1
|
Kornet MM, Müller TJJ. Recent Advances in Sequentially Pd-Catalyzed One-Pot Syntheses of Heterocycles. Molecules 2024; 29:5265. [PMID: 39598654 PMCID: PMC11596252 DOI: 10.3390/molecules29225265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Sequential Pd-catalyzed one-pot synthetic methodologies have emerged as a powerful and versatile approach in organic synthesis, enabling the construction of complex heterocyclic architectures with high efficiency, selectivity, and atom economy. This review discusses key advancements in multistep, sequentially Pd-catalyzed one-pot processes for accessing heterocyclic derivatives, focusing on classic reactions like Suzuki-Miyaura, Sonogashira, Heck, and hydroamination and extending to specialized techniques such as directed C-H activation. The concatenation of these steps has advanced the scope of one-pot strategies. A section is dedicated to exploring the cooperative use of palladium with other metals, particularly copper, ruthenium, and gold, which has broadened the range of accessible heterocyclic derivatives. Highlighted applications include the synthesis of biologically and pharmaceutically relevant compounds, such as tris(hetero)aryl systems, spiro-oxindoles, and indole derivatives. These one-pot strategies not only streamline synthesis but also align with green chemistry principles by minimizing purification steps and reducing waste and energy consumption. The review also addresses current challenges and limitations in these methodologies, offering insights into ongoing efforts to optimize reaction conditions and expand the applicability of sequential Pd-catalyzed processes.
Collapse
Affiliation(s)
- Maryna M. Kornet
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
- Laboratory for Biotechnology of Physiologically Active Substances, Faculty of Biology, Zaporizhzhia National University, 66 Universytetska Str., 69600 Zaporizhzhia, Ukraine
| | - Thomas J. J. Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Mathematisch-Naturwissenschaftliche Fakultät, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Gasparetto M, Fődi B, Sipos G. Negishi-coupling-enabled synthesis of α-heteroaryl-α-amino acid building blocks for DNA-encoded chemical library applications. Beilstein J Org Chem 2024; 20:1922-1932. [PMID: 39135657 PMCID: PMC11318629 DOI: 10.3762/bjoc.20.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Amino acids are vital motifs in the domain of biochemistry, serving as the foundational unit for peptides and proteins, while also holding a crucial function in many biological processes. Due to their bifunctional character, they have been also used for combinatorial chemistry purposes, such as the preparation of DNA-encoded chemical libraries. We developed a practical synthesis for α-heteroaryl-α-amino acids starting from an array of small heteroaromatic halides. The reaction sequence utilizes a photochemically enhanced Negishi cross-coupling as a key step, followed by oximation and reduction. The prepared amino esters were validated for on-DNA reactivity via a reverse amidation-hydrolysis-reverse amidation protocol.
Collapse
Affiliation(s)
- Matteo Gasparetto
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| | - Balázs Fődi
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| | - Gellért Sipos
- X-Chem Zrt., Záhony u. 7, DA Building, Graphisoft Park, Budapest, 1031, Hungary
| |
Collapse
|
3
|
Odena C, Santiago TG, Linares ML, Castellanos-Blanco N, McGuire RT, Chaves-Arquero B, Alonso JM, Diéguez-Vázquez A, Tan E, Alcázar J, Buijnsters P, Cañellas S, Martin R. Late-Stage C( sp2)-C( sp3) Diversification via Nickel Oxidative Addition Complexes. J Am Chem Soc 2024; 146:21264-21270. [PMID: 39052124 DOI: 10.1021/jacs.4c08404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, we describe nickel oxidative addition complexes (Ni-OACs) of drug-like molecules as a platform to rapidly generate lead candidates with enhanced C(sp3) fraction. The potential of Ni-OACs to access new chemical space has been assessed not only in C(sp2)-C(sp3) couplings but also in additional bond formations without recourse to specialized ligands and with improved generality when compared to Ni-catalyzed reactions. The development of an automated diversification process further illustrates the robustness of Ni-OACs, thus offering a new gateway to expedite the design-make-test-analyze (DMTA) cycle in drug discovery.
