1
|
Wang S, Zeng Y, Zhu L, Zhang M, Zhou L, Yang W, Luo W, Wang L, Liu Y, Zhu H, Xu X, Su P, Zhang X, Ahmed M, Chen W, Chen M, Chen S, Slobodyanyuk M, Xie Z, Guan J, Zhang W, Khan AA, Sakashita S, Liu N, Pham NA, Boutros PC, Ke Z, Moran MF, Cai Z, Cheng C, Yu J, Tsao MS, He HH. The N6-methyladenosine Epitranscriptomic Landscape of Lung Adenocarcinoma. Cancer Discov 2024; 14:2279-2299. [PMID: 38922581 PMCID: PMC11528209 DOI: 10.1158/2159-8290.cd-23-1212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Comprehensive N6-methyladenosine (m6A) epitranscriptomic profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 nonneoplastic lung tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptomic, proteomic, and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with nonneoplastic lung tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hypermethylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics by interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small-molecule inhibitor markedly diminished both EML4 m6A and protein abundance and efficiently suppressed lung metastases in vivo. Significance: Our study reveals a dynamic and functional epitranscriptomic landscape in LUAD, offering a valuable resource for further research in the field. We identified EML4 hypermethylation as a key driver of tumor metastasis, highlighting a novel therapeutic strategy of targeting EML4 to prevent LUAD metastasis.
Collapse
Affiliation(s)
- Shiyan Wang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Min Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhou
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weixiong Yang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weishan Luo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanming Liu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Helen Zhu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Vector Institute, Toronto, Canada
| | - Xin Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peiran Su
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Xinyue Zhang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Musaddeque Ahmed
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Wei Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No.1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Moliang Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Sujun Chen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Mykhaylo Slobodyanyuk
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Ontario Institute of Cancer Research, Toronto, Canada
| | - Zhongpeng Xie
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiansheng Guan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- College of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen, China
| | - Wen Zhang
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Ni Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, California
- Department of Urology, University of California, Los Angeles, California
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, California
- Institute for Precision Health, University of California, Los Angeles, California
| | - Zunfu Ke
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Michael F. Moran
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Chao Cheng
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming S. Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Housheng H. He
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomed Pharmacother 2024; 179:117421. [PMID: 39241568 DOI: 10.1016/j.biopha.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yi Qu
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Li S, Mehal WZ, Ouyang X. RNA modifications in the progression of liver diseases: from fatty liver to cancer. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2105-2119. [PMID: 38809498 PMCID: PMC11545962 DOI: 10.1007/s11427-023-2494-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/24/2023] [Indexed: 05/30/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a prominent global health concern associated with high risk of metabolic syndrome, and has impacted a substantial segment of the population. The disease spectrum ranges from simple fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma (HCC) and is increasingly becoming a prevalent indication for liver transplantation. The existing therapeutic options for NAFLD, NASH, and HCC are limited, underscoring the urgent need for innovative treatment strategies. Insights into gene expression, particularly RNA modifications such as N6 methyladenosine (m6A), hold promising avenues for interventions. These modifications play integral roles in RNA metabolism and cellular functions, encompassing the entire NAFLD-NASH-HCC progression. This review will encompass recent insights on diverse RNA modifications, including m6A, pseudouridine (ψ), N1-methyladenosine (m1A), and 5-methylcytidine (m5C) across various RNA species. It will uncover their significance in crucial aspects such as steatosis, inflammation, fibrosis, and tumorigenesis. Furthermore, prospective research directions and therapeutic implications will be explored, advancing our comprehensive understanding of the intricate interconnected nature of these pathological conditions.
Collapse
Affiliation(s)
- Simiao Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Wajahat Z Mehal
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Chen X, Wang M, Wang H, Yang J, Li X, Zhang R, Ding X, Hou H, Zhou J, Wu M. METTL3 inhibitor suppresses the progression of prostate cancer via IGFBP3/AKT pathway and synergizes with PARP inhibitor. Biomed Pharmacother 2024; 179:117366. [PMID: 39232384 DOI: 10.1016/j.biopha.2024.117366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024] Open
Abstract
The RNA N6-methyladenosine (m6A) regulator METTL3 is an important regulatory gene in various progressive processes of prostate cancer (PCa). METTL3 inhibitors have been reported to possess potent tumor suppression capacity in some cancer types. Nevertheless, the detailed influence and mechanism of METTL3 inhibitors on PCa progression and their potential synergy with other drugs are poorly understood. In this study, we demonstrated that METTL3 was overexpressed and associated with poor survival in most PCa patients. METTL3 inhibitor STM2457 reduced m6A levels of PCa cells, thus inhibiting their proliferation, colony formation, migration, invasion, and stemness in vitro. Furthermore, STM2457 suppressed PCa progression in both the CDX and PDX models in vivo. MeRIP-seq analysis coupled with biological validation revealed that STM2457 influenced multiple biological processes in PCa cells, mainly through the IGFBP3/AKT pathway. We also proved that STM2457 induced DNA damage and showed synergistic anti-PCa effects with the PARP inhibitor olaparib both in vitro and in vivo. All in all, this work provides a novel therapeutic strategy for targeting RNA m6A modifications for the treatment of PCa and provides a meaningful reference for further clinical trials.
Collapse
Affiliation(s)
- Xin Chen
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Miaomiao Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Haoran Wang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Jingxin Yang
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Xiaoxin Li
- Center for Drug Research and Evaluation, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China
| | - Xin Ding
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Huimin Hou
- Department of Urology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China.
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, PR China.
| | - Meng Wu
- Center for Drug Research and Evaluation, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
5
|
Kvolik Pavić A, Čonkaš J, Mumlek I, Zubčić V, Ozretić P. Clinician's Guide to Epitranscriptomics: An Example of N 1-Methyladenosine (m 1A) RNA Modification and Cancer. Life (Basel) 2024; 14:1230. [PMID: 39459530 PMCID: PMC11508930 DOI: 10.3390/life14101230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
Epitranscriptomics is the study of modifications of RNA molecules by small molecular residues, such as the methyl (-CH3) group. These modifications are inheritable and reversible. A specific group of enzymes called "writers" introduces the change to the RNA; "erasers" delete it, while "readers" stimulate a downstream effect. Epitranscriptomic changes are present in every type of organism from single-celled ones to plants and animals and are a key to normal development as well as pathologic processes. Oncology is a fast-paced field, where a better understanding of tumor biology and (epi)genetics is necessary to provide new therapeutic targets and better clinical outcomes. Recently, changes to the epitranscriptome have been shown to be drivers of tumorigenesis, biomarkers, and means of predicting outcomes, as well as potential therapeutic targets. In this review, we aimed to give a concise overview of epitranscriptomics in the context of neoplastic disease with a focus on N1-methyladenosine (m1A) modification, in layman's terms, to bring closer this omics to clinicians and their future clinical practice.
