-trifluoromethyl-1,2,4-oxadiazole AST analogue. Compound 11 retained in vitro multistage antiplasmodium activity (ABS PfNF54 IC50 = 0.017 μM; gametocytes PfiGc/PfLGc IC50 = 1.24/1.39 μM, and liver-stage PbHepG2 IC50 = 2.30 μM), good microsomal metabolic stability (MLM CLint < 11 μL·min-1·mg-1, EH < 0.33), and solubility (150 μM). It shows a ∼6-fold and >6000-fold higher selectivity against human ether-á-go-go-related gene higher selectively potential over hERG relative to 1 and AST, respectively. Despite the excellent in vitro antiplasmodium activity profile, in vivo efficacy in the Plasmodium berghei mouse infection model was diminished, attributable to suboptimal oral bioavailability (F = 14.9%) at 10 mg·kg-1 resulting from poor permeability (log D7.4 = -0.82). No cross-resistance was observed against 44 common Pf mutant lines, suggesting activity via a novel mechanism of action.
Collapse
Affiliation(s)
- Dickson Mambwe
- Department
of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Dina Coertzen
- Department
of Biochemistry, Genetics & Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Meta Leshabane
- Department
of Biochemistry, Genetics & Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Mwila Mulubwa
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Mathew Njoroge
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Liezl Gibhard
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
| | - Gareth Girling
- Wellcome
Sanger Institute, Wellcome
Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Kathryn J. Wicht
- Department
of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| | - Marcus C. S. Lee
- Wellcome
Sanger Institute, Wellcome
Trust Genome Campus, Hinxton CB10 1SA, United Kingdom
- Biological
Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 4HN, Scotland, United Kingdom
| | - Sergio Wittlin
- Swiss
Tropical and Public Health Institute, Socinstrasse 57, 4002 Basel, Switzerland
- University
of Basel, 4003 Basel, Switzerland
| | | | - Lyn-Marie Birkholtz
- Department
of Biochemistry, Genetics & Microbiology, Institute for Sustainable
Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028 Pretoria, South Africa
| | - Kelly Chibale
- Department
of Chemistry, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
- Drug
Discovery and Development Centre (H3D), DMPK & Pharmacology, University of Cape Town, Observatory, 7925 Cape Town, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
- Institute
of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701 Cape Town, South Africa
| |
Collapse
|
4
|
Parvatkar P, Maher SP, Zhao Y, Cooper CA, de Castro ST, Péneau J, Vantaux A, Witkowski B, Kyle DE, Manetsch R. In Vitro Antimalarial Activity of Trichothecenes against Liver and Blood Stages of Plasmodium Species. JOURNAL OF NATURAL PRODUCTS 2024; 87:315-321. [PMID: 38262446 PMCID: PMC10897926 DOI: 10.1021/acs.jnatprod.3c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Trichothecenes (TCNs) are a large group of tricyclic sesquiterpenoid mycotoxins that have intriguing structural features and remarkable biological activities. Herein, we focused on three TCNs (anguidine, verrucarin A, and verrucarol) and their ability to target both the blood and liver stages of Plasmodium species, the parasite responsible for malaria. Anguidine and verrucarin A were found to be highly effective against the blood and liver stages of malaria, while verrucarol had no effect at the highest concentration tested. However, these compounds were also found to be cytotoxic and, thus, not selective, making them unsuitable for drug development. Nonetheless, they could be useful as chemical probes for protein synthesis inhibitors due to their direct impact on parasite synthesis processes.
Collapse
Affiliation(s)
- Prakash
T. Parvatkar
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Steven P. Maher
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Yingzhao Zhao
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
| | - Caitlin A. Cooper
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Sagan T. de Castro
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Julie Péneau
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Amélie Vantaux
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Benoît Witkowski
- Malaria
Molecular Epidemiology Unit, Institut Pasteur
du Cambodge, 5 Boulevard Monivong, PO Box 983, Phnom Penh, 120 210, Cambodia
| | - Dennis E. Kyle
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Roman Manetsch
- Department
of Chemistry and Chemical Biology, Northeastern
University, Boston, Massachusetts 02115, United States
- Department
of Pharmaceutical Sciences, Northeastern
University, Boston, Massachusetts 02115, United States
- Center
for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett
Institute
of Chemical and Biological Analysis, Northeastern
University, Boston, Massachusetts 02115, United States
| |
Collapse
|