1
|
Tian X, Gao Y, Li C, Ma W, Zhang J, Ju Y, Ding J, Zeng S, Hameed HMA, Aung HL, Zhong N, Cook GM, Hu J, Zhang T. A novel non-invasive murine model for rapidly testing drug activity via inhalation administration against Mycobacterium tuberculosis. Front Pharmacol 2025; 15:1400436. [PMID: 39830329 PMCID: PMC11739085 DOI: 10.3389/fphar.2024.1400436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
The efficacy of many compounds against Mycobacterium tuberculosis is often limited when administered via conventional oral or injection routes due to suboptimal pharmacokinetic characteristics. Inhalation-based delivery methods have been investigated to achieve high local therapeutic doses in the lungs. However, previous models, typically employing wild-type M. tuberculosis strains, were intricate, time-consuming, labor-intensive, and with poor reproducibility. In this study, we developed an autoluminescence-based inhalation administration model to evaluate drug activity by quantifying relative light units (RLUs) emitted from live mice infected with autoluminescent M. tuberculosis. This novel approach offers several advantages: (1) it eliminates the need for anesthesia in mice during administration and simplifies the instrument manipulation; (2) it is cost-effective by utilizing mice instead of larger animals; (3) it shortens the time from several months to 16 or 17 days for obtaining result; (4) it is non-invasive by directly measuring the live RLUs of mice as a surrogate marker for colony-forming units for in vivo drug activity testing; (5) up to six mice can be administrated daily and simultaneously, even 2-3 times/day; (6) results are relatively objective and reproducible results minimizing human factors. Proof-of-concept experiments demonstrated that inhalable rifampicin, isoniazid, and ethambutol showed anti-M. tuberculosis activity at concentrations as low as 0.5, 0.5, and 0.625 mg/mL, respectively, as evidenced by comparing the live RLUs of mice. Furthermore, consistency between RLUs and colony-forming units of the autoluminescent M. tuberculosis in lungs reaffirms the reliability of RLUs as an indicator of drug efficacy, highlighting the potential of this approach for accurately assessing anti-M. tuberculosis activity in vivo. This autoluminescence-based, non-invasive inhalation model offers a substantial reduction in the time, effort, and cost required for evaluating the efficacy of screening new drugs and repurposing old drugs in vivo via inhalation administration.
Collapse
Affiliation(s)
- Xirong Tian
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Chunyu Li
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wanli Ma
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jingran Zhang
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Sanshan Zeng
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Htin Lin Aung
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | | | - Gregory M. Cook
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
- Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jinxing Hu
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
2
|
Liang L, Liu Z, Chen J, Zha Q, Zhou Y, Li J, Hu Y, Chen X, Zhang T, Zhang N. Design and synthesis of Thieno[3, 2-b]pyridinone derivatives exhibiting potent activities against Mycobacterium tuberculosis in vivo by targeting Enoyl-ACP reductase. Eur J Med Chem 2024; 279:116806. [PMID: 39276583 DOI: 10.1016/j.ejmech.2024.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
In this study, a series of novel thieno [3, 2-b]pyridinone derivatives were designed and synthesized using a scaffold hopping strategy. Six compounds showed potent anti-mycobacterial activity (minimum inhibitory concentration (MIC) ≤ 1 μg/mL) against Mycobacterium tuberculosis (Mtb) UAlRa. Compound 6c displayed good activity against Mtb UAlRv (MIC = 0.5-1 μg/mL). Compounds 6c and 6i also showed activity against Mtb UAlRa in macrophages and exhibited low cytotoxicity against LO-2 cells. The selected compounds displayed a narrow antibacterial spectrum, with no activity against representative Gram-positive, Gram-negative bacteria, as well as fungi. Furthermore, compound 6c demonstrated favorable oral pharmacokinetic properties with a T1/2 value of 47.99 h and exhibited good in vivo activity in an acute mouse model of tuberculosis (TB). The target of compound 6c was identified as a NADH-dependent enoyl-acyl carrier protein reductase (InhA) by genome sequencing of spontaneously compound 6c-resistant Mtb mutants, indicating that compound 6c may not require activation and can directly target InhA. In vitro antimicrobial assays against a recombinant M. smegmatis overexpressing the Mtb-InhA, along with InhA inhibition assays, confirmed that InhA is the target of thieno [3, 2-b]pyridinone derivatives. Overall, this study identified thieno [3, 2-b]pyridinone scaffold as a novel chemotype that is promising for the development of anti-TB agents.
Collapse
Affiliation(s)
- Lihong Liang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Jie Chen
- Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, 314001, China
| | - Qin Zha
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Yihuan Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China; Guangzhou National Laboratory, Guangzhou, 510005, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Niuniu Zhang
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, 541199, China.
| |
Collapse
|
3
|
Yu W, Ju Y, Han X, Tian X, Ding J, Wang S, Hameed HMA, Gao Y, Li L, Li Y, Zhong N, Zhang T. Bactericidal and sterilizing activity of sudapyridine-clofazimine-TB47 combined with linezolid or pyrazinamide in a murine model of tuberculosis. Antimicrob Agents Chemother 2024; 68:e0012424. [PMID: 38690893 PMCID: PMC11620513 DOI: 10.1128/aac.00124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/07/2024] [Indexed: 05/03/2024] Open
Abstract
As an obligate aerobe, Mycobacterium tuberculosis relies on its branched electron transport chain (ETC) for energy production through oxidative phosphorylation. Regimens targeting ETC exhibit promising potential to enhance bactericidal activity against M. tuberculosis and hold the prospect of shortening treatment duration. Our previous research demonstrated that the bacteriostatic drug candidate TB47 (T) inhibited the growth of M. tuberculosis by targeting the cytochrome bc1 complex and exhibited synergistic activity with clofazimine (C). Here, we found synergistic activities between C and sudapyridine (S), a structural analog of bedaquiline (B). S has shown similar anti-tuberculosis efficacy and may share a mechanism of action with B, which inhibits ATP synthesis and the energy metabolism of bacteria. We evaluated the efficacy of SCT in combination with linezolid (L) or pyrazinamide (Z) using a well-established murine model of tuberculosis. Compared to the BPa(pretomanid)L regimen, SCT and SCTL demonstrated similar bactericidal and sterilizing activities. There was no significant difference in activity between SCT and SCTL. In contrast, SCZ and SCTZ showed much higher activities, with none of the 15 mice experiencing relapse after 2 months of treatment with either SCZ or SCTZ. However, T did not contribute to the activity of the SCZ. Our findings emphasize the efficacy and the potential clinical significance of combination therapy with ETC inhibitors. Additionally, cross-resistance exists not only between S and B but also between S/B and C. This is supported by our findings, as spontaneous S-resistant mutants exhibited mutations in Rv0678, which are associated with cross-resistance to B and C.
Collapse
Affiliation(s)
- Wei Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Division of Life Science and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Xirong Tian
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shuai Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - H. M. Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lei Li
- Shanghai Jiatan Pharmatech Co., Ltd, a subsidiary of Guangzhou JOYO Pharma Ltd., Shanghai, China
| | - Yongguo Li
- Shanghai Jiatan Pharmatech Co., Ltd, a subsidiary of Guangzhou JOYO Pharma Ltd., Shanghai, China
| | - Nanshan Zhong
- Guangzhou National Laboratory, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Diseases, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
- Division of Life Science and Medicine, School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, China
| |
Collapse
|