Collapse
Affiliation(s)
- Ana Kvolik Pavić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Josipa Čonkaš
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Ivan Mumlek
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Vedran Zubčić
- Department of Maxillofacial and Oral Surgery, University Hospital Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (A.K.P.); (V.Z.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Petar Ozretić
- Laboratory for Hereditary Cancer, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Zhang H, Sun F, Jiang S, Yang F, Dong X, Liu G, Wang M, Li Y, Su M, Wen Z, Yu C, Fan C, Li X, Zhang Z, Yang L, Li B. METTL protein family: focusing on the occurrence, progression and treatment of cancer. Biomark Res 2024; 12:105. [PMID: 39289775 PMCID: PMC11409517 DOI: 10.1186/s40364-024-00652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like protein is a ubiquitous enzyme-like protein in the human body, with binding domains for nucleic acids, proteins and other small molecules, and plays an important role in a variety of biological behaviours in normal organisms and diseases, characterised by the presence of a methyltransferase-like structural domain and a structurally conserved SAM-binding domain formed by the seven-stranded β-fold structure in the center of the protein. With the deepening of research, the METTL protein family has been found to be abnormally expressed in a variety of tumor diseases, and the clarification of its relationship with tumor diseases can be used as a molecular therapeutic target and has an important role in the prognosis of tumors. In this paper, we review the structure, biological process, immunotherapy, drug-targeted therapy, and markers of the METTL protein family to provide new ideas for the diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Fulin Sun
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Shuyao Jiang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Guoxiang Liu
- Department of Clinical Laboratory, Weifang People's Hospital, 151, Guangwen Streer, Weifang, 261041, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ya Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Chenkai Fan
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
- Health Science Center, Qingdao University, Qingdao, 266071, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| | - Bing Li
- Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Dermatology, The Affiliated Haici Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
7
|
Barone S, Cerchia C, Summa V, Brindisi M. Methyl-Transferase-Like Protein 16 (METTL16): The Intriguing Journey of a Key Epitranscriptomic Player Becoming an Emerging Biological Target. J Med Chem 2024; 67:14786-14806. [PMID: 39150226 DOI: 10.1021/acs.jmedchem.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Key epitranscriptomic players have been increasingly characterized for their structural features and their involvement in several diseases. Accordingly, the design and synthesis of novel epitranscriptomic modulators have started opening a glimmer for drug discovery. m6A is a reversible modification occurring on a specific site and is catalyzed by three sets of proteins responsible for opposite functions. Writers (e.g., methyl-transferase-like protein (METTL) 3/METTL14 complex and METTL16) introduce the methyl group on adenosine N-6, by transferring the methyl group from the methyl donor S-adenosyl-methionine (SAM) to the substrate. Despite the rapidly advancing drug discovery progress on METTL3/METTL14, the METTL16 m6A writer has been marginally explored so far. We herein provide the first comprehensive overview of structural and biological features of METTL16, highlighting the state of the art in the field of its biological and structural characterization. We also showcase initial efforts in the identification of structural templates and preliminary structure-activity relationships for METTL16 modulators.
Collapse
Affiliation(s)
- Simona Barone
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Carmen Cerchia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Margherita Brindisi
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| |
Collapse
|
8
|
Yang J, He Y, Kang Y, Shen L, Zhang W, Yan Y, Li X, Huang W, Xu X. Virtual Screening and Molecular Docking: Discovering Novel METTL3 Inhibitors. ACS Med Chem Lett 2024; 15:1491-1499. [PMID: 39291017 PMCID: PMC11403746 DOI: 10.1021/acsmedchemlett.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Methyltransferase-like 3 (METTL3) is an RNA methyltransferase that catalyzes the N6 -methyladenosine (m6A) modification of mRNA in eukaryotic cells. Past studies have shown that METTL3 is highly expressed in various cancers and is closely related to tumor development. Therefore, METTL3 inhibitors have received widespread attention as effective treatments for different types of tumors. This study proposes a hybrid high-throughput virtual screening (HTVS) protocol that combines structure-based methods with geometric deep learning-based DeepDock algorithms. We identified unique skeleton inhibitors of METTL3 from our self-built internal database. Among them, compound C3 showed significant inhibitory activity on METTL3, and further molecular dynamics simulations were performed to provide more details about the binding conformation. Overall, our research demonstrates the effectiveness of hybrid virtual algorithms, which is of great significance for understanding the biological functions of METTL3 and developing treatment methods for related diseases.
Collapse
Affiliation(s)
- Junyi Yang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yanwen He
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Youkun Kang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Liteng Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wen Zhang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Yumeng Yan
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xinyi Li
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Wenhai Huang
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 310013, China
| |
Collapse
|
9
|
Li L, Liu Z. SRF Facilitates Transcriptional Inhibition of Gem Expression by m6A Methyltransferase METTL3 to Suppress Neuronal Damage in Epilepsy. Mol Neurobiol 2024:10.1007/s12035-024-04396-x. [PMID: 39190265 DOI: 10.1007/s12035-024-04396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/21/2024] [Indexed: 08/28/2024]
Abstract
A bioinformatics analysis was conducted to screen for relevant expression datasets of the transcription factor SRF knockout mice. The aim was to investigate the relationship between SRF and m6A-related genes, predict how SRF regulates the m6A modification of GEM genes mediated by METTL3, and explore potential molecular mechanisms associated with neurotrauma. Disease gene databases such as GeneCards, DisGeNET, and Phenolyzer, and transcription factor databases TFDB and TRRUST, were used to obtain epilepsy-related genes and transcription factors. The intersection was then selected. Expression data of SRF knockout epilepsy mice were obtained from the GEO database and used to filter differentially expressed genes. Important module genes related to the disease were selected through WGCNA co-expression analysis. The intersection between these genes and the differentially expressed genes was performed, followed by PPI network analysis and GO/KEGG enrichment analysis. Furthermore, the core genes were selected using the cytoHubba plugin of the Cytoscape software. Differential expression analysis was performed on m6A-related factors in the GEO dataset, and the relationship between SRF and m6A-related factors and core genes was analyzed. The m6A binding sites of SRF with the METTL3 promoter and target gene Gem were predicted using the AnimalTFDB and SRAMP websites, respectively. We found that the transcription factor SRF may be a key gene in epilepsy during neuronal development. Further WGCNA analysis showed that 129 module genes were associated with SRF knockout epilepsy, and these differentially expressed genes were mainly enriched in the neuroactive ligand-receptor interaction pathway. The final results indicate that knocking out SRF may inhibit the transcription of METTL3, thereby inhibiting the m6A modification of Gem and leading to upregulation of Gem expression, thereby playing an important role in neuronal damage. Knocking out the SRF gene may inhibit the transcription of m6A methyltransferase METTL3, thereby inhibiting the m6A modification of GEM genes mediated by METTL3, promoting GEM gene expression, and leading to the occurrence of epilepsy-related neuron injury. Further investigation revealed that SRF overexpression can potentially enhance the transcription of METTL3, thus promoting m6A modification of GEM, resulting in downregulation of GEM expression. This process regulates oxidative stress in epileptic mouse neurons, suppresses inflammatory responses, and mitigates associated damage. Additionally, an in vitro neuronal epileptic model was established, and experimental techniques such as qRT-PCR and WB were employed to assess the expression of SRF, METTL3, and GEM in hippocampal tissues and neurons. The experimental results were consistent with our predictions, demonstrating that overexpression of SRF can inhibit the development of epilepsy-related neuronal damage. This study reveals that knockout of the SRF gene may suppress the transcription of m6A methyltransferase METTL3, thereby inhibiting m6A modification of the GEM gene mediated by METTL3 and subsequently promoting the expression of the GEM gene, leading to the occurrence of epilepsy-related neuronal damage.