Collapse
Affiliation(s)
- Carlota Odena
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Tomás G Santiago
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | | | - Nahury Castellanos-Blanco
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Ryan T McGuire
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Belén Chaves-Arquero
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Jose Manuel Alonso
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | | | - Eric Tan
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Jesús Alcázar
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Peter Buijnsters
- Janssen Pharmaceutica Nv, A Johnson & Johnson Company, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Santiago Cañellas
- Janssen-Cilag, S.A., a Johnson & Johnson Company, C/Jarama 75A, 45007 Toledo, Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avenida Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
4
|
Pijper B, Saavedra LM, Lanzi M, Alonso M, Fontana A, Serrano M, Gómez JE, Kleij AW, Alcázar J, Cañellas S. Addressing Reproducibility Challenges in High-Throughput Photochemistry. JACS AU 2024; 4:2585-2595. [PMID: 39055158 PMCID: PMC11267557 DOI: 10.1021/jacsau.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/21/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024]
Abstract
Light-mediated reactions have emerged as an indispensable tool in organic synthesis and drug discovery, enabling novel transformations and providing access to previously unexplored chemical space. Despite their widespread application in both academic and industrial research, the utilization of light as an energy source still encounters challenges regarding reproducibility and data robustness. Herein we present a comprehensive head-to-head comparison of commercially available batch photoreactors, alongside the introduction of the use of batch and flow photoreactors in parallel synthesis. Hence, we aim to establish a reliable and consistent platform for light-mediated reactions in high-throughput mode. Herein, we showcase the identification of several platforms aligning with the rigorous demands for efficient and robust high-throughput experimentation screenings and library synthesis.
Collapse
Affiliation(s)
- Brenda Pijper
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Lucía M. Saavedra
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matteo Lanzi
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Maialen Alonso
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Alberto Fontana
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Marta Serrano
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - José Enrique Gómez
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Arjan W. Kleij
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Jesús Alcázar
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Santiago Cañellas
- Chemical
Capabilities, Analytical & Purification, Global Discovery Chemistry. Janssen-Cilag, S.A., E-45007 Toledo, Spain
| |
Collapse
|
5
|
Pijper B, Martín R, Huertas-Alonso AJ, Linares ML, López E, Llaveria J, Díaz-Ortiz Á, Dixon DJ, de la Hoz A, Alcázar J. Fully Automated Flow Protocol for C(sp 3)-C(sp 3) Bond Formation from Tertiary Amides and Alkyl Halides. Org Lett 2024; 26:2724-2728. [PMID: 37219892 PMCID: PMC11020161 DOI: 10.1021/acs.orglett.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Herein, we present a novel C(sp3)-C(sp3) bond-forming protocol via the reductive coupling of abundant tertiary amides with organozinc reagents prepared in situ from their corresponding alkyl halides. Using a multistep fully automated flow protocol, this reaction could be used for both library synthesis and target molecule synthesis on the gram-scale starting from bench-stable reagents. Additionally, excellent chemoselectivity and functional group tolerance make it ideal for late-stage diversification of druglike molecules.