Collapse
Affiliation(s)
- Lianling Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, P. R. China.
| | - Zhiguo Liu
- Department of Neurosurgery, Centtal Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
10
|
Liu JX, Zhang X, Xu WH, Hao XD. The role of RNA modifications in hepatocellular carcinoma: functional mechanism and potential applications. Front Immunol 2024; 15:1439485. [PMID: 39229278 PMCID: PMC11368726 DOI: 10.3389/fimmu.2024.1439485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive cancer with a poor prognosis. The molecular mechanisms underlying its development remain unclear. Recent studies have highlighted the crucial role of RNA modifications in HCC progression, which indicates their potential as therapeutic targets and biomarkers for managing HCC. In this review, we discuss the functional role and molecular mechanisms of RNA modifications in HCC through a review and summary of relevant literature, to explore the potential therapeutic agents and biomarkers for diagnostic and prognostic of HCC. This review indicates that specific RNA modification pathways, such as N6-methyladenosine, 5-methylcytosine, N7-methylguanosine, and N1-methyladenosine, are erroneously regulated and are involved in the proliferation, autophagy, innate immunity, invasion, metastasis, immune cell infiltration, and drug resistance of HCC. These findings provide a new perspective for understanding the molecular mechanisms of HCC, as well as potential targets for the diagnosis and treatment of HCC by targeting specific RNA-modifying enzymes or recognition proteins. More than ten RNA-modifying regulators showed the potential for use for the diagnosis, prognosis and treatment decision utility biomarkers of HCC. Their application value for HCC biomarkers necessitates extensive multi-center sample validation in the future. A growing number of RNA modifier inhibitors are being developed, but the lack of preclinical experiments and clinical studies targeting RNA modification in HCC poses a significant obstacle, and further research is needed to evaluate their application value in HCC treatment. In conclusion, this review provides an in-depth understanding of the complex interplay between RNA modifications and HCC while emphasizing the promising potential of RNA modifications as therapeutic targets and biomarkers for managing HCC.
Collapse
Affiliation(s)
- Jin-Xiu Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Xiaoping Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wen-Hua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Dan Hao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
11
|
He W, Cong Z, Niu C, Cheng F, Yi T, Yao Z, Zhang Y, Jiang X, Sun X, Niu Z, Fu Q. A prognostic signature based on genes associated with m6A/m5C/m1A/m7G modifications and its immunological characteristics in clear cell renal cell carcinoma. Sci Rep 2024; 14:18708. [PMID: 39134681 PMCID: PMC11319670 DOI: 10.1038/s41598-024-69639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by a high incidence and mortality rate. Despite advancements in therapeutic interventions, the prognosis for renal cancer patients remains suboptimal. Of late, methylation modifications have emerged as promising molecular targets for tumor assessment and treatment, yet their potential has not been fully investigated in the context of ccRCC. Transcriptomic and clinical data were extracted from The Cancer Genome Atlas, Gene Expression Omnibus, and ArrayExpress databases, leading to the identification of 57 methylation-related genes (MRGs). Utilizing DESeq2 analysis, Cox regression analysis, and the LASSO regression algorithm, a Methylation-Related Risk Score (MARS) was constructed. Cluster analysis, Gene Ontology (GO) analysis, clinical feature analysis, immune infiltration analysis, and mutation analysis were further employed to evaluate the model. Our investigation identified six pivotal prognostic MRGs and established a risk score predicated on m6A/m5C/m1A/m7G regulatory factors. This score was validated across two external cohorts and can be utilized to assess individual immune infiltration statuses and predict responses to immunotherapy. Moreover, cluster analysis delineated two distinct m6A/m5C/m1A/m7G gene clusters. We have developed and validated a robust prognostic signature based on genes associated with m6A, m5C, m1A, and m7G modifications. This gene signature demonstrates significant prognostic value in assessing survival outcomes, clinical characteristics, immune infiltration, and responses to immunotherapy in ccRCC patients. This finding provides valuable insights for refining precision treatment strategies.
Collapse
Affiliation(s)
- Wei He
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zixiang Cong
- Department of Urology, Weihai Municipal Hospital Affiliated to Shandong University, Weihai, Shandong, China
| | - Chengtao Niu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tinghai Yi
- Department of Urology, Traditional Chinese Hospital of Yiyuan County, Zibo, Shandong, China
| | - Zhongshun Yao
- Department of Emergency, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yiming Zhang
- Department of Urology, People's Hospital of Changle County, Weifang, Shandong, China
| | - Xue Jiang
- Medical School, Shandong Xiehe University, Jinan, Shandong, China
| | - Xintong Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
12
|
Chen XH, Guo KX, Li J, Xu SH, Zhu H, Yan GR. Regulations of m 6A and other RNA modifications and their roles in cancer. Front Med 2024; 18:622-648. [PMID: 38907157 DOI: 10.1007/s11684-024-1064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/17/2024] [Indexed: 06/23/2024]
Abstract
RNA modification is an essential component of the epitranscriptome, regulating RNA metabolism and cellular functions. Several types of RNA modifications have been identified to date; they include N6-methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), N6,2'-O-dimethyladenosine (m6Am), N4-acetylcytidine (ac4C), etc. RNA modifications, mediated by regulators including writers, erasers, and readers, are associated with carcinogenesis, tumor microenvironment, metabolic reprogramming, immunosuppression, immunotherapy, chemotherapy, etc. A novel perspective indicates that regulatory subunits and post-translational modifications (PTMs) are involved in the regulation of writer, eraser, and reader functions in mediating RNA modifications, tumorigenesis, and anticancer therapy. In this review, we summarize the advances made in the knowledge of different RNA modifications (especially m6A) and focus on RNA modification regulators with functions modulated by a series of factors in cancer, including regulatory subunits (proteins, noncoding RNA or peptides encoded by long noncoding RNA) and PTMs (acetylation, SUMOylation, lactylation, phosphorylation, etc.). We also delineate the relationship between RNA modification regulator functions and carcinogenesis or cancer progression. Additionally, inhibitors that target RNA modification regulators for anticancer therapy and their synergistic effect combined with immunotherapy or chemotherapy are discussed.
Collapse
Affiliation(s)
- Xin-Hui Chen
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Kun-Xiong Guo
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jing Li
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Shu-Hui Xu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Huifang Zhu
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Guangdong Provincial Key Laboratory of Major Obstetric Disease, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, State Key Laboratory of Respiratory Disease, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
13
|
Sighel D, Destefanis E, Quattrone A. Therapeutic strategies to target the epitranscriptomic machinery. Curr Opin Genet Dev 2024; 87:102230. [PMID: 39024774 DOI: 10.1016/j.gde.2024.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Altered RNA modification patterns and dysregulated expression of epitranscriptomic machinery proteins (EMPs) have been causatively correlated with several diseases. Modulation of EMP gene expression has shown promise in reversing disease-associated phenotypes, making EMPs attractive therapeutic targets. Various therapeutic strategies, including small-molecule modulators, proteolysis-targeting chimeras, and molecular tools for site-specific engineering of RNA modifications, have been introduced to modulate EMPs and RNA modifications themselves and are currently being investigated to enrich the physician's armamentarium. At the forefront of research are small-molecule inhibitors of the key players involved in the N6-methyladenosine RNA modification, with an inhibitor of methyltransferase 3 in clinical trials. Preclinical studies have also demonstrated proof-of-concept for the other approaches, raising expectations for this exciting new frontier of therapy.
Collapse
Affiliation(s)
- Denise Sighel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy. https://twitter.com/@DSighel
| | - Eliana Destefanis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy. https://twitter.com/@Destefanis_E
| | - Alessandro Quattrone
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy.
| |
Collapse
|
14
|
Fernandez Rodriguez G, Tarullo M, Fatica A. N 6-methyladenosine (m 6A) RNA modification in chronic myeloid leukemia: unveiling a novel therapeutic target. Cell Mol Life Sci 2024; 81:326. [PMID: 39085650 PMCID: PMC11335252 DOI: 10.1007/s00018-024-05379-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
N6-methyladenosine (m6A), the most prevalent internal mRNA modification, plays a critical role in physiological processes by regulating gene expression through modulation of mRNA metabolism at multiple stages. In recent years, m6A has garnered significant attention for a deeper understanding of the initiation, progression, and drug resistance of various cancers, including hematological malignancies. Dysregulation of m6A has been implicated in both cancer promotion and suppression. m6A methylation is a complex regulatory process involving methyltransferases (writers), demethylases (erasers), and proteins that recognize specific m6A modifications (readers). This intricate interplay presents challenges for precisely modulating m6A levels, either globally or at specific sites. This review specifically focuses on the role of m6A in chronic myeloid leukemia (CML), a blood cancer characterized by the BCR-ABL1 fusion. We emphasize its impact on leukemia cell survival and drug resistance mechanisms. Notably, inhibitors targeting m6A regulators show promise in preclinical models, suggesting a potential therapeutic avenue for CML. Integrating our understanding of m6A biology with current treatment strategies may lead to more effective therapies, especially for patients with advanced-stage or resistant CML.
Collapse
MESH Headings
- Humans
- Adenosine/analogs & derivatives
- Adenosine/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Drug Resistance, Neoplasm/genetics
- Animals
- Methyltransferases/metabolism
- Methyltransferases/antagonists & inhibitors
- Methyltransferases/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Methylation
Collapse
Affiliation(s)
| | - Marco Tarullo
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
15
|
Zhang M, Zhang H, Zhou Y, Yin H, Yu Z, Zhang X, Ai S, Wang M. Enzymatically Mediated In Situ Generation of Z-Scheme Bi 2S 3/Bi 2MoO 6 Heterojunction-Based Organic Photoelectrochemical Transistor for METTL3/METTL14 Detection. Anal Chem 2024. [PMID: 39072614 DOI: 10.1021/acs.analchem.4c01610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The OPECT biosensing platform, which connects optoelectronics and biological systems, offers significant amplification and more possibilities for research in biological applications. In this work, a homogeneous organic photoelectrochemical transistor (OPECT) biosensor based on a Bi2S3/Bi2MoO6 heterojunction was constructed to detect METTL3/METTL14 protein activity. The METTL3/METTL14 complex enzyme was used to catalyze adenine (A) on an RNA strand to m6A, protecting m6A-RNA from being cleaved by an E. coli toxin (MazF). Alkaline phosphatase (ALP) catalyzed the conversion of Na3SPO3 to H2S through an enzymatic reaction. Due to the adoption of the strategy of no fixation on the electrode, the generated H2S was easy to diffuse to the surface of the ITO electrode. The Bi2S3/Bi2MoO6 heterojunction was formed in situ through a chemical replacement reaction with Bi2MoO6, improving photoelectric conversion efficiency and realizing signal amplification. Based on this "signal on" mode, METTL3/METTL14 exhibited a wide linear range (0.00001-25 ng/μL) between protein concentration and photocurrent intensity with a limit of detection (LOD) of 7.8 fg/μL under optimal experimental conditions. The applicability of the developed method was evaluated by investigating the effect of four plasticizers on the activity of the METTL3/METTL14 protein, and the molecular modeling technique was employed to investigate the interaction between plasticizers and the protein.