Collapse
Affiliation(s)
- Brenda Pijper
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Raúl Martín
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alberto J. Huertas-Alonso
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Maria Lourdes Linares
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Enol López
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Josep Llaveria
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Ángel Díaz-Ortiz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Darren J. Dixon
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford. Oxford OX1 3TA, United
Kingdom
| | - Antonio de la Hoz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Jesús Alcázar
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| |
Collapse
|
6
|
Alcázar J, Anderson EA, Davies HML, Febrian R, Kelly CB, Noël T, Voight EA, Zarate C, Zysman-Colman E. Better Together: Catalyzing Innovation in Organic Synthesis via Academic-Industrial Consortia. Org Lett 2024; 26:2677-2681. [PMID: 38284620 DOI: 10.1021/acs.orglett.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Affiliation(s)
- Jesús Alcázar
- Global Discovery Chemistry, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Huw M L Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Rio Febrian
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Christopher B Kelly
- Discovery Process Research, Johnson & Johnson Innovative Medicine, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric A Voight
- Discovery Research, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States
| | - Cayetana Zarate
- Chemical Process R&D, Johnson & Johnson Innovative Medicine, Janssen-Cilag AG, Hochstrasse 201, 8200 Schaffhausen, Switzerland
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, North Haugh, KY16 9ST St Andrews, U.K
| |
Collapse
|
7
|
Ponzi S, Ferrigno F, Bisbocci M, Alli C, Ontoria JM, Petrocchi A, Toniatti C, Torrente E. Direct-to-biology platform: From synthesis to biological evaluation of SHP2 allosteric inhibitors. Bioorg Med Chem Lett 2024; 100:129626. [PMID: 38266789 DOI: 10.1016/j.bmcl.2024.129626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Tyrosine phosphatase SHP2 is a proto-oncogenic protein involved in cell growth and differentiation via diverse intracellular signaling pathways. With the scope of identifying new SHP2 allosteric inhibitors, we report here the development and optimization of a high-throughput "Direct-to-Biology" (D2B) workflow including the synthesis and the biological evaluation of the reaction crude, thus eliminating the need for purification. During this labor-saving procedure, the structural diversity was introduced through a SNAr reaction. A wide array of analogues with good chemical purity was generated, allowing the obtention of reliable biological data which validated this efficient technique. This approach enabled the fast evaluation of a variety of structurally diverse fragments leading to nanomolar SHP2 allosteric inhibitors and a new series bearing a novel bicyclo[3.1.0]hexane moiety.
Collapse
Affiliation(s)
- Simona Ponzi
- Department of Drug Discovery, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy.
| | - Federica Ferrigno
- Department of Drug Discovery, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| | - Monica Bisbocci
- Department of Biology and Translational Research, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| | - Cristina Alli
- Department of Biology and Translational Research, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| | - Jesus M Ontoria
- Department of Drug Discovery, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| | - Alessia Petrocchi
- Department of Drug Discovery, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| | - Carlo Toniatti
- Chief Scientific Officer, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| | - Esther Torrente
- Department of Drug Discovery, IRBM S.p.A., Via Pontina km 30.600, 00071 Pomezia, Rome, Italy
| |
Collapse
|
8
|
Brocklehurst CE, Altmann E, Bon C, Davis H, Dunstan D, Ertl P, Ginsburg-Moraff C, Grob J, Gosling DJ, Lapointe G, Marziale AN, Mues H, Palmieri M, Racine S, Robinson RI, Springer C, Tan K, Ulmer W, Wyler R. MicroCycle: An Integrated and Automated Platform to Accelerate Drug Discovery. J Med Chem 2024; 67:2118-2128. [PMID: 38270627 DOI: 10.1021/acs.jmedchem.3c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We herein describe the development and application of a modular technology platform which incorporates recent advances in plate-based microscale chemistry, automated purification, in situ quantification, and robotic liquid handling to enable rapid access to high-quality chemical matter already formatted for assays. In using microscale chemistry and thus consuming minimal chemical matter, the platform is not only efficient but also follows green chemistry principles. By reorienting existing high-throughput assay technology, the platform can generate a full package of relevant data on each set of compounds in every learning cycle. The multiparameter exploration of chemical and property space is hereby driven by active learning models. The enhanced compound optimization process is generating knowledge for drug discovery projects in a time frame never before possible.