Collapse
Affiliation(s)
- Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Zhengkun Yu
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xinyue Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Minghui Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
16
|
Poltronieri P. Regulatory RNAs: role as scaffolds assembling protein complexes and their epigenetic deregulation. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:841-876. [PMID: 39280246 PMCID: PMC11390297 DOI: 10.37349/etat.2024.00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, new data have been added to the interaction between non-coding RNAs (ncRNAs) and epigenetic machinery. Epigenetics includes enzymes involved in DNA methylation, histone modifications, and RNA modifications, and mechanisms underlying chromatin structure, repressive states, and active states operating in transcription. The main focus is on long ncRNAs (lncRNAs) acting as scaffolds to assemble protein complexes. This review does not cover RNA's role in sponging microRNAs, or decoy functions. Several lncRNAs were shown to regulate chromatin activation and repression by interacting with Polycomb repressive complexes and mixed-lineage leukemia (MLL) activating complexes. Various groups reported on enhancer of zeste homolog 2 (EZH2) interactions with regulatory RNAs. Knowledge of the function of these complexes opens the perspective to develop new therapeutics for cancer treatment. Lastly, the interplay between lncRNAs and epitranscriptomic modifications in cancers paves the way for new targets in cancer therapy. The approach to inhibit lncRNAs interaction with protein complexes and perspective to regulate epitrascriptomics-regulated RNAs may bring new compounds as therapeuticals in various types of cancer.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Agrofood Department, National Research Council, CNR-ISPA, 73100 Lecce, Italy
| |
Collapse
|
17
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
18
|
Li Z, Feng Y, Han H, Jiang X, Chen W, Ma X, Mei Y, Yuan D, Zhang D, Shi J. A Stapled Peptide Inhibitor Targeting the Binding Interface of N6-Adenosine-Methyltransferase Subunits METTL3 and METTL14 for Cancer Therapy. Angew Chem Int Ed Engl 2024; 63:e202402611. [PMID: 38607929 DOI: 10.1002/anie.202402611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/14/2024]
Abstract
METTL3, a primary methyltransferase catalyzing the RNA N6-methyladenosine (m6A) modification, has been identified as an oncogene in several cancer types and thus nominated as a potentially effective target for therapeutic inhibition. However, current options using this strategy are limited. In this study, we targeted protein-protein interactions at the METTL3-METTL14 binding interface to inhibit complex formation and subsequent catalysis of the RNA m6A modification. Among candidate peptides, RM3 exhibited the highest anti-cancer potency, inhibiting METTL3 activity while also facilitating its proteasomal degradation. We then designed a stapled peptide inhibitor (RSM3) with enhanced peptide stability and formation of the α-helical secondary structure required for METTL3 interaction. Functional and transcriptomic analysis in vivo indicated that RSM3 induced upregulation of programmed cell death-related genes while inhibiting cancer-promoting signals. Furthermore, tumor growth was significantly suppressed while apoptosis was enhanced upon RSM3 treatment, accompanied by increased METTL3 degradation, and reduced global RNA methylation levels in two in vivo tumor models. This peptide inhibitor thus exploits a mechanism distinct from other small-molecule competitive inhibitors to inhibit oncogenic METTL3 activity. Our findings collectively highlight the potential of targeting METTL3 in cancer therapies through peptide-based inhibition of complex formation and proteolytic degradation.
Collapse
Affiliation(s)
- Zenghui Li
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Yuqing Feng
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, Guangdong Province, China
| | - Hong Han
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Xingyue Jiang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Weiyu Chen
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Xuezhen Ma
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
| | - Yang Mei
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
| | - Dan Yuan
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
| | - Dingxiao Zhang
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, Guangdong Province, China
| | - Junfeng Shi
- Hunan Provincial Key Laboratory of Animal Models and Molecular Medicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, School of Biomedical Sciences, Hunan University Changsha, Hunan, 410082, China
- Greater Bay Area Institute for Innovation Institution, Guangzhou, 511300, Guangdong Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
19
|
Wang S, Yang Y, Jiang X, Zheng X, Wei Q, Dai W, Zhang X. Nurturing gut health: role of m6A RNA methylation in upholding the intestinal barrier. Cell Death Discov 2024; 10:271. [PMID: 38830900 PMCID: PMC11148167 DOI: 10.1038/s41420-024-02043-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/19/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
The intestinal lumen acts as a critical interface connecting the external environment with the body's internal state. It's essential to prevent the passage of harmful antigens and bacteria while facilitating nutrient and water absorption. The intestinal barriers encompass microbial, mechanical, immunological, and chemical elements, working together to maintain intestinal balance. Numerous studies have associated m6A modification with intestinal homeostasis. This review comprehensively outlines potential mechanisms through which m6A modification could initiate, exacerbate, or sustain barrier damage from an intestinal perspective. The pivotal role of m6A modification in preserving intestinal equilibrium provides new insights, guiding the exploration of m6A modification as a target for optimizing preventive and therapeutic strategies for intestinal homeostasis.
Collapse
Affiliation(s)
| | - Yuzhong Yang
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiaohan Jiang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Xiang Zheng
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Qiufang Wei
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Wenbin Dai
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| | - Xuemei Zhang
- Department of Pathology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China.
| |
Collapse
|
20
|
Pham H, Kumar M, Martinez AR, Ali M, Lowery RG. Development and validation of a generic methyltransferase enzymatic assay based on an SAH riboswitch. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100161. [PMID: 38788976 PMCID: PMC11188199 DOI: 10.1016/j.slasd.2024.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Methylation of proteins and nucleic acids plays a fundamental role in epigenetic regulation, and discovery of methyltransferase (MT) inhibitors is an area of intense activity. Because of the diversity of MTs and their products, assay methods that detect S-adenosylhomocysteine (SAH) - the invariant product of S-adenosylmethionine (SAM)-dependent methylation reactions - offer some advantages over methods that detect specific methylation events. However, direct, homogenous detection of SAH requires a reagent capable of discriminating between SAH and SAM, which differ by a single methyl group. Moreover, MTs are slow enzymes and many have submicromolar affinities for SAM; these properties translate to a need for detection of SAH at low nanomolar concentrations in the presence of excess SAM. To meet these needs, we leveraged the exquisite molecular recognition properties of a naturally occurring SAH-sensing RNA aptamer, or riboswitch. By splitting the riboswitch into two fragments, such that SAH binding induces assembly of a trimeric complex, we engineered sensors that transduce binding of SAH into positive fluorescence polarization (FP) and time resolved Förster resonance energy transfer (TR-FRET) signals. The split riboswitch configuration, called the AptaFluor™ SAH Methyltransferase Assay, allows robust detection of SAH (Z' > 0.7) at concentrations below 10 nM, with overnight signal stability in the presence of typical MT assay components. The AptaFluor assay tolerates diverse MT substrates, including histones, nucleosomes, DNA and RNA, and we demonstrated its utility as a robust, enzymatic assay method for several methyltransferases with SAM Km values < 1 µM. The assay was validated for HTS by performing a pilot screen of 1,280 compounds against the SARS-CoV-2 RNA capping enzyme, nsp14. By enabling direct, homogenous detection of SAH at low nanomolar concentrations, the AptaFluor assay provides a universal platform for screening and profiling MTs at physiologically relevant SAM concentrations.