Collapse
Affiliation(s)
- Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Eva Altmann
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - David Dunstan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Peter Ertl
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Carol Ginsburg-Moraff
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Jonathan Grob
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Daniel J Gosling
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Guillaume Lapointe
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Alexander N Marziale
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Heinrich Mues
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Marco Palmieri
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Sophie Racine
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| | - Richard I Robinson
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Clayton Springer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - Kian Tan
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - William Ulmer
- Global Discovery Chemistry, Novartis Biomedical Research, Cambridge, Massachusetts 02139, United States
| | - René Wyler
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4033, Switzerland
| |
Collapse
|
9
|
Jones M, Goodyear RL. High-Throughput Purification in Drug Discovery: Scaling New Heights of Productivity. ACS Med Chem Lett 2023; 14:916-919. [PMID: 37465307 PMCID: PMC10351054 DOI: 10.1021/acsmedchemlett.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2023] [Indexed: 07/20/2023] Open
Abstract
With the "low hanging fruit" of early drug discovery gone, pharmaceutical companies are increasingly turning to developing high-throughput synthetic platforms capable of greatly shortening the design-make-test cycle of new drugs. Purification has long been considered the bottleneck of this procedure; however, new technologies and systems are now being integrated into these high-throughput synthetic workflows, providing compounds of high purity capable of being used directly in biological screening.
Collapse
Affiliation(s)
- Mark Jones
- Liverpool ChiroChem Ltd, The Heath Business & Technical
Park, Runcorn, Cheshire WA7 4QX, U.K.
| | - Ross L. Goodyear
- Liverpool ChiroChem Ltd, The Heath Business & Technical
Park, Runcorn, Cheshire WA7 4QX, U.K.
| |
Collapse
|
10
|
Liu W, Mulhearn J, Hao B, Cañellas S, Last S, Gómez JE, Jones A, De Vera A, Kumar K, Rodríguez R, Van Eynde L, Strambeanu II, Wolkenberg SE. Enabling Deoxygenative C(sp 2)-C(sp 3) Cross-Coupling for Parallel Medicinal Chemistry. ACS Med Chem Lett 2023; 14:853-859. [PMID: 37312855 PMCID: PMC10258906 DOI: 10.1021/acsmedchemlett.3c00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/15/2023] Open
Abstract
Herein we report the development of an automated deoxygenative C(sp2)-C(sp3) coupling of aryl bromide with alcohols to enable parallel medicinal chemistry. Alcohols are among the most diverse and abundant building blocks, but their usage as alkyl precursors has been limited. Although metallaphotoredox deoxygenative coupling is becoming a promising strategy to form C(sp2)-C(sp3) bond, the reaction setup limits its widespread application in library synthesis. To achieve high throughput and consistency, an automated workflow involving solid-dosing and liquid-handling robots has been developed. We have successfully demonstrated this high-throughput protocol is robust and consistent across three automation platforms. Furthermore, guided by cheminformatic analysis, we examined alcohols with comprehensive chemical space coverage and established a meaningful scope for medicinal chemistry applications. By accessing the rich diversity of alcohols, this automated protocol has the potential to substantially increase the impact of C(sp2)-C(sp3) cross-coupling in drug discovery.
Collapse
Affiliation(s)
- Wei Liu
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - James Mulhearn
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Bo Hao
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Santiago Cañellas
- Discovery
Chemistry, Janssen Research & Development LLC, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Stefaan Last
- Discovery
Chemistry, Janssen Research & Development
LLC, 2340 Beerse, Belgium
| | - José Enrique Gómez
- Discovery
Chemistry, Janssen Research & Development LLC, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Alexander Jones
- Discovery
Chemistry, Janssen Research & Development
LLC, 2340 Beerse, Belgium
| | - Alexander De Vera
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kiran Kumar
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Raquel Rodríguez
- Discovery
Chemistry, Janssen Research & Development LLC, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Lars Van Eynde
- Discovery
Chemistry, Janssen Research & Development
LLC, 2340 Beerse, Belgium
| | - Iulia I. Strambeanu
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Scott E. Wolkenberg
- Discovery
Chemistry, Janssen Research & Development
LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| |
Collapse
|