Collapse
Affiliation(s)
- Ha Pham
- BellBrook Labs, Madison, WI, USA
| | | | | | | | | |
Collapse
|
21
|
Pomaville M, Chennakesavalu M, Wang P, Jiang Z, Sun HL, Ren P, Borchert R, Gupta V, Ye C, Ge R, Zhu Z, Brodnik M, Zhong Y, Moore K, Salwen H, George RE, Krajewska M, Chlenski A, Applebaum MA, He C, Cohn SL. Small-molecule inhibition of the METTL3/METTL14 complex suppresses neuroblastoma tumor growth and promotes differentiation. Cell Rep 2024; 43:114165. [PMID: 38691450 PMCID: PMC11181463 DOI: 10.1016/j.celrep.2024.114165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/10/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024] Open
Abstract
The N6-methyladenosine (m6A) RNA modification is an important regulator of gene expression. m6A is deposited by a methyltransferase complex that includes methyltransferase-like 3 (METTL3) and methyltransferase-like 14 (METTL14). High levels of METTL3/METTL14 drive the growth of many types of adult cancer, and METTL3/METTL14 inhibitors are emerging as new anticancer agents. However, little is known about the m6A epitranscriptome or the role of the METTL3/METTL14 complex in neuroblastoma, a common pediatric cancer. Here, we show that METTL3 knockdown or pharmacologic inhibition with the small molecule STM2457 leads to reduced neuroblastoma cell proliferation and increased differentiation. These changes in neuroblastoma phenotype are associated with decreased m6A deposition on transcripts involved in nervous system development and neuronal differentiation, with increased stability of target mRNAs. In preclinical studies, STM2457 treatment suppresses the growth of neuroblastoma tumors in vivo. Together, these results support the potential of METTL3/METTL14 complex inhibition as a therapeutic strategy against neuroblastoma.
Collapse
Affiliation(s)
- Monica Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | | | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhiwei Jiang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Hui-Lung Sun
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peizhe Ren
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ryan Borchert
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Varsha Gupta
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zhu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Mallory Brodnik
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Yuhao Zhong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Kelley Moore
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Helen Salwen
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Malgorzata Krajewska
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alexandre Chlenski
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Mark A Applebaum
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, Il 60637 USA
| | - Susan L Cohn
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL 60637, USA.
| |
Collapse
|
22
|
Du W, Huang Y, Chen X, Deng Y, Sun Y, Yang H, Shi Q, Wu F, Liu G, Huang H, Ding J, Huang X, Xu S. Discovery of a PROTAC degrader for METTL3-METTL14 complex. Cell Chem Biol 2024; 31:177-183.e17. [PMID: 38194973 DOI: 10.1016/j.chembiol.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most abundant type of RNA modification that is mainly catalyzed by the METTL3-METTL14 methyltransferase complex. This complex has been linked to multiple cancers and is considered a promising therapeutic target for acute myeloid leukemia (AML). However, only a few METTL3 inhibitors targeting the catalytic activity were developed recently. Here, we present the discovery of WD6305 as the potent and selective proteolysis-targeting chimera (PROTAC) degrader of METTL3-METTL14 complex. WD6305 suppresses m6A modification and the proliferation of AML cells, and promotes apoptosis much more effectively than its parent inhibitor. WD6305 also affects a variety of signaling pathways related to the development and proliferation of AML. Collectively, our study reveals PROTAC degradation of METTL3-METTL14 complex as a potential anti-leukemic strategy and provides desirable chemical tool for further understanding METTL3-METTL14 protein functions.
Collapse
Affiliation(s)
- Wenhao Du
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuting Huang
- Lingang Laboratory, Shanghai 200031, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoai Chen
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yue Deng
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yaoliang Sun
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Yang
- Lingang Laboratory, Shanghai 200031, China; Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | | | - Feifei Wu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Guobin Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - He Huang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xun Huang
- Lingang Laboratory, Shanghai 200031, China; Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Science, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shilin Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; University of Chinese Academy of Science, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
23
|
Jaiswal AK, Thaxton ML, Scherer GM, Sorrentino JP, Garg NK, Rao DS. Small molecule inhibition of RNA binding proteins in haematologic cancer. RNA Biol 2024; 21:1-14. [PMID: 38329136 PMCID: PMC10857685 DOI: 10.1080/15476286.2024.2303558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/09/2024] Open
Abstract
In recent years, advances in biomedicine have revealed an important role for post-transcriptional mechanisms of gene expression regulation in pathologic conditions. In cancer in general and leukaemia specifically, RNA binding proteins have emerged as important regulator of RNA homoeostasis that are often dysregulated in the disease state. Having established the importance of these pathogenetic mechanisms, there have been a number of efforts to target RNA binding proteins using oligonucleotide-based strategies, as well as with small organic molecules. The field is at an exciting inflection point with the convergence of biomedical knowledge, small molecule screening strategies and improved chemical methods for synthesis and construction of sophisticated small molecules. Here, we review the mechanisms of post-transcriptional gene regulation, specifically in leukaemia, current small-molecule based efforts to target RNA binding proteins, and future prospects.
Collapse
Affiliation(s)
- Amit K. Jaiswal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Michelle L. Thaxton
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Georgia M. Scherer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Jacob P. Sorrentino
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Dinesh S. Rao
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
24
|
Wang W, Wang H, Sun T. N 6-methyladenosine modification: Regulatory mechanisms and therapeutic potential in sepsis. Biomed Pharmacother 2023; 168:115719. [PMID: 37839108 DOI: 10.1016/j.biopha.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by multiple biological and clinical features. N6-methyladenosine (m6A) modification is the most common type of RNA modifications in eukaryotes and plays an important regulatory role in various biological processes. Recently, m6A modification has been found to be involved in the regulation of immune responses in sepsis. In addition, several studies have shown that m6A modification is involved in sepsis-induced multiple organ dysfunctions, including cardiovascular dysfunction, acute lung injury (ALI), acute kidney injury (AKI) and etc. Considering the complex pathogenesis of sepsis and the lack of specific therapeutic drugs, m6A modification may be the important bond in the pathophysiological process of sepsis and even therapeutic targets. This review systematically highlights the recent advances regarding the roles of m6A modification in sepsis and sheds light on their use as treatment targets for sepsis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
25
|
Huang Y, Xia W, Dong Z, Yang CG. Chemical Inhibitors Targeting the Oncogenic m 6A Modifying Proteins. Acc Chem Res 2023; 56:3010-3022. [PMID: 37889223 DOI: 10.1021/acs.accounts.3c00451] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Epigenetics is brought to RNA, introducing a new dimension to gene expression regulation. Among numerous RNA modifications, N6-methyladenosine (m6A) is an abundant internal modification on eukaryote mRNA first identified in the 1970s. However, the significance of m6A modification in mRNA had been long neglected until the fat mass and obesity-associated (FTO) enzyme was identified as the first m6A demethylase almost 40 years later. The m6A modification influences nearly every step of RNA metabolism and thus broadly affects gene expression at multiple levels, playing a critical role in many biological processes, including cancer progression, metastasis, and immune evasion. The m6A level is dynamically regulated by RNA epigenetic machinery comprising methyltransferases such as methyltransferase-like protein 3 (METTL3), demethylases FTO and AlkB human homologue 5 (ALKBH5), and multiple reader proteins. The understanding of the biology of RNA epigenetics and its translational drug discovery is still in its infancy. It is essential to further develop chemical probes and lead compounds for an in-depth investigation into m6A biology and the translational discovery of anticancer drugs targeting m6A modifying oncogenic proteins.In this Account, we present our work on the development of chemical inhibitors to regulate m6A in mRNA by targeting the FTO demethylase, and the elucidation of their mode of action. We reported rhein to be the first substrate competitive FTO inhibitor. Due to rhein's poor selectivity, we identified meclofenamic acid (MA) that selectively inhibits FTO compared with ALKBH5. Based on the structural complex of MA bound with FTO, we designed MA analogs FB23-2 and Dac51, which exhibit significantly improved activities compared with MA. For example, FB23-2 is specific to FTO inhibition in vitro among over 400 other oncogenic proteins, including kinases, proteases, and DNA and histone epigenetic proteins. Mimicking FTO depletion, FB23-2 promotes the differentiation/apoptosis of human acute myeloid leukemia (AML) cells and inhibits the progression of primary cells in xenotransplanted mice. Dac51 treatment impairs the glycolytic activity of tumor cells and restores the function of CD8+ T cells, thereby inhibiting the growth of solid tumors in vivo. These FTO inhibitors were and will continue to be used as probes to promote biological studies of m6A modification and as lead compounds to target FTO in anticancer drug discovery.Toward the end, we also include a brief review of ALKBH5 demethylase inhibitors and METTL3 methyltransferase modulators. Collectively, these small-molecule modulators that selectively target RNA epigenetic proteins will promote in-depth studies on the regulation of gene expression and potentially accelerate anticancer target discovery.
Collapse
Affiliation(s)
- Yue Huang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenyang Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Dong
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Cai-Guang Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Nguyen TB, Miramontes R, Chillon-Marinas C, Maimon R, Vazquez-Sanchez S, Lau AL, McClure NR, England WE, Singha M, Stocksdale JT, Jang KH, Jung S, McKnight JI, Ho LN, Faull RLM, Steffan JS, Reidling JC, Jang C, Lee G, Cleveland DW, Lagier-Tourenne C, Spitale RC, Thompson LM. Aberrant splicing in Huntington's disease via disrupted TDP-43 activity accompanied by altered m6A RNA modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.565004. [PMID: 37961595 PMCID: PMC10635028 DOI: 10.1101/2023.10.31.565004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the first exon of the HTT gene encoding huntingtin. Prior reports have established a correlation between CAG expanded HTT and altered gene expression. However, the mechanisms leading to disruption of RNA processing in HD remain unclear. Here, our analysis of the reported HTT protein interactome identifies interactions with known RNA-binding proteins (RBPs). Total, long-read sequencing and targeted RASL-seq of RNAs from cortex and striatum of the HD mouse model R6/2 reveals increased exon skipping which is confirmed in Q150 and Q175 knock-in mice and in HD human brain. We identify the RBP TDP-43 and the N6-methyladenosine (m6A) writer protein methyltransferase 3 (METTL3) to be upstream regulators of exon skipping in HD. Along with this novel mechanistic insight, we observe decreased nuclear localization of TDP-43 and cytoplasmic accumulation of phosphorylated TDP-43 in HD mice and human brain. In addition, TDP-43 co-localizes with HTT in human HD brain forming novel nuclear aggregate-like bodies distinct from mutant HTT inclusions or previously observed TDP-43 pathologies. Binding of TDP-43 onto RNAs encoding HD-associated differentially expressed and aberrantly spliced genes is decreased. Finally, m6A RNA modification is reduced on RNAs abnormally expressed in striatum from HD R6/2 mouse brain, including at clustered sites adjacent to TDP-43 binding sites. Our evidence supports TDP-43 loss of function coupled with altered m6A modification as a novel mechanism underlying alternative splicing/unannotated exon usage in HD and highlights the critical nature of TDP-43 function across multiple neurodegenerative diseases.
Collapse
|
27
|
Onnis V. Special Issue "Novel Anti-Proliferative Agents". Pharmaceuticals (Basel) 2023; 16:1437. [PMID: 37895908 PMCID: PMC10610072 DOI: 10.3390/ph16101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a disease that can affect any organ and spread to other nearby or distant organs [...].
Collapse
Affiliation(s)
- Valentina Onnis
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, CA, Italy
| |
Collapse
|
28
|
Kallert E, Behrendt M, Frey A, Kersten C, Barthels F. Non-covalent dyes in microscale thermophoresis for studying RNA ligand interactions and modifications. Chem Sci 2023; 14:9827-9837. [PMID: 37736627 PMCID: PMC10510756 DOI: 10.1039/d3sc02993j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023] Open
Abstract
Microscale Thermophoresis (MST) is a powerful biophysical technique that measures the mobility of biomolecules in response to a temperature gradient, making it useful for investigating the interactions between biological molecules. This study presents a novel methodology for studying RNA-containing samples using non-covalent nucleic acid-sensitive dyes in MST. This "mix-and-measure" protocol uses non-covalent dyes, such as those from the Syto or Sybr series, which lead to the statistical binding of one fluorophore per RNA oligo showing key advantages over traditional covalent labelling approaches. This new approach has been successfully used to study the binding of ligands to RNA molecules (e.g., SAM- and PreQ1 riboswitches) and the identification of modifications (e.g., m6A) in short RNA oligos which can be written by the RNA methyltransferase METTL3/14.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Malte Behrendt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Ariane Frey
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
29
|
Breger K, Kunkler CN, O'Leary NJ, Hulewicz JP, Brown JA. Ghost authors revealed: The structure and function of human N 6 -methyladenosine RNA methyltransferases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1810. [PMID: 37674370 PMCID: PMC10915109 DOI: 10.1002/wrna.1810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 09/08/2023]
Abstract
Despite the discovery of modified nucleic acids nearly 75 years ago, their biological functions are still being elucidated. N6 -methyladenosine (m6 A) is the most abundant modification in eukaryotic messenger RNA (mRNA) and has also been detected in non-coding RNAs, including long non-coding RNA, ribosomal RNA, and small nuclear RNA. In general, m6 A marks can alter RNA secondary structure and initiate unique RNA-protein interactions that can alter splicing, mRNA turnover, and translation, just to name a few. Although m6 A marks in human RNAs have been known to exist since 1974, the structures and functions of methyltransferases responsible for writing m6 A marks have been established only recently. Thus far, there are four confirmed human methyltransferases that catalyze the transfer of a methyl group from S-adenosylmethionine (SAM) to the N6 position of adenosine, producing m6 A: methyltransferase-like protein (METTL) 3/METTL14 complex, METTL16, METTL5, and zinc-finger CCHC-domain-containing protein 4. Though the methyltransferases have unique RNA targets, all human m6 A RNA methyltransferases contain a Rossmann fold with a conserved SAM-binding pocket, suggesting that they utilize a similar catalytic mechanism for methyl transfer. For each of the human m6 A RNA methyltransferases, we present the biological functions and links to human disease, RNA targets, catalytic and kinetic mechanisms, and macromolecular structures. We also discuss m6 A marks in human viruses and parasites, assigning m6 A marks in the transcriptome to specific methyltransferases, small molecules targeting m6 A methyltransferases, and the enzymes responsible for hypermodified m6 A marks and their biological functions in humans. Understanding m6 A methyltransferases is a critical steppingstone toward establishing the m6 A epitranscriptome and more broadly the RNome. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Kurtis Breger
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Charlotte N Kunkler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Nathan J O'Leary
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jacob P Hulewicz
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Jessica A Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
30
|
Qiu L, Jing Q, Li Y, Han J. RNA modification: mechanisms and therapeutic targets. MOLECULAR BIOMEDICINE 2023; 4:25. [PMID: 37612540 PMCID: PMC10447785 DOI: 10.1186/s43556-023-00139-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
RNA modifications are dynamic and reversible chemical modifications on substrate RNA that are regulated by specific modifying enzymes. They play important roles in the regulation of many biological processes in various diseases, such as the development of cancer and other diseases. With the help of advanced sequencing technologies, the role of RNA modifications has caught increasing attention in human diseases in scientific research. In this review, we briefly summarized the basic mechanisms of several common RNA modifications, including m6A, m5C, m1A, m7G, Ψ, A-to-I editing and ac4C. Importantly, we discussed their potential functions in human diseases, including cancer, neurological disorders, cardiovascular diseases, metabolic diseases, genetic and developmental diseases, as well as immune disorders. Through the "writing-erasing-reading" mechanisms, RNA modifications regulate the stability, translation, and localization of pivotal disease-related mRNAs to manipulate disease development. Moreover, we also highlighted in this review all currently available RNA-modifier-targeting small molecular inhibitors or activators, most of which are designed against m6A-related enzymes, such as METTL3, FTO and ALKBH5. This review provides clues for potential clinical therapy as well as future study directions in the RNA modification field. More in-depth studies on RNA modifications, their roles in human diseases and further development of their inhibitors or activators are needed for a thorough understanding of epitranscriptomics as well as diagnosis, treatment, and prognosis of human diseases.
Collapse
Affiliation(s)
- Lei Qiu
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Qian Jing
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yanbo Li
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Research Laboratory of Tumor Epigenetics and Genomics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, P.R. China.
| |
Collapse
|
31
|
Bedi R, Huang D, Li Y, Caflisch A. Structure-Based Design of Inhibitors of the m 6A-RNA Writer Enzyme METTL3. ACS BIO & MED CHEM AU 2023; 3:359-370. [PMID: 37599794 PMCID: PMC10436262 DOI: 10.1021/acsbiomedchemau.3c00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 08/22/2023]
Abstract
Methyltransferase-like 3 (METTL3) and METTL14 form a heterodimeric complex that catalyzes the most abundant internal mRNA modification, N6-methyladenosine (m6A). METTL3 is the catalytic subunit that binds the co-substrate S-adenosyl methionine (SAM), while METTL14 is involved in mRNA binding. The m6A modification provides post-transcriptional level control over gene expression as it affects almost all stages of the mRNA life cycle, including splicing, nuclear export, translation, and decay. There is increasing evidence for an oncogenic role of METTL3 in acute myeloid leukemia. Here, we use structural and dynamic details of the catalytic subunit METTL3 for developing small-molecule inhibitors that compete with SAM. Starting from a hit identified by high-throughput docking, protein crystallography and molecular dynamics simulations were employed to guide the optimization of inhibitory activity. The potency was successfully improved by 8000-fold as measured by a homogeneous time-resolved fluorescence assay. The optimized compound is selective against the off-targets RNA methyltransferases METTL1 and METTL16.
Collapse
Affiliation(s)
- Rajiv
Kumar Bedi
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Danzhi Huang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Yaozong Li
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| |
Collapse
|
32
|
Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer 2023; 9:528-542. [PMID: 37147166 PMCID: PMC10330282 DOI: 10.1016/j.trecan.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Numerous strategies are employed by cancer cells to control gene expression and facilitate tumorigenesis. In the study of epitranscriptomics, a diverse set of modifications to RNA represent a new player of gene regulation in disease and in development. N6-methyladenosine (m6A) is the most common modification on mammalian messenger RNA and tends to be aberrantly placed in cancer. Recognized by a series of reader proteins that dictate the fate of the RNA, m6A-modified RNA could promote tumorigenesis by driving protumor gene expression signatures and altering the immunologic response to tumors. Preclinical evidence suggests m6A writer, reader, and eraser proteins are attractive therapeutic targets. First-in-human studies are currently testing small molecule inhibition against the methyltransferase-like 3 (METTL3)/methyltransferase-like 14 (METTL14) methyltransferase complex. Additional modifications to RNA are adopted by cancers to drive tumor development and are under investigation.
Collapse
Affiliation(s)
- Monica M Pomaville
- Department of Pediatrics, University of Chicago Comer Children's Hospital, Chicago, IL, USA; Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| | - Chuan He
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA; Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Leseva MN, Buttari B, Saso L, Dimitrova PA. Infection Meets Inflammation: N6-Methyladenosine, an Internal Messenger RNA Modification as a Tool for Pharmacological Regulation of Host-Pathogen Interactions. Biomolecules 2023; 13:1060. [PMID: 37509095 PMCID: PMC10377384 DOI: 10.3390/biom13071060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
The significance of internal mRNA modifications for the modulation of transcript stability, for regulation of nuclear export and translation efficiency, and their role in suppressing innate immunity is well documented. Over the years, the molecular complexes involved in the dynamic regulation of the most prevalent modifications have been characterized-we have a growing understanding of how each modification is set and erased, where it is placed, and in response to what cues. Remarkably, internal mRNA modifications, such as methylation, are emerging as an additional layer of regulation of immune cell homeostasis, differentiation, and function. A fascinating recent development is the investigation into the internal modifications of host/pathogen RNA, specifically N6-methyladenosine (m6A), its abundance and distribution during infection, and its role in disease pathogenesis and in shaping host immune responses. Low molecular weight compounds that target RNA-modifying enzymes have shown promising results in vitro and in animal models of different cancers and are expanding the tool-box in immuno-oncology. Excitingly, such modulators of host mRNA methyltransferase or demethylase activity hold profound implications for the development of new broad-spectrum therapeutic agents for infectious diseases as well. This review describes the newly uncovered role of internal mRNA modification in infection and in shaping the function of the immune system in response to invading pathogens. We will also discuss its potential as a therapeutic target and identify pitfalls that need to be overcome if it is to be effectively leveraged against infectious agents.
Collapse
Affiliation(s)
- Milena N Leseva
- Laboratory of Experimental Immunotherapy, Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases and Aging, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University of Rome, 00185 Rome, Italy
| | - Petya A Dimitrova
- Laboratory of Experimental Immunotherapy, Department of Immunology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|